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Abstract

Using the insight derived from the computational investigation by Newman and Gabrielov
(1989) of the failure threshold of fiber bundles organized in hierarchical fashion, we prove
by analytic methods independent of the specific failure properties of an individual fiber
and independent of the specific hierarchical organization employed that the threshold for
failure of a hierarchical fiber bundle obeys a universal scaling law with respect to the size
of the bundle.

The investigation of the failure properties of bundles of fibers was first carried out
extensively by Daniels (1945). Smalley et al. (1985) suggested that a renormalization
approach was applicable to this problem when the bundles were grouped in a hierarchical
fashion. Newman and Gabrielov (1989), hereafter referred to as paper I, employed an
exact renormalization scheme to computationally investigate the failure properties of large
fiber bundles. Given the insight derived from this computational investigation, we have
developed a rigorous mathematical proof of these asymptotic properties which we present
below.

Consider an assembly of fibers with a given cumulative strength distribution P (σ) where
σ is the applied stress, i.e. a fiber will break under a stress σ with probability P (σ. The
distribution P (σ) is a nondecreasing function with values between 0 and 1 defined for
0 < σ < ∞, where P (σ) → 1 when σ → ∞. The problem here is to define the strength
of the assembly or bundle of fibers given a specific rule of stress redistribution among the
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fibers. Let us denote individual fibers of the bundle as fibers of order 0. Suppose that these
fibers are paired in sequential order and consider each pair of fibers of order 0 as though it
were itself a fiber, which we will denote as a fiber or, alternatively, a fiber bundle of order
1. Suppose that these fibers of order 1 are also paired sequentially and that these pairs
then form fibers of order 2, and so on, with fibers of order n consisting of 2n individual
fibers. The two fibers of order n which are paired are called neighbors of order n and form
a fiber of order n+1. It is natural to equate P0(σ) with P (σ), and we denote by Pn(σ) the
strength distribution for fiber bundles of order n.

We will assume that the fibers in a given bundle share equally the load supported by
that bundle. Thus, a given pair of fibers breaks under an applied stress σ only if both
constituent fibers fail under that stress σ, or one fiber fails under its load and redistributes
that load to the surviving fiber which then fails under a load between σ and 2σ. Extending
this concept to larger structures, a fiber bundle of order n breaks when its constituent fiber
bundles of order n−1 break according to the above scenario. By induction, we can readily
show that this means that all individual fibers contained within the fiber bundle of order
n are broken. We now want to calculate the strength distribution Pn(σ).

The probability that both fibers fail simultaneously under a stress σ is Pn−1(σ)2. The
probability that one fiber fails under stress σ with the surviving fiber failing under a stress
between σ and 2σ is

2Pn−1(σ)[(Pn−1(2σ)− Pn−1(σ)] .

The factor of two appears here since failure can occur in two ways, according to which
of the two fibers fails first. Thus, the probability of failure of a fiber bundle of order n is
equal to the sum of the previous two expressions, namely

(1) Pn(σ) = Pn−1(σ)[(2Pn−1(2σ)− Pn−1(σ)] .

The problem can be formulated similarly for the m-fold case when a fiber of order n consists
of m fibers of order n− 1.

Smalley et al. (1985) considered fiber bundles as a metaphor for the strength of a
fault in the Earth’s crust, which was considered to be a hierarchically organized system
of asperities. This problem was reduced to the investigation of the properties of the
transformation (1) for “one-dimensional fault” and of the corresponding transformation in
the 4–fold bundled case for a two-dimensional fault. Strictly speaking, they investigated
the transformation that emerges when P (2σ) is replaced by a functional of P (σ) that
corresponded only to the special case P (σ) = 1− exp(−aσ2). This is not correct, as P (σ)
and the correspondence between Pn(σ) and Pn(2σ) depend on n.

