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Abstract

We study the limits of inductive sequences (Ai,φi) where each Ai is a direct sum of full matrix algebras
over compact metric spaces and each partial map of φi is diagonal. We give a new characterisation of
simplicity for such algebras, and apply it to prove that the said algebras have stable rank one whenever they
are simple and unital. Significantly, our results do not require any dimension growth assumption.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let X and Y be compact Hausdorff spaces. A ∗-homomorphism

φ : Mm

(
C(X)

) → Mnm

(
C(Y )

)

is called diagonal if there are n continuous maps λi : Y → X such that
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φ(f ) =

⎛
⎜⎜⎜⎜⎝

f ◦ λ1 0 . . . 0

0 f ◦ λ2 . . . 0
...

...
. . .

...

0 0 . . . f ◦ λn

⎞
⎟⎟⎟⎟⎠ .

The λi are called the eigenvalue maps or simply eigenvalues of φ. The multiset {λ1, λ2, . . . , λn}
is called the eigenvalue pattern of φ and is denoted by ep(φ). This definition can be extended to
∗-homomorphisms

φ :
n⊕

i=1

Mni

(
C(Xi)

) →
m⊕

j=1

Mmj

(
C(Yj )

)

by requiring, roughly, that each partial map

φij : Mni

(
C(Xi)

) → Mmj

(
C(Yj )

)

induced by φ be diagonal. (A precise definition can be found in Section 2.)
C∗-algebras obtained as limits of inductive systems (Ai,φi) where

Ai =
ni⊕

j=1

Mni,j

(
C(Xi,j )

)

and each φi is diagonal form a rich class. They include AF algebras, simple unital AT algebras
(and hence the irrational rotation algebras) [6], Goodearl algebras [10], and some interesting
examples of Villadsen and the third named author connected to Elliott’s program to classify
amenable C∗-algebras via K-theory [15,17]. The structure of these algebras is only well under-
stood when they satisfy some additional conditions such as (very) slow dimension growth or
the combination of real rank zero, stable rank one, and weak unperforation of the K0-group—
situations in which the strong form of Elliott’s classification conjecture can be verified [3,5,7–9].

In this paper we give a new characterisation of simplicity for AH algebras with diagonal
connecting maps. As a consequence we are able to prove that such algebras have stable rank one
whenever they are unital and simple. The significance of our result derives from the fact that we
make no assumptions on the dimension growth of the algebras; we obtain a general theorem on
the structure of algebras heretofore considered “wild.” As suggested by M. Rørdam in his recent
ICM address, it is high time we became friends with such algebras, as opposed to treating them
simply as a source of pathological examples.

2. Preliminaries

2.1. Basic notation

We use Mn to denote the set of n×n complex matrices. Given a closed subset E of a compact
metric space (X,d) and δ > 0 we set

Bδ(E) = {
x ∈ X

∣∣ d(E,x) < δ
}
,

and make the convention that Bδ(∅) = ∅.
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2.2. AH systems with diagonal maps

Definition 2.1. We will say that a unital ∗-homomorphism

φ :
n⊕

i=1

Mni

(
C(Xi)

) → Mk

(
C(Y )

) ∼= Mk ⊗ C(Y )

is diagonal if there exist natural numbers k1, . . . , kn such that
∑

i ki = k and ni |ki , an embedding

ι :
n⊕

i=1

Mki
↪→ Mk,

and diagonal maps

φi :Mni

(
C(Xi)

) → Mki
⊗ C(Y )

such that

φ =
n⊕

i=1

φi.

(Notice that ki = 0 is allowed.) We will say that a unital ∗-homomorphism

φ :
n⊕

i=1

Mni

(
C(Xi)

) →
m⊕

j=1

Mmj

(
C(Yj )

)

is diagonal if each restriction

φj :
n⊕

i=1

Mni

(
C(Xi)

) → Mmj

(
C(Yj )

)

is diagonal.

Let A be the limit of the inductive sequence (Ai,φi ), where

Ai =
ki⊕

t=1

Mni,t

(
C(Xi,t )

)
, (1)

Xi,t is a connected compact metric space, and ni,t and ki are natural numbers. Define

Ai,t := Mni,t

(
C(Xi,t )

)
,

Xi := Xi,1 	 Xi,2 	 · · · 	 Xi,ki
,

and
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φi,j := φj−1 ◦ · · · ◦ φi.

