Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry

A. Eremenko* and A. Gabrielov ${ }^{\dagger}$

8.19.2001

Abstract

Suppose that $2 d-2$ tangent lines to the rational normal curve $z \mapsto\left(1: z: \ldots: z^{d}\right)$ in d-dimensional complex projective space are given. It was known that the number of codimension 2 subspaces intersecting all these lines is always finite; for a generic configuration it is equal to the d-th Catalan number. We prove that for real tangent lines, all these codimension 2 subspaces are also real, thus confirming a special case of a general conjecture of B. and M. Shapiro. This is equivalent to the following result:

If all critical points of a rational function lie on a circle in the Riemann sphere (for example, on the real line), then the function maps this circle into a circle.

1. Introduction

Two rational functions f_{1} and f_{2} will be called equivalent if $f_{1}=\ell \circ f_{2}$, where ℓ is a fractional-linear transformation. Equivalent rational functions have the same critical sets.

Theorem 1 If all critical points of a rational function f are real, then f is equivalent to a real rational function.

[^0]Lisa Goldberg [11] addressed the following question: how many equivalence classes of rational functions of degree d with a given critical set of $2 d-2$ points may exist? She reduced this to the following problem of enumerative geometry:

Problem P. Given $2 d-2$ lines in general position in projective space $\mathbb{C P}^{d}$, how many projective subspaces of codimension 2 intersect all of them?

To explain this reduction, to each rational function

$$
f(z)=\frac{a_{0}+\ldots+a_{d} z^{d}}{b_{0}+\ldots+b_{d} z^{d}}
$$

of degree d, we associate a projective subspace $H_{f} \subset \mathbb{C P} \mathbb{P}^{d}$ defined by the following system of two equations in homogeneous coordinates

$$
\begin{aligned}
a_{0} x_{0}+\ldots+a_{d} x_{d} & =0 \\
b_{0} x_{0}+\ldots+b_{d} x_{d} & =0 .
\end{aligned}
$$

This gives a bijective correspondence between the set of equivalence classes of rational functions of degree d and the set of subspaces of $\mathbb{C P}^{d}$ of codimension 2 which do not intersect the image of the rational normal curve $E(z)=(1$: $\left.z: \ldots: z^{d}\right) \in \mathbb{C P}^{d}, z \in \mathbb{C P}^{1}$. One can verify by straightforward computation that z_{0} is a critical point of f if and only if the tangent line at $E\left(z_{0}\right)$ to the rational normal curve intersects the subspace H_{f}.

The answer to Problem P, going back to Schubert [17] (see also [14, 15]), is

$$
\begin{equation*}
u_{d}=\frac{1}{d}\binom{2 d-2}{d-1}, \quad \text { the } d \text {-th Catalan number. } \tag{1}
\end{equation*}
$$

So the result is
Theorem A (Goldberg [11]). The number of equivalence classes of rational functions of degree d with given $2 d-2$ critical points is at most u_{d}.

We prove
Theorem 2 For given $2 d-2$ distinct real points, there exist at least u_{d} classes of real rational functions of degree d with these critical points.

Theorems A and 2 imply Theorem 1.

In general, even if the lines in Problem P are real, the subspaces of codimension 2 might not be real [14]. Fulton asked the following general question (see [8, p. 55]): how many solutions of real equations can be real, particularly for enumerative problems? We refer to a recent survey [21] of results related to this question. A specific conjecture for the Problem P was made by Boris and Michael Shapiro (see, for example, [20]): if the lines in question are tangent to the rational normal curve at real points, then all u_{d} solutions of the problem are real. Our Theorem 2 implies that this conjecture is true.

To reformulate Theorem 1, we write a rational function as a ratio of polynomials without a common factor, $f=f_{1} / f_{0}$, and suppose for simplicity that ∞ is not a critical point of f. Then critical points of f coincide with zeros of the Wronski determinant $W\left(f_{0}, f_{1}\right)=f_{0} f_{1}^{\prime}-f_{0}^{\prime} f_{1}$, and Theorem 1 is equivalent to the following: if the Wronskian of two polynomials has only real zeros, then these polynomials can be made real by a linear transformation with constant coefficients. A more general conjecture of B. and M. Shapiro states that this is true for any number of polynomials. It is not enough to require that the Wronskian has real coefficients. Indeed, if $f_{1}(z)=z^{3}+3 i z^{2}$ and $f_{0}(z)=z-i$, then $W\left(f_{0}, f_{1}\right)=2 z^{3}+6 z$ has real coefficients, but no non-trivial linear combination of f_{0} and f_{1} is a real polynomial.

A general discussion of the B. and M. Shapiro conjectures, with experimental evidence and bibliography, is contained in [19, 20]. For the related problem of pole assignment in the theory of automatic control we refer to [6, 7].

As a corollary from his main result in [18], Sottile proved that there exists an open (in the usual topology) set $X \subset \mathbb{R}^{2 d-2}$, such that for $x \in X$ there exist u_{d} classes of real rational functions of degree d, whose critical set is given by x. Theorem 2 was proved by Sottile for $d=3$, and tested, using computers, for $d \leq 9$. The computation for $d=9\left(u_{9}=1,430\right)$ is due to Verschelde [23].

It is interesting that our proof of Theorem 1 is based on the fact that two different enumerative problems have the same sequence of integers as their solution. These two problems are Problem P and the one in Lemma 1 below. We prove Theorem 2 in Sections 2-6 and derive Theorem 1 in Section 7.

The scheme of our proof of Theorem 2 is following. We consider the unit circle \mathbb{T} instead of the real line. Let R be the set of rational functions of degree d, mapping \mathbb{T} into itself, having $2 d-2$ distinct critical points in \mathbb{T}, and being properly normalized. For $f \in R$ we introduce a "net" $\gamma(f)=f^{-1}(\mathbb{T})$, con-
sidered modulo symmetric (with respect to \mathbb{T}) normalized homeomorphisms of the Riemann sphere, preserving orientation. A net partitions the Riemann sphere into simply-connected regions; each of these regions is mapped by f homeomorphically onto a component of $\overline{\mathbb{C}} \backslash \mathbb{T}$. Equivalence classes of nets are combinatorial objects, describing topological properties of rational functions $f \in R$. To describe a function $f \in R$ completely, we need one more piece of data, which we call a labeling. It is a function on the set of edges of a net, which assigns to each edge the length of its image. We give a precise description of all nets γ (modulo equivalence) and labelings which may occur. It is important that, for a fixed γ, the space of possible labelings has simple topological structure: it is a convex polytope. To recover f from its labeled net, we first construct a ramified covering $g: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$, which maps each edge of γ homeomorphically onto an arc of the unit circle, whose length is specified by the label of this edge. Furthermore g maps each component of the complement $\overline{\mathbb{C}} \backslash \gamma$ homeomorphically onto an appropriate component of $\overline{\mathbb{C}} \backslash \mathbb{T}$. Once such ramified covering g is constructed, the Uniformization theorem implies the existence of a homeomorphism $\phi: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$, such that $f=g \circ \phi^{-1}$.

This construction leads to a parametrization of the set R by equivalence classes of labeled nets. Similar parametrizations for polynomials and trigonometric polynomials were studied by Arnold in [2, 3], and for meromorphic functions on arbitrary Riemann surfaces by Vinberg [24], who used the nets. The dual graph of a net of a meromorphic function is known in classical function theory as a "line complex," or a Speiser graph [10, 25]. It is essentially our tree S, described in Section 2.

Non-equivalent nets correspond to non-equivalent rational functions. For a fixed net γ, each labeling defines a rational function of the class R. Taking the critical set of this rational function, we obtain a map Φ from the space of labelings of γ to the space of critical sets on the unit circle. We prove that Φ is surjective. So for a given critical set, each γ gives a rational function of our class R, and it remains to count all possible classes of nets γ. It turns out that there are exactly u_{d} of them (Lemma 1).

The main difficulty is the proof of surjectivity of Φ. This is achieved by a version of the "continuity method" going back to Poincaré and Koebe (see, for example, $[12, \mathrm{Ch} . \mathrm{V}, \S 6]$), but we have to use different tools from topology. We extend Φ to a map between closed polytopes and show that the extended map is continuous (Sections 3 and 4). This is done using a
normal families argument, Lemma 4. An analysis of the boundary behavior of Φ in Section 5 permits to prove surjectivity using a topological argument in Section 6.

We thank M. Bonk, F. Nazarov and B. Shapiro for stimulating discussions. Bonk suggested the subtle normalization N5 and (8), which makes our argument in Section 4 work. We also thank the referee for valuable remarks.

We prove Theorem 1 only for $d \geq 3$, because it is trivial for $d=2$, and because our proof would require a modification in this case.

We fix an integer $d \geq 3$. The map $\mathbf{s}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}, \mathbf{s}(z)=1 / \bar{z}$ will be called the symmetry. A map will be called symmetric if it commutes with the symmetry. A set will be called symmetric if the symmetry leaves it invariant. All homeomorphisms and ramified coverings of the Riemann sphere $\overline{\mathbb{C}}=\mathbb{C P}^{1}$, except the involutions like s, are assumed to preserve orientation. For a region D we denote by ∂D its oriented boundary (so that the region is on the left). The unit circle \mathbb{T} is always oriented anticlockwise, so $\mathbb{T}=\partial \mathbb{U}$, where \mathbb{U} is the unit disc. The words "distance" and "diameter" refer to the spherical Riemannian metric on the Riemann sphere. It is obtained from the standard embedding of $\overline{\mathbb{C}}$ as the unit sphere in \mathbb{R}^{3}.

2. Nets, labelings and critical sequences

A cellular decomposition of a set $X \subset \overline{\mathbb{C}}$ is a finite partition of X into sets, called cells, each of them homeomorphic to an open unit disc $\mathbb{U}^{k} \subset \mathbb{R}^{k}, k=$ $0,1,2$; (by definition, $\mathbb{U}^{0}=\{$ one point $\}$), and has closure homeomorphic to the closed disc $\overline{\mathbb{U}}^{k}$. The cells are called vertices, edges and faces, according to their dimension. The degree of a vertex is the number of edges to whose boundaries this vertex belongs. A net $\gamma \subset \overline{\mathbb{C}}$ is the union of edges and vertices of some cellular decomposition of $\overline{\mathbb{C}}$, which satisfies conditions N1-N5 below.