In paper I, we investigated transformation (1) by computational means and observed
that, for different initial distributions P (σ), the corresponding distributions Pn(σ) for large
values of n approach a step-like function that is close to 0 for σ < σn and close to 1 for

σ > σn, and whose critical value σn decreases as
1

ln(n)
. Qualitatively similar behavior
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was observed in the 4-fold case. We provide below a rigorous mathematical proof of these
asymptotic properties for a class of transformations acting on distribution functions that
includes transformation (1) and corresponding transformations in the m–fold case for all
m.

Let L denote the space of the distribution functions, i.e. non-decreasing functions P (σ),
0 < σ < ∞, with values between 0 and 1. For any transformation F : L → L and for
P (σ) ∈ L define Pn(σ) = Fn(P )(σ) for n ≥ 0. For our purpose it is useful to define a set
of conditions on F which are generally met by hierarchically structured fiber bundles.

(A) F (P )(σ) = F [(P (σ), P (aσ), . . . ], where a > 1, F (x, y, . . . ) is a continuously twice
differentiable function and . . . means a possible dependence of F on the values of P
at a′σ, a′′σ etc., 1 < a < a′ < a′′ . . . .

(B) For 0 ≤ x ≤ y ≤ . . . ≤ 1, we have 0 ≤ F (x, y, . . . ) ≤ 1 and all the components of the
vector grad(F )(x, y, . . . ) are nonnegative.

(C) F (x, y, . . . ) ≤ Qxy for 0 ≤ x ≤ y ≤ . . . ≤ 1 for some constant Q > 1.

(D) Let f(x) = F (x, 1, . . . , 1). Then f(0) = 0, f(1) = 1, f(x) > x for 0 < x < 1,
f ′(0) > 1, f ′(1) < 1.

(E) F (x, y, . . . ) ≥ qxyv for 0 ≤ x ≤ y ≤ . . . ≤ 1 for some constants q > 0, v ≥ 1.

(F) F (x, . . . , x) < x, for 0 < x < 1.

Remark 1. Condition (B) is equivalent to the requirement that F(L) ⊂ L. For simplicity,
let F = F (x, y). Suppose, to the contrary, that grad(F )(x, y) has a negative component
for some x, y with 0 ≤ x ≤ y ≤ 1. As grad(F ) is continuous, it is sufficient to consider
0 < x < y < 1. Then, for a small ε, we have 0 < x < x + ε < y < y + ε < 1 and
F (x, y) > F (x+ε, y+ε). For any small δ there exists a function P ∈ L such that P (1) = x,
P (1 + δ) = x + ε, P (a) = y, P [a(1 + δ)] = y + ε. Then F(P )(1) > F(P )(1 + δ) which is
contrary to the properties of a distribution function, and F(P ) /∈ L. Conversely, if all the
components of grad(F ) are nonnegative, then it is easy to show that F (x, y) ≤ F (x′, y′)
for x < x′, and y < y′. Thus condition (B) implies F(L) ⊂ L.

Remark 2. Conditions (A)–(F) are evidently valid for the transformation (1) with F (x, y) =
x(2y− x), a = 2, Q = 2, q = 1, and n = 1. Let us show that these conditions are valid for
corresponding transformations in the m–fold case for any m.

It is easy to verify that the probability of failure of a fiber bundle of order n + 1 in
the m-fold case under given stress σ is a polynomial F of the probabilities of failure of
its constituent fiber bundles of order n under initial stress σ, as well as under stresses
mσ

m− 1

mσ

m− 2
, . . . , mσ emerging when some of the fiber bundles of order n are broken.

See Phoenix and Smith (1983) and Kuo and Phoenix (1987) and the references therein.

This means that condition (A) is valid for the polynomial F and a =
m

m− 1
, a′ =

m

m− 2
,

etc.
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Condition (B) is automatically valid, as the transformation by definition acts on the
space L of distribution functions.

Condition (C) is valid since the failure of a fiber bundle of order n+ 1 under a stress σ
always requires either the failure of at least two fibers of order n under that stress σ or the
failure of one fiber of order n under the stress σ and at least one other fiber under stress
aσ. Thus, Pn+1(σ) = Pn(σ)2)[. . . ]+Pn(σ)Pn(aσ)[. . . ]. Accordingly, F = x2[. . . ]+xy[. . . ].
It is easy to check that any such polynomial satisfies (C).