Let

φ
t,l
i,j : Mni,t

(
C(Xi,t )

) → Mnj,l

(
C(Xj,l)

)

and

φl
i,j :

ki⊕
t=1

Mni,t

(
C(Xi,t )

) → Mnj,l

(
C(Yj,l)

)

denote the appropriate restrictions of φ. If each φi is unital and diagonal, then we refer to (Ai,φi)

as an AH system with diagonal maps. The limit algebra A will be called a diagonal AH algebra,
and we will refer to (Ai,φi) as a decomposition of A.

Assume that A as above is diagonal. We will view φ
t,l
i,j as a diagonal map from Mni,t

(C(Xi,t ))

into the cut-down of Mnj,l
(C(Xj,l)) by φ

t,l
i,j (1). For fixed i and j , we will denote by epij the

multiset which is the union, counting multiplicity, of the eigenvalue patterns of each φ
t,l
i,j ; epij is

the eigenvalue pattern of φi,j ; an element of epij is an eigenvalue map of φi,j . For fixed i, j ,

and l, we will denote by epl
ij the multiset which is the union of the eigenvalue patters of each φ

t,l
i,j .

Let us now show that the bonding maps φi may be assumed to be injective. Let (Ai,φi) be a
decomposition for a diagonal AH algebra A as above. Fix i ∈ N and 1 � t � ki . For each j > i

and 1 � l � kj , Let X
j,l
i,t denote the closed subset of Xi,t which is the union of the images of the

eigenvalue maps of φ
t,l
i,j . Put X

j
i,t = ⋃

l X
j,l
i,t , and X̃i,t = ⋂

j X
j
i,t . Since X

j
i,t ⊇ X

j+1
i,t , we have

that X̃i,t is closed subset of Xi,t . Define

Ãi,t = Mni,t

(
C(X̃i,t )

)

and

Ãi =
ki⊕

t=1

Ãi,t .

Define diagonal maps φ̃
t,l
i,i+1 : Ãi,t → Ãi+1,l by replacing the eigenvalue maps of φ

t,l
i,i+1 with

their restrictions to X̃i+1,l . Define φ̃i : Ãi → Ãi+1 in a manner analogous to the definition of φi .
It follows that (Ãi , φ̃i) is a diagonal AH system with limit A, and φ̃i is injective by construction.
We assume from here on that all bonding maps in diagonal AH systems are injective.

One way to construct a simple diagonal AH algebra is to ensure that for each i ∈ N and x in
a specified dense subset of Xi there is some j � i such that for each l ∈ {1, . . . , kj } the diagonal
map φ

t,l
i,j contains the eigenvalue map evx : Xj,l → Xi,t given by evx(y) = x. The next definition

gives and approximate version of this situation.

Definition 2.2. Say that a diagonal AH algebra A with decomposition (Ai,φi) has the property P
if for any i ∈ N, element f in Ai , ε > 0, and x ∈ Xi there exist j � i and unitaries ul ∈ Aj,l ,
l ∈ {1, . . . , kj } such that
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∥∥∥∥ulφ
t,l
i,j (f )u∗

l −
(

f (x) 0

0 bl

)∥∥∥∥ < ε

for some appropriately sized bl . (Note that diag(f (x0), bl) ∈ Aj,l .)

We will prove in the sequel that A as in Definition 2.2 is simple if and only if it has property P .

2.3. A characterisation of simplicity

Proposition 2.1 of [4] gives some necessary and sufficient conditions for the simplicity of an
AH algebra. We will have occasion to apply these in the proof of our main result, and so restate
the said proposition in the particular case of an AH system with diagonal injective maps.

Proposition 2.3. Let (Ai,φi) be an AH system with diagonal injective maps, and set A =
limi→∞(Ai,φi). The following conditions are equivalent:

(i) A is simple;
(ii) For any positive integer i and any nonempty open subset U of Xi , there is a j0 � i such that

for every j � j0 and l ∈ {1, . . . , kj } we have

(
epl

ij

)−1
(U) = Xj,l,

where (epl
ij )

−1(U) denotes the union of the sets λ−1(U), λ ∈ epl
ij ;

(iii) For any nonzero element a in Ai , there is a j0 � i such that for every j � j0, φij (a)(x) is
not zero, for every x in Xj .

2.4. Paths between permutation matrices

Given any permutation π ∈ Sn, let U [π] denote the permutation matrix in Mn corresponding
to π , that is, U [π] is obtained from the identity of Mn by moving the ith row to the π(i)th
row, for i ∈ {1,2, . . . , n}. Any two permutation matrices are homotopic inside the unitary group
U (Mn) of Mn, but we want to define some particular homotopies for use in the sequel. Let π

and σ be elements of Sn, viewed as permutations of the canonical basis vectors e1, . . . , en of C
n.