N1. γ is symmetric, that is $\mathbf{s}(\gamma)=\gamma$.
$\mathrm{N} 2 . \mathbb{T} \subset \gamma$.
N3. There are $2 d-2$ vertices, all belong to \mathbb{T} and have degree 4 .
N4. The point $1 \in \mathbb{T}$ is a vertex.

A cellular decomposition which satisfies N1-N4 is completely determined by its net γ, so we permit ourselves to speak of vertices, edges and faces of a net. Because of N3, each face G has an even number of boundary vertices. For every γ satisfying N1-N4 we choose certain distinguished elements as follows. Let $v_{0}=1$, and v_{1} be the next vertex anticlockwise on \mathbb{T}. There is a unique face G_{0} in the unit disc, whose boundary contains at least 4 vertices, v_{0} and v_{1} among them. Let v_{-1} be the vertex preceding v_{0} on ∂G_{0}. So when tracing ∂G_{0} according to its orientation, we consecutively encounter v_{-1}, v_{0}, v_{1} in this order. We also introduce two edges on the boundary of G_{0} : $e_{1}=\left[v_{0}, v_{1}\right]$ and $e_{-1}=\left[v_{-1}, v_{0}\right]$. One of these two edges, e^{\prime} belongs to \mathbb{T}, the other, $e^{\prime \prime}$ does not. Thus we have double notation for these two edges. For every γ satisfying N1-N4 there is a unique choice of the distinguished elements $G_{0}, v_{-1}, v_{0}, v_{1}, e_{-1}, e_{1}, e^{\prime}$, and $e^{\prime \prime}$ (see Figure 1). The vertices of γ will be enumerated as $v_{1}, \ldots, v_{2 d-2}$, anticlockwise on \mathbb{T}, so that $v_{2 d-2}=v_{0}$, and $v_{-1}=v_{N}$, for some $N=N(\gamma) \in[3,2 d-3]$. Our last assumption about nets is the normalization condition

N5. $\quad v_{-1}=e^{-2 \pi i / 3}, \quad v_{0}=1, \quad$ and $\quad v_{1}=e^{2 \pi i / 3}, \quad$ the cubic roots of 1 .
(The particular choice of these three points on \mathbb{T} is irrelevant). Two nets γ_{1} and γ_{2} are called equivalent if there exists a symmetric homeomorphism h of the sphere $\overline{\mathbb{C}}$, such that $h\left(\gamma_{1}\right)=\gamma_{2}$, and h leaves each cubic root of 1 fixed. Such h induces a bijective correspondence between the cells of the corresponding cellular decompositions, so we can speak of a vertex, an edge or a face of a class of nets. Each distinguished element described above is mapped by h onto a distinguished element with the same name. We denote by $[\gamma]$ the equivalence class of a net γ.

For a net γ we denote by V, E and Q the sets of its vertices, edges and faces, respectively. Euler's formula implies $|Q|=2 d$ and $|E|=4 d-4$. We denote by $Q_{\mathbb{U}} \subset Q$ the subset of faces which belong to \mathbb{U}, and by $E_{\mathbb{T}}$ the subset of edges, which belong to \mathbb{T}.

Figure 1 shows all nets for $d=4$ with distinguished faces and vertices. For aesthetic reasons we ignored N5 in this picture.

Lemma 1 There exist exactly u_{d} classes of nets with $2 d-2$ vertices, where u_{d} is the Catalan number (1).

This can be found in [22], Exercise $6.19 \mathbf{n}$. This exercise contains 66 combinatorial problems with the Catalan numbers as the answer (see also

Figure 1: All nets for $d=4$. Only the parts in $\overline{\mathbb{U}}$ are shown.

Exersise 6.25 for algebraic interpretations of these numbers). Stanley uses notation $C_{n}=u_{n+1}$.

To each net γ corresponds the dual graph S of the cellular decomposition of $\overline{\mathbb{U}}$ defined by γ. More precisely, each vertex $q=q_{G}$ of S corresponds to a face $G=G_{q} \in Q_{\mathbb{U}}$, and two vertices of S are connected by an edge $\tau=\tau_{e}$ in S if the two corresponding faces in $Q_{\mathbb{U}}$ have a common edge $e=e_{\tau}$ in $\gamma \cap \mathbb{U}$.

Let \hat{S} be the graph obtained by the following extension of S : for every edge $e \in E_{\mathbb{T}}$, a vertex q_{e} and an edge τ_{e} connecting q_{e} with q_{G} are added to S, where G is the face in $Q_{\mathbb{U}}$ with $e \in \partial G$.

It is easy to see that S and \hat{S} are trees. We designate $q_{0}=q_{G_{0}}$ to be the root of these trees. Notice that the edges of \hat{S} are in bijective correspondence with edges of γ in $\overline{\mathbb{U}}$, and the edges of S correspond to the edges of γ in \mathbb{U}. There is a natural partial order on the vertices of a rooted tree, so that the root is the unique minimal element. Thus the tree S defines a partial order on faces in $Q_{\mathbb{U}}$:

$$
\begin{equation*}
G^{\prime}<G \text { if the path in } S \text { from } q_{0} \text { to } q_{G} \text { passes through } q_{G^{\prime}} . \tag{2}
\end{equation*}
$$

We can also order the set of faces in $Q_{\mathbb{U}}$ into a sequence G_{0}, \ldots, G_{d-1} so that, for every $k \in[1, d-1]$, the face G_{k} has exactly one common boundary edge with the union of the faces G_{0}, \ldots, G_{k-1}. Such ordering is always compatible with the partial order (2):

$$
\begin{equation*}
\text { for every } \quad m, n \in[0, d-1] \quad G_{n}<G_{m} \quad \text { implies } \quad n<m \text {. } \tag{3}
\end{equation*}
$$

We will use repeatedly the possibility of such ordering.
For a net we define a function $\sigma: Q \rightarrow\{1,-1\}$, called parity. We put $\sigma\left(G_{0}\right)=1$, for the distinguished face, and then $\sigma(G) \sigma\left(G^{\prime}\right)=-1$ if the faces G and G^{\prime} have a common edge on their boundaries. Such parity function exists for every cellular decomposition whose vertices have even degree. With our normalization $\sigma\left(G_{0}\right)=1$, the parity function is unique.

A labeling of a net is a non-negative function on the set of edges, $p: E \rightarrow$ \mathbb{R}, satisfying the following conditions:

$$
\begin{equation*}
p(\mathbf{s}(e))=p(e) \quad \text { for every } \quad e \in E \tag{4}
\end{equation*}
$$

where \mathbf{s} is the symmetry with respect to \mathbb{T},

$$
\begin{equation*}
\sum_{e \subset \partial G} p(e)=2 \pi \quad \text { for every } \quad G \in Q_{\mathbb{U}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p\left(e_{1}\right)=p\left(e_{-1}\right)=2 \pi / 3 \tag{6}
\end{equation*}
$$

A pair (γ, p) is called a labeled net. Two labeled nets $\left(\gamma_{1}, p_{1}\right)$ and $\left(\gamma_{2}, p_{2}\right)$ are equivalent if there exists a symmetric homeomorphism $h: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$, fixing the three cubic roots of 1 , and having the properties $h\left(\gamma_{1}\right)=\gamma_{2}$, and $p_{2}(h(e))=$ $p_{1}(e)$ for every edge e of γ_{1}.

A labeling p is called degenerate if $p(e)=0$ for some edges $e \in E$, otherwise it is called non-degenerate. The space of all labelings is a closed convex polytope \bar{L}_{γ} in the affine subspace A of $\mathbb{R}^{4 d-4}$ defined by (4), (5) and (6). Its interior L_{γ} with respect to A, the set of non-degenerate labelings, is homeomorphic to a cell of dimension $2 d-5$.

The statement about dimension will not be used, but it can be verified in the following way. First, using the equations (4), we eliminate the variables
$p(e)$ for all edges in $\overline{\mathbb{C}} \backslash \overline{\mathbb{U}}$. The number of remaining variables is $3 d-3$. Each of the equations (5) corresponds to a face $G \in Q_{\mathbb{U}}$. This face G has at least one boundary edge on \mathbb{T}, which does not belong to the boundaries of other faces in $Q_{\mathbb{U}}$. Thus each equation in (5) contains a variable which does not show in other equations. So the codimension of the affine subspace defined by all equations (5) is d. Equations (6) increase the codimension to $d+2$. So the dimension of L_{γ} is $2 d-5$.

A critical sequence corresponding to γ is a map $c: V \rightarrow \mathbb{T}$, which leaves v_{0}, v_{1} and $v_{N}=v_{-1}$ fixed, and preserves the (non-strict) cyclic order. We describe critical sequences by non-negative functions $l: E_{\mathbb{T}} \rightarrow \mathbb{R}$, For $k=1, \ldots, 2 d-2$, the value $l\left(\left[v_{k-1}, v_{k}\right]\right)$ is defined as the length of the arc $\left[c\left(v_{k-1}\right), c\left(v_{k}\right)\right]$, of \mathbb{T}, described anticlockwise from $c\left(v_{k-1}\right)$ to $c\left(v_{k}\right)$. This function l has the following properties:

$$
\begin{equation*}
l\left(\left[v_{0}, v_{1}\right]\right)=\sum_{k=2}^{N} l\left(\left[v_{k-1}, v_{k}\right]\right)=\sum_{k=N+1}^{2 d-2} l\left(\left[v_{k-1}, v_{k}\right]\right)=\frac{2 \pi}{3}, \quad \text { and } \quad l \geq 0 \tag{7}
\end{equation*}
$$

where $N=N(\gamma)$. Thus we identify the set of all critical sequences with the convex polytope $\bar{\Sigma}_{\gamma}$, described by (7). This polytope is a product of two simplexes of dimensions $N-2$ and $2 d-N-3$, so its dimension is $2 d-5$. The interior Σ_{γ} of our polytope consists of critical sequences with $l>0$. We call such critical sequences non-degenerate, and the critical sequences in $\bar{\Sigma}_{\gamma} \backslash \Sigma_{\gamma}$ degenerate.