Condition (D) follows since f(x) is defined to have the functional form F (x, 1, . . . , 1),
i.e. the probability of failure of a fiber of order n under the initial stress σ is x and the

probability of failure of a fiber of order n under a higher stress
mσ

m− 1
,

mσ

m− 2
, etc. is

given as 1. This is called the “weakest link approximation” since it presumes that if the
weakest fiber fails then all surviving fibers necessarily fail. Therefore, f(x) has the form
f(x) = 1− (−x)m.

To verify condition (E) we note that the probability Pn+1(σ) of failure of a fiber bundle

of order n+1 under stress σ is not less than Pmn (σ)+mPn(σ)

{
Pn

(
mσ

m− 1

)
− Pn(σ)

}m−1

where the first term is the probability of failure of one fiber of order n under the stress
σ, and the second term is the probability of failure of all m fibers or order n under the

stress σ and of m− 1 other fibers under a stress between σ and
mσ

m− 1
, i.e. F (x, y, . . . ) ≥

xm + mx(y − x)m−1. Therefore,
F (x, y, . . . )

(xym−1)
≥ θm+1 + m(1 − θ)m−1 where θ =

x

y
. It is

easy to show that θm−1 +m(1− θ)m−1 ≥
(

1 +m
1

m−2

)2−m
for 0 < θ ≤ 1, m > 2. Hence,

condition (E) is valid with q =
(

1 +m
1

m−2

)2−m
, v = m− 1.

Condition (F) is valid as F (x, . . . , x) is the probability of failure of a fiber bundle if the
probability x of failure of its constitutent fibers does not depend on σ. So, in the m–fold
case F (x, . . . , x) = xm.

Now we are able to state our main theorems.

Theorem 1. Let F : L→ L satisfy the conditions (A) –(D).

Let P ∈ L, and suppose that P (σ) <
1

Q
when σ → 0 for Q given above in condition

(C). For a given value of σ, let nσ be the minimal number n such that Pn(σ) >
1

Q
.

Then

(2) ln(nσ) >
c

σµ
when σ → 0.

Here µ =
1

log2(a)
, a being a constant in condition (A), and a constant c > 0 depends

upon the initial distribution P .
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Theorem 2. Let F : L→ L satisfy the conditions (A)–(E).

Then, for any P ∈ L that satisfies ln{− ln[P (σ)]} � σµ when σ → 0, P (σ) <
1

Q
when

σ → 0, 1− P (σ) < σ−ρ when σ →∞, we have with nσ defined as before

(3) ln(nσ) = cσµ +O(1) when σ → 0.

Here µ =
1

log2(a)
, a constant ρ > 0 depends only on F, and a constant c > 0 depends

on the initial distribution P . For the case v = 1 we have a better estimate

(4) ln(nσ) = cσµ + ln(2) +O(σµ/2) when σ → 0.

Remark 3. The asymptotic limitations on P (σ) stated above are necessary for these theo-
rems to be valid. It is essential that P (σ) not vanish for finite σ, a condition employed by
virtually all previous investigations on fiber bundles. The first of these conditions states
that P (σ) must not approach zero too rapidly as σ → 0. However, this condition is met by
all physically reasonable distributions, including power laws and even exponentials, such
as exp(−1/σ), although the last distribution does not satisfy the condition of Theorem 2
when σ → ∞. Physically, the second condition requires that there be at least a “reason-
able” likelihood of survival for a fiber subjected to a small amount of stress. It is easy to

check that condition (F) implies Pn(σ) <
1

Q
when σ → 0 for some n, if P (σ) < 1 when

σ → 0, instead of P (σ) <
1

Q
in the conditions of Theorems 1 and 2. The third condition

requires that the distribution approaches unity at least as fast as the power law σρ as
σ →∞, where ρ depends on F and is given in the proof of lemma 2. For example, the case

P (σ) =
(

1− c

σ

)
+

, c a constant, which happens to be a fixed point for the transformation

(1), is specifically excluded. From thermodynamic considerations, P (σ) approaches unity
exponentially fast as σ → ∞, so we can expect this third condition to always be met in
real problems.