Let R = {eW,1, . . . , eW,dim(W)} be the set of basis vectors upon which π and σ agree, and choose
γ ∈ Sn be such that

γ σ(v) = γπ(v) = v, ∀v ∈ R.

Then U [γ ]U [σ ] and U [γ ]U [π] fix e1, . . . , e|R|. Put W = span{e1, . . . , e|R|}, and let V be the
orthogonal complement of W . There are a canonical unital embedding of Mdim(W) ⊕ Mdim(V )

into Mn and unitaries u,v ∈ U (Mdim(V )) such that

U [γ ]U [π] = 1Mdim(W)
⊕ v; U [γ ]U [σ ] = 1Mdim(W)

⊕ u.

Choose a homotopy g(t) between u and v inside U (Mdim(V ))—g(0) = v and g(1) = u—and put

u(t) = U [γ ]−1(1M ⊕ g(t)
)
.
dim(V )
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Then u(t) is a homotopy of unitaries between U [π] and U [σ ] such that

u(t)(v) = U [π](v) = U [σ ](v), ∀v ∈ R, ∀t ∈ [0,1].

2.5. Applications of Urysohn’s Lemma

Lemma 2.4. Let σ ∈ Sn be given. There is a homotopy u : [0,1] → U (Mn) between u(0) = 1n

and u(1) = U [σ ] which moreover has the following property: for any complex numbers
λ1, λ2, . . . , λn such that λi = λσ(i) for every i = 1,2, . . . , n, we have

u(t)

⎛
⎜⎜⎜⎜⎝

λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎞
⎟⎟⎟⎟⎠u∗(t) =

⎛
⎜⎜⎜⎜⎝

λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎞
⎟⎟⎟⎟⎠ , ∀t ∈ [0,1].

Proof. Let us first consider the case that σ is a k-cycle. The hypotheses of the lemma guar-
antee that the desired conclusion holds already for t ∈ {0,1}. Choose the homotopy u(t) as in
Section 2.4 by using our given value of σ and setting π equal to the identity element of Sn. The
hypothesis λi = λσ(i), i ∈ {1, . . . , n}, implies that there is a λ ∈ C such that for each i ∈ {1, . . . , n}
which is not fixed by σ we have λi = λ. In other words, if one decomposes diag(λ1, . . . , λn) into
a direct sum of two diagonal matrices using the decomposition Cn = W ⊕ V —V and W as in
Section 2.4—then the direct summand corresponding to V is scalar k × k matrix. By construc-
tion, u(t) = v(t)⊕1n−k , with v(t) ∈ U (Mk). It follows that u(t) commutes with diag(λ1, . . . , λn)

for each t ∈ (0,1).
Now suppose that σ is any permutation on n letters, and write σ as a product of disjoint

cycles: σ = σ1σ2 . . . σl . For each j ∈ {1, . . . , l}, let ui(j) denote the unitary path between U [id]
and U [σj ], constructed as in Section 2.4. Now

u(t) := u1(t)u2(t) · · ·ul(t)

is a path of unitaries with u(0) = U [id] and u(1) = U [σ ], and u(t) commutes with diag(λ1,

. . . , λn) since each uj (t) does. �
Lemma 2.5. Let σ be any permutation in Sn, and A,B disjoint nonempty closed subsets of a met-
ric space X. Let λ1, . . . , λn : X → C be continuous. Then, there exists a unitary v ∈ Mn(C(X))

such that

(i) v(x) = 1n, ∀x ∈ A,
(ii) v(x) = U [σ ], ∀x ∈ B , and

(iii) v(x) commutes with diag(λ1(x), . . . , λn(x)) whenever λi(x) = λσ(i)(x) for each i ∈
{1, . . . , n}.

Proof. Find a unitary path u(t) connecting U [id] to U [σ ] using Lemma 2.4, so that u(t) com-
mutes with diag(λ1(x), . . . , λn(x)) for each t ∈ (0,1) and each x ∈ X for which λi(x) = λσ(i)(x),
i ∈ {1, . . . , n}. By Urysohn’s Lemma, there is a continuous map f : X → [0,1] which is equal to
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zero on A and equal to one on B . It is straightforward to check that v(x) := u(f (x)) satisfies the
conclusion of the lemma. �
Lemma 2.6. Let Y be a closed subset of a normal space X, and let f : Y → Sn be continuous.
Then, there is a continuous map f̃ from X to the n + 1 disk Dn+1 which extends f .