We denote by R^{*} the class of all rational functions of degree at most d, which preserve the unit circle, whose critical points all belong to the unit circle, and which satisfy the normalization condition

$$
\begin{equation*}
f(z)=z, \quad f^{\prime}(z)=0, \quad \text { for } \quad z \in\left\{1, e^{2 \pi i / 3}, e^{-2 \pi i / 3}\right\} . \tag{8}
\end{equation*}
$$

This normalization implies that two different functions of the class R^{*} are never equivalent.

For each class of nets $[\gamma]$, we consider a subclass $R_{\gamma} \subset R^{*}$ defined by the following condition:

$$
\begin{equation*}
f^{-1}(\mathbb{T}) \in[\gamma] \tag{9}
\end{equation*}
$$

It follows from (9) that R_{γ} consists of rational functions of degree d with simple critical points, which coincide with the vertices of $f^{-1}(\mathbb{T})$. Furthermore,
(8) and (9) imply that f maps the distinguished face G_{0} of the net $f^{-1}(\mathbb{T})$ onto the unit disc.

It will follow from the results of Section 3 that $R_{\gamma} \neq \emptyset$ for every γ.

3. Construction of a map

$$
\begin{equation*}
F_{\gamma}: \bar{L}_{\gamma} \rightarrow R^{*} \times \bar{\Sigma}_{\gamma} . \tag{10}
\end{equation*}
$$

In this section, for each net γ, we construct a map (10), where \bar{L}_{γ}, R^{*} and $\bar{\Sigma}_{\gamma}$ were introduced in Section 2, with the following properties:

$$
\begin{equation*}
F_{\gamma}\left(L_{\gamma}\right) \subset R_{\gamma} \times \Sigma_{\gamma} . \tag{11}
\end{equation*}
$$

If p is a non-degenerate labeling, and $(f, c)=F_{\gamma}(p)$, then c is the sequence of critical points of f. An additional property, related to the boundary behavior of F_{γ}, is stated in Proposition 1 below. In Section 4 we will prove that the second component Φ_{γ} of F_{γ} is continuous, and in Section 6 that Φ_{γ} is surjective.

To construct our map F_{γ}, we fix γ and a labeling $p \in \bar{L}_{\gamma}$. We introduce the following notation. Let Z be the union of edges e with $p(e)=0$, and D the component of $\overline{\mathbb{C}} \backslash Z$, containing G_{0}. We claim that

$$
\begin{equation*}
0<p(e)<2 \pi \quad \text { for every } \quad e \subset D \tag{12}
\end{equation*}
$$

The left inequality follows immediately from the definition of D. To prove the right inequality, we suppose without loss of generality that $e \subset \overline{\mathbb{U}}$, and use the tree S introduced in Section 2. Let $G \subset D$ be a face in $Q_{\mathbb{U}}$ whose boundary contains e. Then there is a path in S from the root q_{0} to q_{G}. It is easy to see that all G_{q} for q in this path belong to D. The labels of all edges along this path are positive, because the whole path belongs to D. It follows from (5) that the labels of all edges of this path are less than 2π. Thus no edge in ∂G can have label 2π.

We put $B=\overline{\mathbb{C}} \backslash D$ and introduce an equivalence relation in $\overline{\mathbb{C}}: x \sim y$ if x and y belong to the same component of B. Let $Y=\overline{\mathbb{C}} / \sim$ be the factor space, and $w: \overline{\mathbb{C}} \rightarrow Y$ the projection map.

Since D is connected, every component of B is contractible, hence Y is a topological sphere, so we can identify it with the Riemann sphere. The symmetry s: $\overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is an involution which leaves every point of \mathbb{T} fixed.

Since every component of B contains a vertex, it intersects \mathbb{T}. It follows that each component of B is symmetric. So Y also has an involution, such that w splits the involutions. This means that the identification of Y with $\overline{\mathbb{C}}$ can be made in such a way, that

$$
\begin{equation*}
w: \overline{\mathbb{C}} \rightarrow Y \cong \overline{\mathbb{C}}, \quad w(x)=w(y) \quad \text { if and only if } \quad x \sim y \tag{13}
\end{equation*}
$$

is symmetric. In particular $w(\mathbb{T})=\mathbb{T}$. Furthermore, in view of (6), no component of B can contain two cubic roots of unity, so we can arrange that $w(v)=v$, for each cubic root v of 1 . The cellular decomposition of $\overline{\mathbb{C}}$ defined by γ generates via w a cellular decomposition $X=X(p)$ of Y, so that the cells of X are $w(C)$, where C are the cells of the original decomposition. If the labeling p is non-degenerate, then w is a homeomorphism.

We are going to construct a continuous map $g^{*}: \bar{D} \rightarrow \mathbb{S} \cong \overline{\mathbb{C}}$, where \mathbb{S} is another copy of the Riemann sphere. As a first step of our construction of g^{*}, we define a continuous map $\tilde{g}: \gamma \cap \bar{D} \rightarrow \mathbb{T} \subset \mathbb{S}$. To do this, we orient the edges of γ in the following way. Each edge $e \in E$ belongs to the boundaries of exactly two faces; let G be that one with $\sigma(G)=1$. Then $e \subset \partial G$ by definition inherits positive orientation of ∂G.

We are going to define \tilde{g}, so that the following condition be satisfied for every $e \subset \bar{D}$:

$$
\begin{gather*}
\text { if } p(e)>0 \text {, then } \tilde{g} \text { maps e onto an arc of } \mathbb{T} \text { of length } p(e) \text {, } \\
\text { homeomorphically, respecting orientation, } \tag{14}\\
\text { and if } p(e)=0 \text {, then } \tilde{g} \text { maps e into a point. }
\end{gather*}
$$

in particular the edges in ∂D are mapped into points, but closures of all edges in D are mapped homeomorphically onto their images. This follows from (12).

First we define \tilde{g} on ∂G_{0}, so that condition (14) is satisfied, and $\tilde{g}\left(v_{0}\right)=1$. Condition (5) with $G=G_{0}$ ensures that there is a unique way to define such continuous \tilde{g} on ∂G_{0}. Furthermore, (6) implies that \tilde{g} fixes all three cubic roots of 1 .

Now we order all faces of γ in $D \cap \mathbb{U}$ into a sequence $\left(G_{0}, G_{1}, \ldots, G_{m}\right)$ so that for every $k=1, \ldots, m$ the face G_{k} has exactly one common boundary edge e^{*} with

$$
\begin{equation*}
\bigcup_{j=0}^{k-1} \partial G_{j} \tag{15}
\end{equation*}
$$

The existence of such ordering was explained in Section 2, before (3).
Suppose that \tilde{g} has been already defined on the edges in (15). In particular, it is defined on the edge $e^{*} \in \partial G_{k}$. Condition (5) with $G=G_{k}$ allows us to extend \tilde{g} to all other edges in ∂G_{k}, so that (14) is satisfied.

After \tilde{g} is defined for all edges in $\overline{\mathbb{U}}$, we extend it to the edges in $\bar{D} \backslash \overline{\mathbb{U}}$ by symmetry. This construction defines a symmetric continuous map \tilde{g} : $\gamma \cap \bar{D} \rightarrow \mathbb{T}$, which sends every component of ∂D to a point.

Notice that for every face G, the map $\tilde{g}: \partial G \rightarrow \mathbb{T}$ has degree ± 1, and is monotone, that is $\left.\tilde{g}\right|_{\partial G}$ preserves or reverses the non-strict cyclic order. As a next step, for each face $G \subset D$, we extend \tilde{g} to a continuous map $g^{*}: \bar{G} \rightarrow \overline{\mathbb{U}} \subset \mathbb{S}$, if $\sigma(G)=1$, or $g^{*}: \bar{G} \rightarrow \mathbb{S} \backslash \mathbb{U}$, if $\sigma(G)=-1$, so that the restriction on G is a homeomorphism onto the image. This can be done for every continuous monotone map $\partial G \rightarrow \mathbb{T}$ of degree ± 1.

It is clear, that this extension of \tilde{g} into the interior of components $G \in$ $Q, G \subset D$, can be made symmetrically, that is

$$
\begin{equation*}
g^{*} \circ \mathbf{s}=\mathbf{s} \circ g^{*} . \tag{16}
\end{equation*}
$$

Finally we extend g^{*} to a continuous map $\overline{\mathbb{C}} \rightarrow \mathbb{S}$ so that it is constant on every component of the set $B=\overline{\mathbb{C}} \backslash D$. Then $g^{*}(x)=g^{*}(y)$ whenever $x \sim y$, the equivalence relation \sim in (13). It follows that g^{*} factors as $g^{*}=g \circ w$, where w is the continuous map in (13). Here g is a continuous map $Y \rightarrow \mathbb{S}$.

If C is a cell of the cellular decomposition defined by γ, then w and g^{*} $\operatorname{map} C$ in the same way: either homeomorphically or to a point. It follows that g maps every closed cell of the form $w(\bar{C})$ homeomorphically onto the image. Furthermore, the cells $w(C)$ make a cellular decomposition X of Y, so g is a ramified covering. It can be ramified only at the vertices of X. If the labeling p is non-degenerate, that is w in (13) is a homeomorphism, all vertices of X have order 4 , and g is ramified exactly at these vertices, having local degree 2 at each vertex.

There exists a unique conformal structure on Y, which makes g holomorphic. By the Uniformization theorem [1, 12], there exists a unique homeomorphism $\phi: Y \rightarrow \overline{\mathbb{C}}$, normalized by

$$
\begin{equation*}
\phi\left(e^{-2 \pi i / 3}\right)=e^{-2 \pi i / 3}, \quad \phi(1)=1, \quad \phi\left(e^{2 \pi i / 3}\right)=e^{2 \pi i / 3} \tag{17}
\end{equation*}
$$

and such that $f=g \circ \phi^{-1}$ is a holomorphic map $\overline{\mathbb{C}} \rightarrow \mathbb{S}$, that is a rational function. It is easy to see that f is non-constant and has degree at most d.