In the following considerations we shall always suppose that F satisfies the conditions
(A)–(F). For the proof of Theorem 1 it is not essential, for if F satisfies the conditions
(A)–(D) then it is possible to replace it by a function F1 ≥ F that satisfies the condition
(E) as well. If the estimate (2) is valid for F1 then it is also valid for F.

For the proof of the theorems 1 and 2 it will be convenient to introduce a logarithmic

variable k = − loga

(
σ

σ0

)
, so that σ = σ0a

−k. Then L becomes the space of all non-

increasing functions P (k), −∞ < k <∞, 0 ≤ P (k) ≤ 1, and

F(P )(k) = F [P (k), P (k− 1), . . . ]

where . . . means a possible dependence of F on the values P (k′), k′ < k − 1. We shall

write nk instead of nσ for σ = σ0a
−k and we want to show that ln(nk) ∝ 2k ∝ 1

σµ
when

k →∞. Let ∆k = nk − nk − 1.
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Lemma 1. ∆k increases faster than r2k when k →∞, where r is some positive constant.

Proof. It is sufficient to consider the case when P (k) < θ <
1

Q
for k ≥ 0. According to

(C), Pn+1(k) < QPn(k)Pn(k − 1). Therefore QP1(k) < (θQ)2 for k ≥ 1, QP2(k) < (θQ)4

for k > 2, . . . , QPk(k) < (θQ)2k . By the definition of nk, we have Pn(k − 1) <
1

Q
for

n < nk−1. Condition (C) implies, then, that Pk(k) > Pk+1(k) > Pnk−1
(k). Therefore

(5)
1

Q
< Pnk(k) < Q∆kPnk−1

(k) < Q∆kPk(k) < Q∆k−1(θQ)2k .

This implies ∆k > r2k where r = − logQ(θ)− 1 > 0.

Lemma 2. There exist positive numbers ε, γ < 1, and j depending only on F, such that
for any distribution P with 1− P (K − κ) < εγκ for κ ≥ 0 the following holds:

(6) 1− Pn)(K − κ) < εγn/j+κ for n ≥ 0, κ ≥ 0.

Proof. Since F is a differentiable function, condition (D) implies, for any α > f ′(1) and
some β > 0,

(7) 1− F ( l(x, y, . . . ) < α(1− x) + β(1− y) for ε ≥ 1− x ≥ 1− y ≥ . . . ,

if ε is small enough. As f ′(1) < 1, we can choose α < 1 in (7). Let γ be a positive number,

γ < min

(
1,

1− α
β

)
. Since α + βγ < 1, we have (α + βγ)j < γ for some j ≥ 1. Let us

prove (6) using induction on n. For n = 0 it follows from the conditions of the lemma.
Suppose it is valid for some n. Then

1− Pn(K − κ) < εγn/j+κ, 1− Pn(K − κ− 1) < εγn/j+κ+1 for κ ≥ 0.

It follows then from (7) that

1− Pn+1(K − κ) < εγn/j+κ(α+ β) < εγ(n+1)/j+κ for κ ≥ 0,

q.e.d.

Remark 4. A constant ρ in the formulation of theorem 2 can be taken as − loga γ. For the

transformation (1) we have f ′(1) = 0, α = ε, β = 2, and for ε small enough any γ <
1

2
can

be taken in lemma 2. This means that ρ > 1 and P (σ) must approach unity faster than
1

σ
as σ →∞.
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Lemma 3. If a distribution P satisfies conditions of Lemma 2 for K = k− 1 and P (k) >
1

Q
then Pn satisfies conditions of Lemma 2 for K = k for all n ≥M . Here a constant M

depends only on F.