Proof. View Dn+1 as the cube [0,1]n+1, with Sn as its boundary. Then

f (y) = (
f1(y), . . . , fn+1(y)

)
,

where each fi : Y → [0,1] is continuous. Extend each fi to a continuous map f̃i : X → [0,1],
and put

f̃ (y) = (
f̃1(y), . . . , f̃n+1(y)

)
. �

3. The main theorem

Let A be a diagonal AH algebra with decomposition (Ai,φi), and assume that the φi are
injective. In this section we will prove that if A is simple then it has the property P (cf. Section 2).
(The converse also holds, but is easier by far.) Let us begin with an outline of our strategy, before
plunging headlong into the proof.

Assume first that A is simple and Ai = Mni
(C(Xi)), so that there are no partial maps to

contend with. Let there be given a natural number i, an element f of Ai , a point x0 ∈ Xi , and
some ε > 0. Put U = Bε(x0). By Proposition 2.3 there is a j0 with j0 � i such that for any
j � j0,

Xj = λ−1
1 (U) ∪ λ−1

2 (U) ∪ · · · ∪ λ−1
n (U),

where

φi,j (f ) =
⎛
⎜⎝

f ◦ λ1 0 . . . 0
...

...
. . .

...

0 0 . . . f ◦ λn

⎞
⎟⎠ .

On each closed subset λ−1
t (U), the range of the eigenvalue map λt is within ε of x0. To show

that A has the property P , we require a unitary u in Aj and an element bf ∈ Mnj −ni
(C(Xj ))

such that

∥∥∥∥uφi,j (f )u∗ −
(

f (x0) 0

0 bf

)∥∥∥∥ < ε.

We would like u(y) to exchange the first and t th diagonal entries of φi,j (f ) whenever y ∈
λ−1

t (U), but this operation is unlikely to be well-defined—the sets λ−1
1 (U), . . . , λ−1

n (U) need
not be mutually disjoint. The remainder of this section is devoted to overcoming this complica-
tion.
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Given positive integers m � n, let us denote by Mm(C(Y ))⊕1n−m the set of all n×n matrices
of the form

(
a 0

0 1

)
,

where a ∈ Mm(C(Y )) and 1n−m ∈ Mn−m.

Theorem 3.1. Let there be given a diagonal ∗-homomorphism φ : C(X) → Mn(C(Y )) with the
eigenvalue pattern {λ1, λ2, . . . , λn}, a point x0 in X, an element f of C(X), and a tolerance
ε > 0. Choose η > 0 such that |f (x) − f (y)| < ε whenever d(x, y) < 2η (d is the metric on X).
Suppose that F1, . . . ,Fm are nonempty closed subsets of Y (m � n) such that d(λi(y), x0) < η

whenever y ∈ Fi .
Then, there is a unitary u in Mm(C(Y ))⊕ 1n−m and an element b ∈ Mn−m−1(C(Y )) such that

for each y ∈ ⋃m
i=1 Fi we have

∥∥∥∥∥∥∥∥∥∥∥∥
u(y)φ(f )(y)u∗(y) −

⎛
⎜⎜⎜⎜⎜⎜⎝

f (x0) 0 0 . . . 0

0 b(y) 0 . . . 0

0 0 λm+1(y) . . . 0
...

...
. . .

...
...

0 0 0 . . . λn(y)

⎞
⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥
< 2ε. (2)

(Note that if n − m − 1 = 0, then there is no b in the matrix in (2).)

Proof. Let ρ denote the metric on Y . Choose δ > 0 such that d(λi(x), λi(y)) < η whenever
ρ(x, y) � δ, i ∈ {1, . . . , n}. For each 1 � i � m,

∣∣f ◦ λi(y) − f (x0)
∣∣ < ε, for all y ∈ Bδ(Fi).

Set εi(y) = f ◦ λi(y) − f (x0) for all y in Bδ(Fi). Then, εi is a continuous map from Bδ(Fi) to
the disk of radius ε in the complex plane. By Lemma 2.6, εi can be extended to a continuous
function from Y to the complex plane such that ‖εi‖ � ε (let us also denote this extension map
by εi ). For m < i � n, set εi = 0.

For each i ∈ {1, . . . , n}, put gi = f ◦ λi − εi , so that gi ∈ C(X). Set

g = diag(g1, g2, . . . , gn).