This function is the first component of $F_{\gamma}(p)$ in (10). The second component is

$$
\begin{equation*}
c: v \mapsto \phi \circ w(v), \quad v \in V, \tag{18}
\end{equation*}
$$

which is a critical sequence in $\bar{\Sigma}_{\gamma}$. Indeed, by the symmetry property (16) and the symmetry of the normalization (17), ϕ is symmetric. Applying (16) again, we conclude that our rational function f is symmetric, and that all values of the function c belong to \mathbb{T}. An important consequence of our construction of F_{γ} is the following proposition, which we state in terms of function l as in (7):
Proposition 1 Let $\Phi_{\gamma}: \bar{L}_{\gamma} \rightarrow \bar{\Sigma}_{\gamma}$ be the second component of the map F_{γ}, and $l=\Phi_{\gamma}(p)$ for some $p \in \bar{L}_{\gamma}$. Then $l(e) \neq 0$ if and only if $e \subset D \cap \mathbb{T}$.
This follows from (18), taking into account that ϕ is a homeomorphism, and w collapses exactly those edges of γ which do not belong to D.

If the labeling p is non-degenerate, then the map w in (13), (18) is a homeomorphism, which implies that all $c(v), v \in V$, are distinct and coincide with critical points of f. In this case we have $l(e)>0$ for all edges $e \in E_{\mathbb{T}}$. So the second component Φ_{γ} of F_{γ} maps the set of non-degenerate labelings L_{γ} to the set of non-degenerate critical sequences Σ_{γ}, and γ is equivalent to $f^{-1}(\mathbb{T})$ via $\phi \circ w$, and we have (11).

Now we show that our map F_{γ} in (10) is well defined, that is f and c are independent of the choice of a labeled net within its equivalence class, and also independent of the extensions of g into the interiors of the components G. This independence follows from

Lemma 2 Let $X_{i}, i=0,1$, be cell complexes, h^{\prime} a bijection between their cells such that $h^{\prime}(\partial C)=\partial h^{\prime}(C), Y$ a topological space and $f_{i}: X_{i} \rightarrow Y$ two continuous maps, whose restrictions to every closed cell are homeomorphisms onto the image, and $f_{1}(C)=f_{0}\left(h^{\prime}(C)\right)$ for every cell C in X_{1}. Then there exists a homeomorphism h such that $f_{1}=f_{0} \circ h$.

Proof. We define h on every cell C in X_{1} as $\left.f_{0, h^{\prime}(C)}^{-1} \circ f_{1}\right|_{C}$, where $f_{0, h^{\prime}(C)}^{-1}$ is the inverse of the restriction $\left.f_{0}\right|_{h^{\prime}(C)}: h^{\prime}(C) \rightarrow f_{0}\left(h^{\prime}(C)\right)$.

Applying Lemma 2 to two rational functions f_{0} and f_{1}, constructed from equivalent labeled nets, we conclude that $f_{0}=f_{1} \circ h$, where h is a homeomorphism of the Riemann sphere. This homeomorphism is evidently conformal and fixes three points. So $h=\operatorname{id}$ and $f_{1}=f_{0}$.

Lemma 3 The critical sequence $c=F_{\gamma}(p)$ is well-defined, that is it depends only on the class of labeled nets $([\gamma], p)$.

Proof. Consider the cellular decomposition X, introduced after equation (13). If v is a vertex of X of degree at least 4 , then $z=\phi(v)$ is a critical point of f, so $c(v)$ is well defined. Suppose now that v^{1}, \ldots, v^{m} is a maximal chain of vertices of X of degree 2 , which means that there are edges in X between these vertices, but no other edges connecting v^{1} or v^{m} to vertices of degree 2 . There is a unique way to extend this chain by adding v^{0} and v^{m+1}, vertices of degree at least 4 , so that v^{0} is connected to v_{1} and v^{m} to v^{m+1} by edges of X. Then $z^{j}=\phi\left(v^{j}\right), j \in\{0, m+1\}$, are critical points of f, and $a_{j}=f\left(z^{j}\right), j \in\{0, m+1\}$, corresponding critical values. The restriction of f onto the arc $\left[z^{0}, z^{m+1}\right] \subset \mathbb{T}$ maps this arc homeomorphically onto the arc $\left[a_{0}, a_{m+1}\right] \subset \mathbb{T}$. Then the position of the points $z^{j}=\phi\left(v_{j}\right), j=1, \ldots, m$, is determined from the fact that the length of each $\operatorname{arc}\left[f\left(z^{k}\right), f\left(z^{k+1}\right)\right] \subset \mathbb{T}$ is equal to $p\left(w^{-1}\left(\left[v^{k}, v^{k+1}\right]\right)\right)$, the label of an edge of γ.

4. Continuity of Φ

For a fixed γ, the second component of our map F_{γ} in (10) is a map between two closed polytopes

$$
\begin{equation*}
\Phi: \bar{L} \rightarrow \bar{\Sigma} \tag{19}
\end{equation*}
$$

where $L=L_{\gamma}, \Sigma=\Sigma_{\gamma}$ and $\Phi=\Phi_{\gamma}$. In this section we prove that Φ is continuous.

Suppose that $p_{1} \in \bar{L}$; we are going to prove that Φ is continuous at p_{1}. Let p_{0} be a point close to p_{1}. Using the notation, similar to that introduced in Section 3, before (12), we consider the sets Z_{i} and the regions $D_{i}, i=0,1$. In addition, let B_{1}, \ldots, B_{m} be the complete list of components of ∂D_{1}. Then $B_{j} \subset Z_{1}$ for $j=1, \ldots, m$. If p_{0} is close enough to p_{1}, we may assume

$$
\begin{equation*}
Z_{0} \subset Z_{1}, \quad \text { and thus } \quad D_{1} \subset D_{0} \tag{20}
\end{equation*}
$$

We have the maps $w_{i}: \overline{\mathbb{C}} \rightarrow Y_{i} \cong \overline{\mathbb{C}}, i=0,1$ as in (13), and $f_{i}=g_{i} \circ \phi_{i}^{-1}$, $i=0,1$, defined in Section 4. All maps involved in our argument are shown on the diagram below, where we use double notation $\mathbb{S}=\overline{\mathbb{C}}$ as in Section 3 . For every vertex $v \in V$ the "critical value" $a(v)=g_{1} \circ w_{1}(v)$ is defined,

$$
\begin{equation*}
a_{k}=a\left(v_{k}\right)=f_{1} \circ \phi_{1} \circ w_{1}\left(v_{k}\right) \in \mathbb{S}, k=1, \ldots, 2 d-2 \tag{21}
\end{equation*}
$$

The actual set of critical values of f_{1} is a subset of $\left\{a_{k}\right\}$ which might be proper.

We choose arbitrary $\delta>0$. Then there exists $\epsilon>0$, such that the open discs U_{k} of radii ϵ around a_{k} are either disjoint or coincide, and have the property that every component K of the preimage of their union under f_{1} has diameter less than δ. We set $\epsilon_{1}=\epsilon /(8 d)$ and suppose that

$$
\begin{equation*}
\left|p_{1}(e)-p_{0}(e)\right|<\epsilon_{1} \quad \text { for every } \quad e \in E . \tag{22}
\end{equation*}
$$

in particular, in view of (20),

$$
\begin{equation*}
\left|p_{0}(e)\right|<\epsilon_{1} \quad \text { for } \quad e \subset \bigcup_{j=1}^{m} B_{j} . \tag{23}
\end{equation*}
$$

The set

$$
\begin{equation*}
H=\mathbb{S} \backslash \bigcup_{k=1}^{2 d-2} U_{k} \tag{24}
\end{equation*}
$$

has a cell decomposition with two 2 -dimensional cells C and C^{*}, where

$$
\bar{C}=\overline{\mathbb{U}} \backslash \bigcup_{k=1}^{2 d-2} U_{k},
$$

and C^{*} the symmetric cell to C. We choose 1-dimensional cells of this decomposition to be arcs of the unit circle and arcs of the circles ∂U_{k}, and for 0 -dimensional cells we take the points of intersections of the circles ∂U_{k} with the unit circle.

Let H_{1} be the preimage of the set H in (24) under f_{1}. Then H_{1} has a cell decomposition, which is the preimage of our cell decomposition of (24), and $\left.f_{1}\right|_{H_{1}}$ maps every cell of this decomposition homeomorphically. In fact $\left.f_{1}\right|_{H_{1}}$ is a covering, because f_{1} has no critical points in H_{1}.

It follows from (23) that

$$
\begin{equation*}
\operatorname{diam} f_{0} \circ \phi_{0} \circ w_{0}\left(B_{j}\right)<\epsilon / 2, \quad \text { for each component } B_{j} \text { of } \partial D_{1}, \tag{25}
\end{equation*}
$$

because B_{j} is made of at most $4 d-4$ edges e, whose labels $p_{0}(e)$ are at most ϵ_{1} each. Furthermore, (22) and (21) imply that

$$
\begin{equation*}
\operatorname{dist}\left(f_{0} \circ \phi_{0} \circ w_{0}\left(v_{k}\right), a_{k}\right)<\epsilon / 2, \quad k=1, \ldots, 2 d-2, \tag{26}
\end{equation*}
$$

so f_{0} has no critical values in H. As every B_{j} contains at least one vertex v_{k} of γ, we conclude from (25) and (26) that

$$
\begin{equation*}
f_{0} \circ \phi_{0} \circ w_{0}\left(B_{j}\right) \cap H=\emptyset, \quad j=1, \ldots, m, \tag{27}
\end{equation*}
$$

where H was defined in (24). Let H_{0} be the component of $f_{0}^{-1}(H)$ intersecting $\phi_{0} \circ w_{0}\left(G_{0}\right)$. As f_{0} has no critical values in H, the restriction $\left.f_{0}\right|_{H_{0}}: H_{0} \rightarrow H$ is a covering. It follows from (27) that $H_{0} \subset \phi_{0} \circ w_{0}\left(D_{1}\right)$, because every component B_{k} of ∂D_{1} is mapped by $f_{0} \circ \phi_{0} \circ w_{0}$ into $\overline{\mathbb{C}} \backslash H$.