Proof. It is sufficient to show that 1 − PM (k) < ε for some M depending only on F. It
follows from the conditions (A) and (C) that F is divisible by x, F (x, y, . . . ) = xG(x, y, . . . )
where G is continuously differentiable. So,

F ((x, y, . . . ) > f(x)− ζx(1− y)

with ζ > 0 depending upon F , where f(x) = F (x, 1, . . . ). Condition (D) implies that for
some constants m > 0, A > 1 depending on F ,

f(x)− ζx ∈ γm/j > Ax for 0 < x < 1− ε.

The statement of the lemma follows from these two estimates, condition (E), and Lemma
2 for K = k − 1.

Proof of Theorem 1. Condition (B) implies that for any two distribution functions P and
R such that P (k) ≤ R(k) for all k we have Pn(k) ≤ Rn(k) for all k and all n ≥ 0. Therefore
it is enough to prove the inequality (2) for distribution functions satisfying conditions of
lemma 2 with K = 0. It follows from lemma 1 that ∆k > M , if k is large enough. We
can suppose that ∆k > M for all k ≥ 0. Lemma 3 applied to P = Pnk implies then that
for k ≥ 0 the distribution function P = Pnk+M satisfies the conditions of lemma 2 with
K = k. In particular, we have

1− Pnk−1+n(k − 1) < εγ(n−M)/j for n ≥M,

i.e. Pn(k − 1) ≈ 1 and F [Pn(k), Pn(k − 1), . . . ] ≈ f [Pn(k)] for n � nk−1. Condition
(D) implies that the transformation x→ f(x) has an unstable fixed point with a basin of

repellance 0 ≤ x < 1 and f(x) ≈ Sx for x → 0 where S = f ′(0). As Pnk−n(k) <
1

Q
for

n > 0, this implies

(8) bS−n < Pnk−n(k) < BS−n for 0 ≤ n ≤ ∆k

where constants b and B depend only on F. The essential idea of the proof of (8) emerges,
since is is easy to show that Pnk−n(k) < B1S

−n
1 for 0 ≤ n ≤ ∆k with some constants

B1 > 0, S > S1 > 1 depending on F. It follows from the conditions (A) and (C) that
F is divisible by x, F (x, y, . . . ) = xG(x, y, . . . ) where G is continuously differentiable.
So, F(x, y, . . . ) = f(x) + xO(1 − y) = Sx((1 + O(x) + O(1 − y)). Substituting here
xn = Pnk−n(k) = O(S−n1 ), yn = Pnk−n(k−1) = 1−O(γ(∆kn)/j), we have for 0 ≤ n ≤ ∆k,

xn−1 = F (xn, yn, . . . ) = Sxn[1 +O(S−n1 ) +O(γ(∆k−n)/j)].
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Let zn = log(xn), Z = log(S). Then,

zn−1 = Z + zn +O(S−n1 ) +O(γ(∆k−n)/j).

As O here contains a convergent series,

zn = z0 − nZ +O(1).

As x0 = Pnk(k) ≈ 1, we have bS−n < xn = Pnk−n(k) < BS−n. Then, condition (C)
implies Pn+1(k + 1) < QPn(k + 1)Pn(k). Therefore

Pnk(k + 1) < QBPnk−1(k + 1)S−1 < (QB)2Pnk−2(k + 1)S−3

< (QB)∆kPnk−1(k + 1)S−∆k(∆k−1)/2 < (QB)∆kS−∆k(∆k−1)/2.

Let J be a number such that SJ > QB. Then

Pnk(k + 1) < S−∆k(∆k−J−1)/2.

Inequality (8) with k+ 1 instead of k implies that P − nk(k+ 1) > bS−∆k+1 . Therefore

bS−∆k+1 < S−∆k(∆k−J−1)/2

and

∆k+1 >
∆2
k

2
−O(∆k).

Hence

(9) ln(∆k+1 > 2 ln(∆k)− ln(2)−O(∆−1
k ).

As the sequence ∆k increases according to lemma 1, inequality (9) implies that the sequence
ln(∆k)/2k is bounded from below by a positive constant c, i.e. ln(∆k) > c2k, q.e.d.