Then, for each i ∈ {1, . . . ,m} and y ∈ Bδ(Fi), we have

gi(y) = f (x0);
if i ∈ {m + 1, . . . , n}, then gi = f ◦ λi . For any unitary u ∈ Mn(C(Y )) we have

∥∥uφ(f )u∗ − ugu∗∥∥ = ∥∥diag(ε1, . . . , εn)
∥∥ < 2ε.

We have therefore reduced our problem to proving the following claim.
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Claim. There is a unitary u in Mm(C(Y )) ⊕ 1n−m such that

ugu∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

f (x0) 0 0 . . . 0

0 b(x) 0 . . . 0

0 0 gm+1(x) . . . 0
...

...
...

. . .
...

0 0 0 . . . gn(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

, ∀x ∈
m⋃

i=1

Fi,

where b ∈ Mn−m−1(C(Y )).

Proof. We will assume that for some 1 � k < m there is a unitary uk ∈ Mk(C(Y )) ⊕ 1n−k such
that

ukgu∗
k =

⎛
⎜⎜⎜⎜⎜⎜⎝

f (x0) 0 0 . . . 0

0 b(x) 0 . . . 0

0 0 gk+1(x) . . . 0
...

...
...

. . .
...

0 0 0 . . . gn(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

, ∀x ∈
k⋃

i=1

Fi, (3)

and then prove that the same statement holds with k replaced by k + 1. Since (3) clearly holds
when k = 1—just take u1 to be the identity matrix of Mn(C(Y ))—this recursive argument will
prove our claim. �

Assume that (3) holds for some k < m. Put B = Fk+1 and A = Y\Bδ(B). Apply Lemma 2.5
with these choices of A and B and with σ = (1 k + 1) to obtain a unitary v ∈ Mn(C(Y )). We
then have that v = 1n on A and v = U [(1 k + 1)] on B . Inspecting the construction of v, we find
that it has the following form:

v(y) = U
[
(2 k + 1)

](
v′(y) 0

0 1

)
U

[
(2 k + 1)

]
, ∀y ∈ Y, (4)

where v′(y) is a unitary matrix in M2(C(Y )) equal to 12 on A and equal to U [(12)] on B . Define
uk+1 := vuk .

Let us show that uk+1 satisfies the requirements of the claim. It is clear that uk+1 is an element
of Mk+1(C(Y )) ⊕ 1n−k−1. First suppose that y ∈ B , so that gk+1(y) = f (x0). Since uk+1 = vuk

we have

uk+1(y)g(y)u∗
k+1(y) = U

[
(1 k + 1)

]
⎛
⎜⎜⎜⎜⎝

c(y) 0 . . . 0

0 f (x0) . . . 0
...

...
. . .

...

⎞
⎟⎟⎟⎟⎠U

[
(1 k + 1)

]

0 0 . . . gn(y)
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

f (x0) 0 0 . . . 0

0 b(y) 0 . . . 0

0 0 gk+2(y) . . . 0
...

...
...

. . .
...

0 0 0 . . . gn(y)

⎞
⎟⎟⎟⎟⎟⎟⎠

for some c(y), b(y) ∈ Mk .
Now suppose that y ∈ ⋃m

i=1 Fi\Bδ(B) ⊆ Y\Bδ(B). In this case v(y) = 1n and uk+1(y) =
uk(y) and there is nothing to prove.

Finally, suppose that y ∈ (Bδ(B)\B) ∩ (
⋃m

i=1 Fi). As in the case y ∈ B , we have gk+1(y) =
f (x0). From (3) and this last fact we have

U
[
(2 k + 1)

]
uk(y)g(y)u∗

k(y)U
[
(2 k + 1)

] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (x0) 0 0 0 . . . 0

0 f (x0) 0 0 . . . 0

0 0 d(y) 0 . . . 0

0 0 0 gk+2(y) . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . gn(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for some d(y) ∈ Mk−1. Since the upper left 2 × 2 corner of the matrix above is scalar, the entire
matrix commutes with v′(y) ⊕ 1n−2. It follows that uk+1(y)g(y)u∗

k+1(y) is equal to

U
[
(2 k + 1)

]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (x0) 0 0 0 . . . 0

0 f (x0) 0 0 . . . 0

0 0 b1(y) 0 . . . 0

0 0 0 gk+2(y) . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . gn(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U
[
(2 k + 1)

]
.