The cell decomposition of H defined above pulls back to H_{0}, and f_{0} maps each closed cell of this pullback onto a cell in H homeomorphically. Notice that each open cell of H_{0} is contained in a unique cell of the form $\phi_{0} \circ w_{0}(C)$ for some cell $C \subset D_{1}$ of γ. A similar statement holds for cells of H_{1}. This defines a bijection between cells of H_{1} and those of H_{0} which commutes with the boundary operator ∂. So Lemma 2 can be applied to $\left.f_{i}\right|_{H_{i}}$. We conclude that

$$
\begin{equation*}
f_{1}=f_{0} \circ h \quad \text { on } \quad H_{1}, \tag{28}
\end{equation*}
$$

where $h: H_{1} \rightarrow H_{0}$ is a homeomorphism. Evidently h is holomorphic, and its boundary values on ∂H_{1} belong to ∂H_{0}. Moreover, the components of ∂H_{1} separating H_{1} from the cubic roots of 1 , are mapped to components of ∂H_{0} separating the same cubic roots of 1 from H_{0}. Now we use the following

Lemma 4 Suppose that a finite set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \overline{\mathbb{C}}$, is given, such that $n \geq 3$, and x_{1}, x_{2} and x_{3} are the cubic roots of 1 . Then for every $\eta>0$ there exists $\delta \in(0, \eta)$ with the following property. Let J_{1}, \ldots, J_{n} be disjoint
open Jordan regions of diameter less than $\delta, x_{k} \in J_{k}, k=1, \ldots, n$, and h be an injective holomorphic function

$$
h: \overline{\mathbb{C}} \backslash \bigcup_{k=1}^{n} J_{k} \rightarrow \overline{\mathbb{C}}
$$

such that for $k \leq 3$ the curves $h\left(\partial J_{k}\right)$ separate x_{k} from the two other cubic roots of 1 . Then

$$
\operatorname{dist}(h(z), z)<\eta, \quad \text { whenever } \quad \operatorname{dist}(z, X) \geq \eta
$$

Proof. (Compare [4, Theorem 13]). Our proof is by contradiction. Suppose that there is a sequence $\left(\delta_{j}\right) \rightarrow 0$ and a sequence $\left(h_{j}\right)$, which satisfies all conditions, but

$$
\begin{equation*}
\operatorname{dist}\left(h_{j}\left(z_{j}\right), z_{j}\right) \geq \eta \tag{29}
\end{equation*}
$$

for some $\eta>0$ and some points z_{j} with $\operatorname{dist}\left(z_{j}, X\right) \geq \eta$. It is easy to see that the closed domains $R_{j}=\overline{\mathbb{C}} \backslash \cup_{k=1}^{n} J_{k, j}$ tend to $\overline{\mathbb{C}} \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ and that all functions h_{j} omit three cubic roots of 1 in their domains. So by Montel's criterion [16], [12], $\left(h_{j}\right)$ is a normal family and we can select a convergent subsequence. The limit h of this subsequence is a holomorphic injective function h in $\overline{\mathbb{C}} \backslash\left\{x_{1}, \ldots, x_{n}\right\}$, which omits the three cubic roots of 1 . By the Great Theorem of Picard all points x_{k} are removable singularities, so h extends to a fractional-linear map. But this fractional-linear map also fixes three points, the cubic roots of 1 , so it is the identity. This contradicts (29).

Applying Lemma 4 to $h: H_{1} \rightarrow \overline{\mathbb{C}}$, we obtain that dist $(h(z), z)<\eta, z \in$ H_{1}, so the critical sequences $\left(\phi_{1} \circ w_{1}(v)\right), v \in V$ and $\left(\phi_{0} \circ w_{0}(v)\right), v \in V$ are η-close. So our map (19) is continuous.

5. Boundary behavior of Φ

Our goal is to prove that $\Phi_{\gamma}: L_{\gamma} \rightarrow \Sigma_{\gamma}$ is surjective. This will be achieved with the help of Lemma 9 in Section 6. To verify that the conditions of this lemma are satisfied, we need to show that the preimages of closed faces of $\bar{\Sigma}_{\gamma}$ are homologically trivial. These preimages can be complicated, so we begin with an analysis of preimages of open faces. In this section, a net γ is fixed, so we do not show explicitly the dependence of various objects on γ.

Suppose that a convex polytope K is described by

$$
\mathbf{A} x=b, \quad x \geq 0, \quad x \in \mathbb{R}^{n},
$$

where \mathbf{A} is an $m \times n$ matrix, and $b \in \mathbb{R}^{m}$. An open face of K is defined as

$$
\begin{equation*}
A_{W}=\left\{x \in K: x_{j}>0, j \in W \text { and } x_{j}=0, j \notin W\right\} \tag{30}
\end{equation*}
$$

where W is a subset of $\{1, \ldots, n\}$, such that $A_{W} \neq \emptyset$. A closed face is the closure of an open face, and

$$
\begin{equation*}
\bar{A}_{W}=\left\{x \in K: x_{j}=0, j \notin W\right\} \tag{31}
\end{equation*}
$$

Vertices are open faces and closed faces simultaneously. All open and closed faces are non-empty convex sets. We also notice that each closed face is a finite union of open faces.

We are going to apply these definitions to the convex polytope $\bar{\Sigma}$, described by (7), in the space of real valued functions l on $E_{\mathbb{T}}$. First we state precisely, which subsets $W \subset E_{\mathbb{T}}$ define open faces, that is for which W the set 30 is non-empty. It follows from (7) that the necessary and sufficient conditions are: $\left[v_{0}, v_{1}\right] \in W$, and each of the two sequences

$$
\left[v_{1}, v_{2}\right], \ldots,\left[v_{N-1}, v_{N}\right] \quad \text { and } \quad\left[v_{N}, v_{N+1}\right], \ldots,\left[v_{2 d-3}, v_{2 d-2}\right]
$$

contains at least one edge in W. Using the notation $e^{\prime}, e^{\prime \prime}$ for the distinguished edges, introduced in Section 2, these conditions can be restated as
(a) $e^{\prime} \in W$, and
(b) there is at least one edge in $W \backslash\left\{e^{\prime}\right\}$ on each side of $e^{\prime \prime}$.

For a set $W \subset E_{\mathbb{T}}$, satisfying these conditions, we define the open face A_{W} of $\bar{\Sigma}$ by

$$
\begin{equation*}
A_{W}=\left\{l: l(e)>0 \text { for } e \in W \text { and } l(e)=0 \text { for } e \in E_{\mathbb{T}} \backslash W\right\} . \tag{32}
\end{equation*}
$$

We introduce a partial order on the set of open faces: $A_{1} \prec A_{2}$ iff $\bar{A}_{1} \subset \bar{A}_{2}$. It follows from our definition (32) that

$$
\begin{equation*}
A_{W_{1}} \prec A_{W_{2}} \quad \text { if and only if } \quad W_{1} \subset W_{2} . \tag{33}
\end{equation*}
$$

To characterize the preimage $\Phi^{-1}\left(A_{W}\right)$, of an open face, we use Proposition 1 from Section 3 and Lemma 5 below. To state this lemma, we need

Figure 2: $S(p)$ in dotted lines, $E^{0}(p)$ in bold.
the following notation, similar to that used in Sections 3 and 4. For $p \in \bar{L}$, we define $Z(p)$ as the union of the closed edges e in E such that $p(e)=0$, and $D(p)$ as the connected component of $\overline{\mathbb{C}} \backslash Z(p)$ containing G_{0}. Notice that $D(p)$ always contains at least 3 boundary edges of G_{0}, including e_{-1} and e_{1}. This follows from (5) with $G=G_{0}$ and (6). Let

$$
\begin{equation*}
E^{0}(p)=\{e \in E: e \subset \partial D(p) \cap \overline{\mathbb{U}}\} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
E(p)=\{e \in E: e \subset D(p) \cap \mathbb{T}\} \tag{35}
\end{equation*}
$$

Figure 2 shows the part in $\overline{\mathbb{U}}$ of a net γ with $d=5$, the set $E^{0}(p)$ (bold lines), and the set $E(p)$, which consists of the edges $\left[v_{0}, v_{1}\right],\left[v_{2}, v_{3}\right],\left[v_{5}, v_{6}\right]$, $\left[v_{6}, v_{7}\right]$ and $\left[v_{7}, v_{8}\right]$ on \mathbb{T}.

It is clear from the definitions (34) and (35), that the set $E^{0}(p)$ determines $E(p)$ uniquely. The opposite is also true:

Lemma 5 For $p \in \bar{L}$, the set $E(p) \subset E$, uniquely determines the set $E^{0}(p)$.

Proof. We use the rooted tree \hat{S}, introduced in Section 2. Let $S(p)$ be the subtree of \hat{S} spanned by q_{0} and $\left\{q_{e}: e \in E(p)\right\}$. Figure 2 shows the tree $S(p)$ in dotted lines.

We claim that $S(p)=S^{\prime}(p)$, where $S^{\prime}(p)$ is the subtree of \hat{S} spanned by $\left\{q_{x}: x \subset D(p) \cap \overline{\mathbb{U}}\right\}$ (here x may stand for a face or an edge of γ).

By definition of $E(p)$, we have $S(p) \subset S^{\prime}(p)$. It remains to prove $S^{\prime}(p) \subset$ $S(p)$, which means that $D(p) \cap \overline{\mathbb{U}}$ contains exactly those faces $G \in Q_{\mathbb{U}}$ which have the property $q_{G} \in S(p)$. Thus $E(p)$ uniquely determines $D(p)$, and $D(p)$ uniquely determines $E^{0}(p)$.