Proof of Theorem 2. The condition 1− P (σ) < σ−ρ of theorem 2 means that
1−P (k) < γk for some γ < 1 when k →∞. Let us take γ to be the same as in Lemma 2.
Then, P (k) satisfies the conditions of Lemma 2; hence, inequality (8) is applicable, namely

(10) bS−n < Pnk−n(k) < BS−n for 0 ≤ n ≤ ∆k

where the constants b and B depend only on F, and S = f ′(0). Condition (E) implies
Pn+1(k + 1) > qPn(k + 1)Pn(k)ν . Therefore

Pnk(k + 1) > qbνPnk−1(k + 1)S−ν > qbν)2Pnk−2(k + 1)S−3ν

> (qbν)∆kPnk−1
(k + 1)S−ν∆k(∆k−1)/2.
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Let J be a number such that S−νJ < qbν . Then

(11) Pnk(k + 1) > Pnk−1(k + 1)S−ν∆k(∆k+2J−1)/2.

Condition (C) implies that Pn(k) decrease with increasing n when n < nk−1. This,
together with condition (E) implies

Pnk−1
(k + 1) > qnk−1P (k + 1)[Pnk−1

(k)]νnk−1.

Applying (10) for n = nk−1, we have

Pnk−1
(k + 1) > qnk−1P (k + 1)(bS−∆k)νnk−1 .

Replacing qbν by S−νJ in the latter, we have

(12) Pnk−1
(k + 1) > P (k + 1)S−ν(∆k+J)nk−1 .

Theorem 1 implies nk−1 = O(∆k−1). This, together with formulas (11) and (12), gives

Pnk(k + 1) > P (k + 1)S−ν∆k(∆k+O(∆k−1))/2.

Applying inequality (10) with k + 1 instead of k, we have

S−∆k+1 > P (k + 1)S−ν∆k(∆k+O(∆k−1)/2),

i.e.

(13) ∆k+1 <
ν∆k(∆k +O(∆k−1))

2
− logS[P (k + 1)].

It follows from theorem 1 that ln(∆k) > c2k. According to the conditions of theorem 2,
ln{− ln[P (k)]} � 2k when k → ∞, hence − logS [P (k + 1)] = o(∆k). Morover, it follows

from (9) that ∆k < O(∆
1/2
k ). This, together with (13), gives

∆k+1 < ν∆2
k/2 +O(∆

3/2
k ),

(14) ln(∆k+1) < 2 ln(∆k) + ln(ν/2) +O(∆
−1/2
k ).

It follows from the inequalities (9) and (14) that

ln(∆k)/2k − ln(2)/2k+1 +O(∆−1
k /2k+1) < ln(∆k+1)/2k+1

< ln(∆k)/2k + ln(ν/2)/2k+1 +O(∆
−1/2
k )/2k+1).
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Therefore the sequence ln(∆k)/2k converges to a constant c, and

c− ln(ν/2)/2k +O(∆
−1/2
k /2k) < ln(∆k)/2k < c+ ln(2)/2k +O(∆−1

k /2k+1).

Since, according to lemma 1, the sequence ∆k increases, we have c > 0. Therefore ln(∆k) =
c2k +O(1), and if ν = 1, then ln(∆k) = c2k + ln(2) +O(2−k/2), q.e.d.

In paper I, we explored by computational means the failure properties of hierarchi-
cally organized fiber bundles with equal load sharing. The outcome of our computational
investigation of this exactly renormalizeable problem revealed an apparently universal as-
ymptotic scaling law relating the stress threshold for failure to the size of the system. In
particular, we showed that the bound identified by the widely held weakest link theory did
not provide a realistic indication of the threshold for failure. Indeed, we showed that the
threshold decreased so slowly as to be practically indistinguishable from a critical point.
In this paper, we have employed the insight developed in paper I to construct a rigorous
derivation of the asymptotic properties of a hierarchy of fiber bundles. As a practical out-
come of the universality of the failure properties of this mode of assembling fiber bundles,
we believe that there may be some advantage to constructing fiber bundles in engineering
applications in this way.
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