Computing this product yields a matrix of the form

⎛
⎜⎜⎜⎜⎜⎜⎝

f (x0) 0 0 . . . 0

0 b(y) 0 . . . 0

0 0 gk+2(y) . . . 0
...

...
...

. . .
...

0 0 0 . . . gn(y)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

as required. �
For any C∗-algebra B there is an isomorphism

π :B ⊗ Mn → Mn(B)
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given by

π
(
b ⊗ (aij )

) =
⎛
⎜⎝

ba11 · · · ba1n

...
. . .

...

ban1 · · · bann

⎞
⎟⎠ . (5)

Proposition 3.2. Suppose that φ : Mm(C(X)) → Mnm(C(Y )) is a diagonal ∗-homomorphism
with ep(φ) = {λ1, λ2, . . . , λn}. Let φ̃ : C(X) → Mn(C(Y )) be the diagonal ∗-homomorphism
given by

φ̃(f ) =

⎛
⎜⎜⎜⎜⎝

f ◦ λ1 0 . . . 0

0 f ◦ λ2 . . . 0
...

...
. . .

...

0 0 . . . f ◦ λn

⎞
⎟⎟⎟⎟⎠ .

Then, φ̃ ⊗ idMm : C(X) ⊗ Mm → Mn(C(Y )) ⊗ Mm is unitarily equivalent to φ.

Proof. On the one hand we have

φ̃ ⊗ idMm

(
f ⊗ (cij )

) =

⎛
⎜⎜⎜⎜⎝

f ◦ λ1 0 . . . 0

0 f ◦ λ2 . . . 0
...

...
. . .

...

0 0 . . . f ◦ λn

⎞
⎟⎟⎟⎟⎠ ⊗ (cij ),

while on the other we have

φ
(
f ⊗ (cij )

) =

⎛
⎜⎜⎜⎜⎝

(f ◦ λ1) ⊗ (cij ) 0 . . . 0

0 (f ◦ λ2) ⊗ (cij ) . . . 0

...
...

. . .
...

0 0 . . . (f ◦ λn) ⊗ (cij )

⎞
⎟⎟⎟⎟⎠ .

With the identifications C(X) ⊗ Mn
∼= Mn(C(X)) and Mn(C(Y )) ⊗ Mm

∼= Mnm(C(Y )) given
by (5) in mind, one sees that

Ad
(
U [π]) ◦ (φ̃ ⊗ idMm) = φ,

where π is the permutation in Snm and given by π(kn + i) = (i − 1)m + k + 1 for k =
0,1,2, . . . ,m − 1 and i = 1,2, . . . , n. �
Corollary 3.3. Let φ : Mm(C(X)) → Mnm(C(Y )) be a diagonal ∗-homomorphism with eigen-
value pattern {λ1, λ2, . . . , λn}, and let ε > 0 be given. Let f be any element of Mm(C(X)) and
choose η > 0 such that

∥∥f (x) − f (y)
∥∥ < ε whenever d(x, y) < 2η
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(d is the metric on X). Let U be the open ball centered at x0 ∈ X with radius η, and suppose that

Y = λ−1
1 (U) ∪ λ−1

2 (U) ∪ · · · ∪ λ−1
n (U).

Then there is a unitary u in Mnm(C(Y )) and element b ∈ Mnm−m(C(Y )) such that

∥∥∥∥uφ(f )u∗ −
(

f (x0) 0

0 b

)∥∥∥∥ < ε.

Proof. By Proposition 3.2, we can assume that m = 1. Let Fi be the closure of λ−1
i (U) for

each i. Now, apply Theorem 3.1. Since Y = ⋃n
i=1 Fi , we are done. �

Now, we are ready to prove the main theorem of this section.

Theorem 3.4. Let A = lim−→(Ai,φi) be a unital diagonal AH algebra. Then, A is simple if and
only if A has the property P of Definition 2.2.

Proof. Suppose that A has property P . Let f ∈ Ai be nonzero, so that there is a point x0 in Xi

such that f (x0) �= 0. By the definition of property P , there are an integer j > i and unitaries
ul ∈ Aj,l , l ∈ {1, . . . , kj } such that

∥∥∥∥ulφ
t,l
i,j (f )u∗

l −
(

f (x0) 0

0 bl

)∥∥∥∥ < ε

for some appropriately sized bl . We may assume that ε < ‖f (x0)‖, so that φij (f ) is nowhere
zero. This implies that the ideal of Aj generated by φij (f ) is all of Aj , and that the ideal of A

generated by the image of f is all of A. Since f was arbitrary, A is simple.
Now assume that A is simple, and let f ∈ Ai,t be nonzero. Recall that the φi may be taken

to be injective. By Proposition 2.3 there exists, for each x0 ∈ Xi,t and ε > 0, a j0 > i with the
following property: for every j � j0 and every l ∈ {1, . . . , kj } we have

ep−1(φt,l
i,j

)(
Bδ(x0)

) = Xj,l,

where δ is some positive number such that

d
(
f (x), f (y)

)
< ε whenever d(x, y) < 2δ.