To prove our claim, suppose that $S^{\prime}(p) \not \subset S(p)$. Since both $S(p)$ and $S^{\prime}(p)$ belong to the tree \hat{S}, there exists a leaf q of $S^{\prime}(p)$ which does not belong to $S(p)$. If $q=q_{e}$, where $e \in E_{\mathbb{T}}$, then $e \subset D(p)$, hence q_{e} is a vertex of $S(p)$, in contradiction to our choice of q. Suppose now that $q=q_{G}$, where $G \subset D(p)$, is a face in $Q_{\mathbb{U}}$. Let S_{q} be the path in S connecting q and q_{0}. Conditions (5) imply that $0<p(e)<2 \pi$ for every $e=e_{\tau}, \tau \in S_{q}$ (See also (12). This implies that there is an edge $e \subset \partial G$ such that $\tau_{e} \notin S_{q}$ and $0<p(e)<2 \pi$. Since $q \notin S(p)$, we have $\tau_{e} \notin S(p)$. If $e \subset \mathbb{T}$, we have a contradiction with the definition of $S(p)$. Otherwise, the other face in $Q_{\mathbb{U}}$, having the edge e on its boundary, belongs to $D(p)$, and G is not a leaf of $S^{\prime}(p)$, again a contradiction.

It follows from Proposition 1 of Section 3 and (35) that the preimage of an open face $A_{W} \subset \bar{\Sigma}$ is

$$
\begin{equation*}
\Phi^{-1}\left(A_{W}\right)=\{p \in \bar{L}: E(p)=W\} . \tag{36}
\end{equation*}
$$

By Lemma 5 , for every $p \in \bar{L}$, the set $W=E(p)$ uniquely determines a set $E_{W}^{0}=E^{0}(p)$. According to the remark before Lemma $5, E^{0}(p)$ uniquely determines $E(p)$. Thus (36) can be rewritten as

$$
\begin{equation*}
\Phi^{-1}\left(A_{W}\right)=\left\{p \in \bar{L}: p(e)=0 \text { for all } e \in E_{W}^{0}, \text { and } p(e)>0 \text { for all } e \in W\right\} . \tag{37}
\end{equation*}
$$

Now we prove that these preimages (37) are non-empty.
Lemma 6 For each subset $W \subset E_{\mathbb{T}}$ satisfying (a) and (b) in the beginning of this section, there exists $p \in \bar{L}_{\gamma}$ such that $W=E(p)$.

Proof. Given a subset W of edges of $\gamma \cap \mathbb{T}$ satisfying (a) and (b), let us define a subtree S_{W} of the tree \hat{S}, as the union of all paths in \hat{S} connecting
vertices q_{e}, for $e \in W$, with q_{0}. The labeling p is defined inductively along the tree \hat{S}, starting from the vertex q_{0}. As W contains at least one edge, other than e^{\prime}, at each side of $e^{\prime \prime}$, we have $\tau_{e^{\prime \prime}} \in S_{W}$, and there is at least one edge e of G_{0}, other than e^{\prime} and $e^{\prime \prime}$, such that $\tau_{e} \in S_{W}$. Let $m \geq 1$ be the number of all such edges. We define $p(e)=2 \pi /(3 m)$ for each of them, $p\left(e^{\prime}\right)=p\left(e^{\prime \prime}\right)=2 \pi / 3$, and $p(e)=0$ for all other edges of G_{0}. This guarantees that (5) is satisfied for G_{0}. Notice that $0<p(e)<2 \pi$ for an edge $e \subset \partial G_{0}$ if and only if $\tau_{e} \in S_{W}$.

Suppose now that the values of $p(e)$ are defined for all edges of faces $G_{q} \in Q_{\mathbb{U}}$, with q in a subtree S^{\prime} of S containing q_{0}, so that $0<p(e)<2 \pi$ if and only if τ_{e} belongs to S_{W}, and (5) is satisfied. If $S^{\prime}=S$, the labeling p is complete. Otherwise, there exists a vertex q^{*} in $S \backslash S^{\prime}$ which is an extremity of an edge τ^{*} of S with another extremity of τ^{*} being in S^{\prime}. Let $G^{*}=G_{q^{*}}$ and $e^{*}=e_{\tau^{*}}$. Since an extremity of τ^{*} belongs to S^{\prime}, the label $p\left(e^{*}\right)$ is already defined.

If $p\left(e^{*}\right)=2 \pi$ or $p\left(e^{*}\right)=0$, then τ^{*} does not belong to S_{W}, hence all other boundary edges of G^{*} do not belong to S_{W}. In the first case, we define $p(e)=0$ for all edges $e \neq e^{*}$ of G^{*}. In the second case, we choose an edge $e^{* *} \neq e^{*}$ of G^{*} and define $p\left(e^{* *}\right)=2 \pi$ and $p(e)=0$ for all other edges of G^{*}. Then (5) is satisfied for $G=G^{*}$.

If $0<p\left(e^{*}\right)<2 \pi$, then τ^{*} belongs to S_{W}. Since $e^{*} \notin \mathbb{T}$, there is at least one other edge e of G^{*} such that τ_{e} belongs to S_{W}. Let $n \geq 1$ be the number of all such edges. We define $p(e)=\left(2 \pi-p\left(e^{*}\right)\right) / n$ for all these edges, and $p(e)=0$ for all other edges $e \neq e^{*}$ of G^{*}. Again we have (5) for $G=G^{*}$.

Now the values of $p(e)$ are defined for all edges of faces $G_{q} \in Q_{\mathbb{U}}$, for the vertices q of a connected subtree $S^{\prime \prime}$ of S obtained by adding τ^{*} and q^{*} to S^{\prime}, which concludes our inductive step. We extend our labeling p to edges in $\overline{\mathbb{C}} \backslash \mathbb{U}$ by symmetry, so that (4) is satisfied. The labeling p constructed in this way satisfies (5), (6) and $W=E(p)$.

The closure of the set (37) is

$$
\begin{equation*}
\overline{\Phi^{-1}\left(A_{W}\right)}=\left\{p \in \bar{L}: p(e)=0 \text { for all } e \in E_{W}^{0}\right\} \tag{38}
\end{equation*}
$$

which is non-empty and convex. Actually $\overline{\Phi^{-1}\left(A_{W}\right)}$ is a closed face of \bar{L}.
Now we begin a study the intersection pattern of these sets (38), which will be continued in Lemma 8.

Lemma 7 If $A_{1} \succ A_{2} \succ \ldots \succ A_{k}$ is a decreasing chain of open faces of $\bar{\Sigma}$, then the intersection of closures of their preimages $\overline{\Phi^{-1}\left(A_{1}\right)} \cap \ldots \cap \overline{\Phi^{-1}\left(A_{k}\right)}$ is a non-empty convex subset of \bar{L} (a closed face).

Proof. The sets $\overline{\phi^{-1}\left(A_{j}\right)}$ are convex, so their intersection is convex. It remains to verify that the intersection is non-empty.

We have $A_{j}=A_{W_{j}}$ for some $W_{j} \subset E_{\mathbb{T}}$. As in the proof of Lemma 6 , for each $j \in[1, k]$, we define a subtree $S_{j} \subset \hat{S}$, as the union of all paths in \hat{S} connecting vertices $q_{e}, e \in W_{j}$, with the root q_{0}. We also define E_{j}^{0} as the set of all edges e of γ, such that $\tau_{e} \in \hat{S} \backslash S_{j}$, and τ_{e} has a vertex in S_{j}. It is easy to check that these definitions are consistent with notation of Lemmas 5 and 6: if $W_{j}=E(p)$ then $E_{j}^{0}=E^{0}(p)$.

We have the following inclusions:

$$
W_{1} \supset \ldots \supset W_{k}, \quad \text { and } \quad S_{1} \supset \ldots \supset S_{k}
$$

The first inclusion follows from the assumption of the Lemma and (33), the second follows from the first one, and the definition of S_{j}. We assume without loss of generality that $A_{1}=\Sigma$, so $W_{1}=E_{\mathbb{T}}$, and $S_{1}=\hat{S}$. According to (38),

$$
\overline{\Phi^{-1}\left(A_{j}\right)}=\left\{p: p(e)=0 \text { for all } e \in E_{j}^{0}\right\}
$$

So we have to show that there exists a labeling p, such that

$$
p(e)=0 \quad \text { for all } \quad e \in \bigcup_{j=1}^{k} E_{j}^{0} .
$$

To construct this labeling p, we order the set of faces in $Q_{\mathbb{U}}$ into a sequence G_{0}, \ldots, G_{d-1}, such that for every $n \in[1, d-1]$, the face G_{n} has exactly one common boundary edge with the union of faces G_{0}, \ldots, G_{n-1}. (Such ordering was explained in Section 2, before (3)).

First we construct $p(e)$ for the edges e in ∂G_{0}, as it is done in the proof of Lemma 6, using W_{k} as W. For these edges e, we have $p(e)>0$ if and only if $\tau_{e} \in S_{k}$. Hence $p(e)>0$ implies $\tau_{e} \in S_{j}$, and thus $e \notin E_{j}^{0}$ for all $j \in[1, k]$.

Suppose that p is already defined for all boundary edges of faces G_{0}, \ldots, G_{n-1}, for some $n<d$, so that

$$
\begin{equation*}
p(e)>0 \quad \text { only if } \quad e \notin E_{j}^{0}, \quad \text { for all } \quad j \in[1, k] . \tag{39}
\end{equation*}
$$

We want to extend p to the boundary edges of $G=G_{n}$, so that the property (39) is preserved.

Let $m \in[1, k]$ be the integer, such that $q_{G} \in S_{m} \backslash S_{m+1}\left(S_{k+1}:=\emptyset\right)$. Consider the path Γ in the tree S from q_{0} to q_{G}. Let $q_{G^{\prime}}$ be the vertex on this path preceding q_{G}. Then $G^{\prime}<G$ in the sense of the partial order defined in (2), and this implies by (3) that $G^{\prime} \in\left\{G_{0}, \ldots, G_{n-1}\right\}$. There exists exactly one boundary edge e^{*} in $\partial G \cap \partial G^{\prime}$. This is the only edge in ∂G, on which p is defined so far. Since $q_{G} \in S_{m}$, we have $q_{G^{\prime}} \in \Gamma \subset S_{m}$. This implies $\tau_{e^{*}} \in S_{m}$. There is at least one more boundary edge $e^{* *}$ of G, such that $\tau_{e^{* *}} \in S_{m}$. This is because all leaves of S_{m} are in \mathbb{T}, hence q_{G} is not a leaf. We define $p\left(e^{* *}\right)=2 \pi-p\left(e^{*}\right)$, and $p(e)=0$ for all edges on ∂G, other than e^{*} and $e^{* *}$.

Notice that on this inductive step, the only new edge for which a positive value of p was defined is the edge $e^{* *}$. Now we are going to prove that the condition (39) was preserved on the inductive step. Since $q_{e^{* *}} \in S_{m}$, we have $q_{e^{* *}} \in S_{j}$ and $e^{* *} \notin E_{j}^{0}$ for $j \leq m$. Since $q_{G} \notin S_{m+1}, e^{* *}$ does not belong to any E_{j}^{0} for $j>m$. Otherwise, the face $G^{\prime \prime} \neq G$ such that $e^{* *} \subset \partial G \cap \partial G^{\prime \prime}$ would have the property $q_{G^{\prime \prime}} \in S_{j}$, hence the path from $q_{G^{\prime \prime}}$ to q_{0}, which contains q_{G}, would belong to S_{j}, which is impossible since $q_{G} \notin S_{j}$.

This inductive procedure defines $p(e)$ for all edges. The labeling p we defined satisfies (39), as required.

6. Surjectivity of Φ and proof of Theorem 2

In this section we use homology groups with integral coefficients. We call a topological space homologically trivial if it has the same homology groups as one point. In particular, such set is non-empty and connected. Non-empty convex sets are homologically trivial. Thus Lemma 7 of the previous section shows that our map Φ satisfies the conditions of the following

Lemma 8 Let $\Phi: \bar{L} \rightarrow \bar{\Sigma}$ be a continuous map of closed polytopes, such that for every $k \geq 1$ and for every decreasing chain $A_{1} \succ \ldots \succ A_{k}$ of open faces of $\bar{\Sigma}$, the set

$$
\overline{\Phi^{-1}\left(A_{1}\right)} \cap \ldots \cap \overline{\Phi^{-1}\left(A_{k}\right)}
$$

is homologically trivial. Then for every $k \geq 1$ and for every decreasing chain $A_{1} \succ \ldots \succ A_{k}$ of open faces of $\bar{\Sigma}$, the set

$$
\overline{\Phi^{-1}\left(A_{1}\right)} \cap \ldots \cap \overline{\Phi^{-1}\left(A_{k-1}\right)} \cap \Phi^{-1}\left(\overline{A_{k}}\right)
$$

is homologically trivial. In particular, $\Phi^{-1}(\bar{A})$ is homologically trivial for every open face A.

To prove this lemma we need the following result from [9], Corollaire de Théorème 5.2.4 (of Leray). Suppose that a compact topological space K has a finite covering by its closed subsets $\left\{K_{j}\right\}$, such that all intersections

$$
\begin{equation*}
K_{j_{1}} \cap \ldots \cap K_{j_{m}} \tag{40}
\end{equation*}
$$

are either empty or homologically trivial. The nerve of such covering is defined as the simplicial complex, whose vertices are K_{j} and a subset of vertices $\left\{K_{j_{1}} \ldots, K_{j_{m}}\right\}$ defines a simplex if and only if the intersection (40) is non-empty. Then K has the same homology groups as the nerve.

Another version of this result was proved by K. Borsuk [5]. Borsuk's theorem assumes the non-empty intersections to be absolute retracts, and concludes that K is of the same homotopy type as the nerve. We can use either of these two results, but we prefer the homology version.

Proof of Lemma 8. We use induction on $d=\operatorname{dim} A_{k}$. For $d=0, A_{k}$ is one point, so $\overline{A_{k}}=A_{k}$, and the assumption of the Lemma contains its conclusion in this case.

Suppose now that a chain $A_{1} \succ \ldots \succ A_{k}$ is given, $\operatorname{dim} A_{k}=d \geq 1$, and the conclusion of the Lemma holds for all decreasing chains whose last term is of dimension at most $d-1$. Consider the set
$X=\overline{\Phi^{-1}\left(A_{1}\right)} \cap \ldots \cap \overline{\Phi^{-1}\left(A_{k-1}\right)} \cap \Phi^{-1}\left(\overline{A_{k}}\right)=X_{0} \cup\left\{X_{B}: B \prec A_{k}, \operatorname{dim} B \leq d-1\right\}$,
where

$$
X_{0}=\overline{\Phi^{-1}\left(A_{1}\right)} \cap \ldots \cap \overline{\Phi^{-1}\left(A_{k}\right)}
$$

and

$$
X_{B}=\overline{\Phi^{-1}\left(A_{1}\right)} \cap \ldots \cap \overline{\Phi^{-1}\left(A_{k-1}\right)} \cap \Phi^{-1}(\bar{B})
$$

for all open faces $B \prec A_{k}$ of dimension at most $d-1$. Then for every collection B_{1}, \ldots, B_{q} of such open faces we have

$$
\begin{equation*}
X_{0} \cap X_{B_{1}} \cap \ldots \cap X_{B_{q}}=\overline{\Phi^{-1}\left(A_{1}\right)} \cap \ldots \cap \overline{\Phi^{-1}\left(A_{k}\right)} \cap \Phi^{-1}(\bar{B}) \tag{41}
\end{equation*}
$$

where $\bar{B}=\overline{B_{1}} \cap \ldots \cap \overline{B_{q}}$ is a face of dimension at most $d-1$. The set (41) is homologically trivial if and only if B is non-empty, by the assumption of induction. Similarly,

$$
\begin{equation*}
X_{B_{1}} \cap \ldots \cap X_{B_{q}}=\overline{\Phi^{-1}\left(A_{1}\right)} \cap \ldots \cap \overline{\Phi^{-1}\left(A_{k-1}\right)} \cap \Phi^{-1}(\bar{B}), \tag{42}
\end{equation*}
$$

where $\bar{B}=\overline{B_{1}} \cap \ldots \cap \overline{B_{q}}$ is homologically trivial if and only if B is non-empty.
This means that the nerve of the closed covering $X_{0} \cup_{B} X_{B}$ of X coincides with the nerve of the covering of $\overline{A_{k}}$ by the closures of open faces $B \prec A_{k}$, including $\overline{A_{k}}$ itself. By the corollary of Leray's theorem stated above, X has the same homology groups as $\overline{A_{k}}$, but $\overline{A_{k}}$ is non-empty and convex, so X is homologically trivial.

We conclude from Lemma 8 that preimages of closed faces of $\bar{\Sigma}$ under Φ are homologically trivial, in particular, they are non-empty and connected. To complete the proof of Therem 2 we use the following

Lemma 9 Let \bar{L} be a compact topological space, $\bar{\Sigma}$ a cell complex, and Φ : $\bar{L} \rightarrow \bar{\Sigma}$ a continuous mapping such that the preimage of each closed cell in $\bar{\Sigma}$ is homologically trivial. Then Φ is surjective.

Proof. Let $C_{k}(\bar{L})$ be the space of k-chains of \bar{L} with integer coefficients. Let C_{*} be the corresponding chain complex, with the natural differential $\partial: C_{k}(\bar{L}) \rightarrow C_{k-1}(\bar{L})$. Let $C_{*}(\bar{\Sigma})$ be the corresponding chain complex for $\bar{\Sigma}$.

For every closed k-cell A of $\bar{\Sigma}$, we are going to construct a chain $W_{A} \in$ $C_{k}(\bar{L})$ so that $\Phi\left(\partial W_{A}\right) \subset \partial A$ and $\Phi_{*}^{A}\left[W_{A}\right]=[A]$. Here Φ_{*}^{A} is the mapping $H_{k}\left(\Phi^{-1}(A), \Phi^{-1}(\partial A)\right) \rightarrow H_{k}(A, \partial A)$ induced by $\Phi,\left[W_{A}\right]$ is the class of W_{A} in $H_{k}\left(\Phi^{-1}(A), \Phi^{-1}(\partial A)\right.$), and $[A]$ is the class of A in $H_{k}(A, \partial A) \cong \mathbb{Z}$.

We proceed inductively on $k=\operatorname{dim} A$. For $k=0$, preimage of the vertex A is nonempty, and we take a point in $\Phi^{-1}(A)$ as W_{A}. Suppose that the chains W_{A} are defined for all cells A of $\bar{\Sigma}$ with $\operatorname{dim} A<k$, so that $\Phi_{*}^{A}\left[W_{A}\right]=[A]$ and $\partial W_{A}=W_{\partial A}$. Here a chain W_{C}, for a chain $C=\sum m_{\nu} A_{\nu}$, is defined as $\sum m_{\nu} W_{A_{\nu}}$.

Let $A \in C_{k}(\bar{\Sigma})$. Due to the induction hypothesis, $W_{\partial A}$ is a cycle in $C_{k-1}(\bar{L})$, and $\Phi_{*}^{\partial A}\left[W_{\partial A}\right]=[\partial A]$. Here $\Phi_{*}^{\partial A}$ is the mapping $H_{k-1}\left(\Phi^{-1}(\partial A)\right) \rightarrow$ $H_{k-1}(\partial A)$ induced by Φ. As $\Phi^{-1}(A)$ is a homologically trivial subcomplex of \bar{L}, there exists a chain $W_{A} \in C_{k}(\bar{L})$ such that $W_{A} \subset \Phi^{-1}(A)$ and $\partial W_{A}=$ $W_{\partial A}$. From the commutative diagram

we have $\partial \Phi_{*}^{A}\left[W_{A}\right]=\Phi_{*}^{\partial A} \partial\left[W_{A}\right]=[\partial A]$. As $H_{k}(A, \partial A) \cong \mathbb{Z}$ is generated by $[A]$ and $\partial[A]=[\partial A]$, this implies $\Phi_{*}^{A}\left[W_{A}\right]=[A]$.

To complete the proof, we have to show that the mapping $\Phi: W_{A} \rightarrow A$ is surjective, for any cell A of $\bar{\Sigma}$. If this is not so, there exists an internal point $a \in A$ not covered by $\Phi\left(W_{A}\right)$. Since $A \backslash a$ is contractible to ∂A, this contradicts the condition $\Phi_{*}^{A}\left(\left[W_{A}\right]\right)=[A] \neq 0$.