As pointed out in Section 2, the map φ
t,l
i,j may be viewed as a diagonal map from Ai,t into the cut-

down of Aj,l by the projection φ
t,l
i,j (1); any unitary u in this corner of Aj,l gives rise to a unitary ũ

in Aj,l by setting ũ = u⊕ (1Aj,l
−φ

t,l
i,j (1). Combining this observation with Corollary 3.3 we see

that there exists, for each l ∈ {1, . . . , kj }, a unitary ul ∈ Aj,l such that

∥∥∥∥ulφ
t,l
i,j (f )u∗

l −
(

f (x0) 0

0 bl

)∥∥∥∥ < ε.

Thus, A has property P , as desired. �
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4. Stable rank

Theorem 4.1. Let A = lim−→(Ai,φi) be a simple unital diagonal AH algebra. Then, A has stable
rank one.

Before proving Theorem 4.1, we situate it relative to other results on the stable rank of general
approximately homogeneous (AH) algebras. Recall that an AH algebra is an inductive limit C∗-
algebra A = limi→∞(Ai,φi), where

Ai =
ni⊕

l=1

pi,l

(
C(Xi,l) ⊗ K

)
pi,l (6)

for compact connected Hausdorff spaces Xi,l , projections pi,l ∈ C(Xi,l) ⊗ K, and natural num-
bers ni . If A is separable, then one may assume that the Xi,l are finite CW-complexes [1,11]. The
inductive system (Ai,φi) is referred to as a decomposition for A. All AH algebras in this paper
are assumed to be separable.

If an AH algebra A admits a decomposition as in (6) for which

max
1�l�ni

{
dim(Xi,1)

rank(pi,1)
, . . . ,

dim(Xi,ni
)

rank(pi,ni
)

}
i→∞−→ 0,

then we say that A has slow dimension growth. Theorem 1 of [2] states that every simple unital
AH algebra with slow dimension growth has stable rank one. Villadsen in [17] constructed simple
diagonal AH algebras which do not have slow dimension growth, but which do have stable rank
one; the converse of [2, Theorem 1] does not hold. There are in fact a wealth of simple diagonal
AH algebras without slow dimension growth which exhibit all sorts of interesting behaviour (cf.
[14–16]), whence Theorem 4.1 is widely applicable.

Simple AH algebras may have stable rank strictly greater than one, and there is reason to
believe that Theorem 4.1 is quite close to being best possible. One might be able to generalise
our result to the setting of AH algebras where the projections φi,j (pi,l) appearing in (6) can be
decomposed into a direct sum of a trivial projection θj and a second projection qj such that
τ(qj ) → 0 as j → ∞ for any trace τ . Otherwise, one finds oneself in a situation very similar to
the construction of [18], where the stable rank is always strictly greater than one.

Let us now prepare for the proof of Theorem 4.1.

Lemma 4.2. Let a ∈ Mm(C(X)) be block diagonal, i.e.,

a =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0

0 a1 . . . 0
...

. . .
...

0 0 . . . an

⎞
⎟⎟⎟⎟⎠ ,

where ai ∈ Mki
(C(X)) for natural numbers k1, . . . , kn. If the size of the matrix 0 in the upper left-

hand corner of a is strictly greater than max1�i�n ki , then a can be approximated arbitrarily
closely by invertible elements in Mm(C(X)).
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Proof. Let ε > 0 be given, and let k denote the size of the matrix 0 in the upper left-hand corner
of a. Since k > ki , i ∈ {1, . . . , n}, there is a permutation matrix U such that

Ua =

⎛
⎜⎜⎜⎝

0 ∗ . . . ∗
0 0 . . . ∗
...

. . .
...

0 0 . . . 0

⎞
⎟⎟⎟⎠

is nilpotent. As was proved in [13], every nilpotent element in a unital C∗-algebra can be ap-
proximated arbitrarily closely by invertible elements. We may thus find an invertible element
b ∈ Mm(C(X)) such that ‖Ua − b‖ < ε, and

∥∥a − U−1b
∥∥ = ∥∥U−1Ua − U−1b

∥∥ �
∥∥U−1

∥∥ · ‖Ua − b‖ < ε.

The lemma now follows from the fact that U−1b is invertible. �
It easy to prove that a ∈ Mn(C(X)) is invertible if and only if a(x) is invertible for each x ∈ X.

The proof of the next lemma is also straightforward.

Lemma 4.3. Let p,q be orthogonal projections in a C∗-algebra A, and let ε > 0 be given.
If elements a and b in A can be approximated to within ε by invertible elements in pAp and
qAq , respectively, then a + b can be approximated to within ε by an invertible element in
(p + q)A(p + q).

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Since every element in A can be approximated arbitrarily closely by
elements in

⋃∞
i=1 Ai , it will suffice to prove for any ε > 0 and any a ∈ Ai , there is an invertible

element in A whose distance to a is less than ε. (Note that we are using the injectivity of the φi

to identify Ai with its image in A.)
By Lemma 4.3, we may assume that Ai = Mni

(C(Xi)). We also assume that a is not invert-
ible. By the comment preceding Lemma 4.3, there is a point x0 ∈ Xi such that det(a(x0)) = 0.
There are permutation matrices u,v ∈ Mni

and a matrix c ∈ Mni−1 such that

ua(x0)v =
(

0 0

0 c

)
.

Let b denote the element uav. Following the lines of the proof of Lemma 4.2, it will suffice to
prove that b can be approximated to within ε by an invertible element of A.

For each j > i, φi,j (b) is a tuple of kj elements. If each coordinate of φi,j (b) can be ap-
proximated to within ε by an invertible element in the corner of A generated by the unit of Aj,l ,
then φi,j (b) can be approximated to within ε by an invertible element of A. We may therefore
assume that Aj = Mnj

(C(Yj ), and concern ourselves with proving that φi,j (b) is approximated
to within ε by an invertible element in A.



G.A. Elliott et al. / Journal of Functional Analysis 256 (2009) 307–322 321
By Theorem 3.4, there exist an integer j > i, a unitary w ∈ Aj and an element b′ such that

∥∥∥∥wφij (b)w∗ −
(

b(x0) 0

0 b′

)∥∥∥∥ < ε/2.

We have

(
b(x0) 0

0 b′

)
=

(
0 0

0 b′′

)
,

where b′′ = diag(c, b′). Put d = wφi,j (b)w∗, and note that it will suffice to prove that φj,m(d) is
approximated to within ε/2 by an invertible element in Am for some m > j .

Since A is simple, there is an integer m > j large enough so that, for each t ∈ {1, . . . , km},
either the number of the eigenvalue maps of φ

1,t
j,m counted with multiplicity is strictly larger

than the size of the matrix b′′, or the image of φ
1,t
j,m is finite-dimensional. In the latter case,

φ
1,t
j,m(d) is approximated to within ε by an invertible element in the image of φ

1,t
j,m since finite-

dimensional C∗-algebras have stable rank one, so we may assume that the number of eigenvalue
maps of φ

1,t
j,m, counted with multiplicity, is strictly larger than the size of the matrix b′′. Then,

φ
1,t
j,m(d) is unitarily equivalent to

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0

0 b1 . . . 0
...

...
. . .

...

0 0 . . . bl

⎞
⎟⎟⎟⎟⎠

inside Am,t , where bk is the composition of b′′ and the kth eigenvalue map of φ
1,t
j,m, and the size

of the matrix 0 at the upper left-hand corner of the above matrix is strictly bigger than the size of
the matrix bk for every k. By Lemma 4.2, the matrix above can be approximated to within ε/2
by an invertible in Am,t , as required. �
Corollary 4.4. Let A be a simple unital diagonal AH algebra. If A has real rank zero and weakly
unperforated K0-group, then A is tracially AF.

Proof. By Theorem 4.1, A has stable rank one. The corollary then follows from a result of Lin
[12, Theorem 2.1]. �

Corollary 4.4 applies, for instance, to simple unital diagonal AH algebras for which the
spaces Xi in some diagonal decomposition for A are all contractible. This contractibility hy-
pothesis may seem strong, but it does not substantially restrict the complexity of A; if one wants
to classify all such A via K-theory and traces, then the additional assumption of very slow di-
mension growth and the full force of [8] and [9] are required; the collection of all such cannot be
classified by topological K-theory and traces alone [15].
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