Proof of Theorem 2. It remains to summarize what has been done. In Section 3, for each net γ we constructed a map (10), which transforms labelings into pairs (f, c), where f is a rational function of the class R^{*}, and c a critical sequence. Restricting this map to non-degenerate labelings we obtain rational functions of the class $R_{\gamma} \subset R^{*}$, whose critical points are given by the non-degenerate sequence c (see (11)). By Proposition 1 in Section 3, degenerate labelings produce degenerate critical sequences, that is $\Phi^{-1}(\Sigma)=L$ in Lemma 9. This lemma implies that all possible critical sets, consisting of $2 d-2$ points, can be obtained in this way. So each γ produces a rational function of the class R_{γ} with prescribed critical points. We conclude by Lemma 1, that the number of rational functions in R^{*}, with $2 d-2$ prescribed critical points is at least u_{d}. This proves Theorem 2 because, as we saw in the end of Section 2, different functions from R^{*} are non-equivalent.

7. Proof of Theorem 1

In this section we derive Theorem 1 from Theorems A and 2. The vector space Poly ${ }_{d}$ of polynomials of degree at most d with complex coefficients is identified with \mathbb{C}^{d+1}. Every pair (r, q) of non-proportional polynomials spans a 2-dimensional subspace in Poly ${ }_{d}$.

To parametrize the equivalence classes of rational functions of degree d, we consider the Grassmannian $G(2, d+1)$, which is the set of all 2-dimensional subspaces in Poly ${ }_{d}$, and the locus $D_{1} \subset G(2, d+1)$ of those pairs of polynomials (r, q), for which $\operatorname{deg} r / q<d$. Then D_{1} is an algebraic subvariety of $G(2, d+1)$ of codimension 1. Two pairs $\left(r_{i}, q_{i}\right), i=1,2$, represent the same point in $G(2, d+1) \backslash D_{1}$ if and only if the rational functions r_{1} / q_{1} and r_{2} / q_{2} are equivalent. Thus classes of rational functions of degree d are parametrized by $G(2, d+1) \backslash D_{1}$.

The Wronski determinant of two non-proportional polynomials

$$
W(r, q)=\left|\begin{array}{ll}
r & q \\
r^{\prime} & q^{\prime}
\end{array}\right|
$$

is a non-zero polynomial of degree at most $2 d-2$, whose zeros are finite critical points of $f=r / q$, counting multiplicities, and common zeros of r and q. The common zeros of r and q are multiple zeros of $W(r, q)$. If two pairs of polynomials define the same point in $G(2, d+1)$, then the Wronskians of these pairs differ by a constant multiple. The set of all non-zero polynomials of degree at most $2 d-2$, modulo proportionality, is parametrized by $\mathbb{C P}^{2 d-2}$. Thus we have a regular map $\widetilde{W}: G(2, d+1) \rightarrow \mathbb{C P}^{2 d-2}$, defined by taking the proportionality class of the Wronski determinant.

We show that \widetilde{W} is a finite map [13, p. 177]. This fact is known, $[6,11]$ but we include a short proof. We normalize our Wronskians, so that the coefficient of the monomial of the smallest degree equals 1 . Notice that each monomial z^{n}, where $0 \leq n \leq 2 d-2$, has only finitely many preimages under \widetilde{W}, namely the 2-subspaces, generated by pairs $\left(z^{k}, z^{m}\right)$, where $k+m=n+1$ and $k \neq m$. If (r, q) represents a point in $G(2, d+1)$, we consider the oneparametric family of points represented by $\left(r_{\lambda}, q_{\lambda}\right), \lambda \in \mathbb{C}^{*}$, where $r_{\lambda}(z)=$ $r(\lambda z)$ and $q_{\lambda}(z)=q(\lambda z)$. Putting $w_{\lambda}=\widetilde{W}\left(r_{\lambda}, q_{\lambda}\right)$, we obtain $W\left(r_{\lambda}, q_{\lambda}\right)(z)=$ $\lambda W(r, q)(\lambda z)$, and after normalization $w_{\lambda}(z)=\lambda^{-n-1} W(r, q)(\lambda z)$, where $n \in$ $[0,2 d-2]$ is the smallest degree of monomials in $W(r, q)$. So $\operatorname{dim} \widetilde{W}^{-1}\left(w_{\lambda}\right)=$ $\operatorname{dim} \widetilde{W}^{-1}\left(w_{1}\right)$ for $\lambda \in \mathbb{C}^{*}$, and

$$
w_{0}:=\lim _{\lambda \rightarrow 0} w_{\lambda} \quad \text { is } \quad w_{0}(z)=z^{n} .
$$

As the dimension of preimage is an upper semi-continuous function of the point [13, p. 138], for regular mappings into compact spaces, that is

$$
\limsup _{\lambda \rightarrow 0} \operatorname{dim} \widetilde{W}^{-1}\left(w_{\lambda}\right) \leq \operatorname{dim} \widetilde{W}^{-1}\left(w_{0}\right)=0
$$

we conclude that $\operatorname{dim} \widetilde{W}^{-1}\left(w_{1}\right)=0$ for every $w_{1} \in \mathbb{C P}^{2 d-2}$, so the preimages are finite, and the map \widetilde{W} is finite.

Let $D_{2} \subset \mathbb{C P}^{2 d-2}$ be the locus of polynomials with multiple roots, or having smaller degree than $2 d-2$. Notice that $\widetilde{W}\left(D_{1}\right) \subset D_{2}$. According to Theorem A, for every point w in $\mathbb{C P}^{2 d-2} \backslash D_{2}$ we have $\left|\widetilde{W}^{-1}(w)\right| \leq u_{d}$. On the
other hand, our Theorem 1 implies that for every point w in the open set \mathbf{V} in $\mathbb{R} \mathbb{P}^{2 d-2}$ formed by polynomials with $2 d-2$ distinct real zeros the cardinality of $\widetilde{W}^{-1}(w) \cap G_{\mathbb{R}}(2, d+1)$ is at least u_{d}. Here $G_{\mathbb{R}}(2, d+1)$ stands for the 'real part' of the Grassmannian, that is the collection of those 2-dimensional subspaces which can be generated by pairs of real polynomials. This means that

$$
\widetilde{W}^{-1}(\mathbf{V}) \subset G_{\mathbb{R}}(2, d+1)
$$

On the other hand, for finite maps we have $\widetilde{W}^{-1}(w)=\lim _{w^{\prime} \rightarrow w} \widetilde{W}^{-1}\left(w^{\prime}\right)$, so $\widetilde{W}^{-1}(\overline{\mathbf{V}}) \subset G_{\mathbb{R}}(2, d+1)$, where $\overline{\mathbf{V}}$ is the subset of $\mathbb{R}^{2 d-2}$ formed by polynomials with all real zeros.

References

[1] L. Ahlfors, Conformal Invariants, McGraw Hill, NY, 1973.
[2] V.I. Arnold, Springer numbers and morsification spaces, J. Algebr. Geom. 1 (1992) 197-214.
[3] V.I. Arnold, Topological classification of real trigonometric polynomials and cyclic serpents polyhedron, Arnold-Gelfand Seminar, Birkhäuser, Boston, 1996.
[4] P.P. Belinskii, General properties of quasiconformal mappings, Nauka, Novosibirsk, 1974 (Russian).
[5] K. Borsuk, On the imbedding of systems of compacta in simplicial complexes, Fund. Math., 35 (1948) 217-234.
[6] R.W. Brockett and C.I. Byrnes, Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint, IEEE Trans. Automatic Control, AC-26 (1981), 271-283..
[7] C.I Byrnes, Pole assignment by output feedback, in: H. Nijmeijer and J. Schumacher, eds, Three Decades of Mathematical Systems Theory, Lect. notes Control and Inf. Sci., vol. 135, Springer, NY, 1989, 31- 78.
[8] W. Fulton, Introduction to Intersection Theory in Algebraic Geometry, AMS, Providence, RI, 1996, second edition.
[9] R. Godement, Théorie des faisceaux, Hermann, Paris, 1964.
[10] A.A. Goldberg and I.V. Ostrovskii, Distribution of values of meromorphic functions, Moscow, Nauka, 1970 (Russian).
[11] L. Goldberg, Catalan numbers and branched coverings by the Riemann sphere, Adv. Math. 85 (1991) 129-144.
[12] G. Goluzin, Geometric theory of functions of a complex variable, Transl. math. monogr., 26, AMS, Providence, RI, 1969.
[13] J. Harris, Algebraic Geometry. A first course, Springer, NY, 1992.
[14] S. Kleiman, Problem 15. Rigorous foundation of Schubert's enumerative calculus, in: F. Browder, ed., Mathematical development arising from Hilbert problems. Symp. Pure math. AMS, Providence, RI, 1976.
[15] S. Kleiman and D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972) 1061-1082.
[16] P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
[17] H. Schubert, Anzahl-bestimmungen für lineare Räume beliebiger dimension, Acta Math. 8 (1886) 97-118.
[18] F. Sottile, The special Schubert calculus is real, Electronic Res. Announcements AMS, 5 (1999) 35-39.
[19] F. Sottile, The conjecture of Shapiro and Shapiro, www.expmath.org/extra/9.2/sottile
[20] F. Sottile, Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro, Experimental Math., 9 (2000) 161-182.
[21] F. Sottile, Enumerative real algebraic geometry, http://www.math.umass.edu/~sottile/pages/ERAG
[22] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999.
[23] J. Verschelde, Numerical evidence of a conjecture in real algebraic geometry, Experimental Math., 9 (2000) 183-196.
[24] E.B. Vinberg, Real entire functions with prescribed critical values, in: Problems in Group Theory and in Homological Algebra, Yaroslavl. Gos. Univ., Yaroslavl, 1989, 127-138 (Russian)
[25] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Springer, Berlin 1955.

Purdue University, West Lafayette, Indiana 47907
eremenko@math.purdue.edu agabriel@math.purdue.edu

[^0]: *Supported by NSF grant DMS-9800084 and by Bar Ilan University.
 ${ }^{\dagger}$ Supported by NSF grant DMS-0070666 and by MSRI.

