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Abstract Let A be an approximately subhomogeneous (ASH) C∗-algebra
with slow dimension growth. We prove that if A is unital and simple, then the
Cuntz semigroup of A agrees with that of its tensor product with the Jiang-Su
algebra Z . In tandem with a result of W. Winter, this yields the equivalence of
Z -stability and slow dimension growth for unital simple ASH algebras. This
equivalence has several consequences, including the following classification
theorem: unital ASH algebras which are simple, have slow dimension growth,
and in which projections separate traces are determined up to isomorphism by
their graded ordered K-theory, and none of the latter three conditions can be
relaxed in general.

1 Introduction and statement of main results

A C∗-algebra is subhomogeneous if there is a uniform finite bound on the
dimensions of its irreducible representations, and approximately subhomo-
geneous (ASH) if it is the limit of a direct system of subhomogeneous C∗-
algebras. ASH algebras form a broad class with many naturally occurring
examples:

• AF algebras, which include the simple stably finite C∗-algebras of graphs
[22].

• C∗-algebras of minimal dynamical systems on finite-dimensional spaces
which are either smooth or uniquely ergodic [17, 29, 30].
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• Higher-dimensional noncommutative tori [21].
• The homoclinic and heteroclinic C∗-algebras of 1-solenoids [23].

In fact, there are no simple separable nuclear stably finite C∗-algebras which
are known not to be ASH.

This article characterizes the unital separable ASH algebras that are de-
termined up to isomorphism by their graded ordered K-groups. Of necessity,
one considers only algebras in which projections separate traces, as the tracial
state space of the algebra will otherwise be part of any complete invariant.
Elliott conjectured c. 1990 that modulo this necessary assumption, all uni-
tal simple separable ASH algebras would be determined by their K-groups.
We now know that this conjecture, while true in considerable generality, is
too much to hope for. The author showed in [24] and [25] that an addi-
tional condition—slow dimension growth—is required in general, a condition
present in each of the examples listed above. Finally, one needs simplicity
in order to avoid phenomena detectable only using K-theory with (mod p)-
coefficients (see [7] and [8]). We conclude here that these three necessary
conditions are also sufficient.

Our route passes through the Cuntz semigroup, an ordered Abelian semi-
group consisting of equivalence classes of countably generated Hilbert mod-
ules over a C∗-algebra. For a C∗-algebra A, this semigroup is denoted by
W(A). Winter has proved the following remarkable theorem.

Theorem 1.1 (Winter [33]) Let A be a unital simple separable C∗-algebra
with locally finite nuclear dimension. If W(A) ∼= W(A⊗ Z), then A ∼= A⊗ Z .

Here Z denotes the Jiang-Su algebra [14]. Tensorial absorption of Z —known
as Z -stability—is crucial for lifting K-theory isomorphisms to C∗-algebra
isomorphisms (see [10] for a discussion of this connection). We will not de-
fine locally finite nuclear dimension here; it is enough for us that separable
ASH algebras have it [18, 31, 32]. We access Theorem 1.1 with our main
result.

Theorem 1.2 Let A be a unital simple separable ASH algebra with slow
dimension growth. It follows that W(A) ∼= W(A ⊗ Z).

The property of slow dimension growth appeared first in the early 1990s in
connection with so-called AH algebras (a subclass of ASH algebras which
model higher-dimensional noncommutative tori, for instance). It was first
seen as a natural condition ensuring weak unperforation of the ordered K0-
group and the density of invertible elements in simple AH algebras [1, 5], and
later proved to be critical for obtaining classification-by-K-theory results [6,
9, 11, 12]. Philosophically, it excludes the possibility of unstable homotopy
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phenomena. As a corollary of Theorems 1.1 and 1.2 we obtain the following
result.

Corollary 1.3 Let A be a unital simple separable ASH algebra. It follows
that A has slow dimension growth if and only if A ∼= A ⊗ Z .

Z -stability is a necessary and in considerable generality sufficient con-
dition for the classification of nuclear simple separable C∗-algebras via
K-theory and traces, while slow dimension growth has been conjectured to
play a similar role for the subclass of simple ASH algebras. Corollary 1.3 con-
firms this conjecture after a fashion: their roles are at least identical. (Winter
showed that A as in Corollary 1.3 satisfies A ∼= A ⊗ Z whenever A satis-
fies the formally stronger condition of bounded dimension growth [34]; the
question of whether the reverse implication holds is open.) Corollary 1.3 has
several further consequences for a unital simple separable ASH algebra A

with slow dimension growth; we give a brief run-down here, with references
to fuller details.

• A has stable rank one, answering an open question of Phillips from [20]. In
fact, all of the conclusions of [20, Theorem 0.1] hold for A; in particular,
the extra conditions of items (4) and (5) in that Theorem are not necessary.

• The Blackadar-Handelman conjectures hold for A, i.e., the lower semi-
continuous dimension functions on A are weakly dense in the space of all
dimension functions, and the latter space is a Choquet simplex. (See Sect. 6
of [3].)

• The countably generated Hilbert modules over A are classified up to iso-
morphism by the K0-group and tracial data in a manner analogous to the
classification of W∗-modules over a II1 factor. (See [4, Theorem 3.3].)

• The Cuntz semigroup of A is recovered functorially from its K0-group and
tracial state space. (See [4, Theorem 2.5] and the comment thereafter.)

Finally, we have the classification result.

Corollary 1.4 Let C denote the class of all unital simple separable ASH al-
gebras with slow dimension growth in which projections separate traces. If
A,B ∈ C and

φ : K∗(A) → K∗(B)

is a graded order isomorphism, then there is a ∗-isomorphism � : A → B

which induces φ.
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As mentioned above, the conditions of simplicity, slow dimension growth,
and the separation of traces by projections are necessary in general.1 This re-
sult is satisfying not only for its completeness, but also because it represents
the first time that the structure of the Cuntz semigroup has played a criti-
cal role in a positive classification theorem for simple C∗-algebras. Its proof
combines Corollary 1.3 with results of Lin, Niu, and Winter [16, 32, 35].

The sequel is given over to the proof of Theorem 1.2. By appealing to some
known results concerning the structure of the Cuntz semigroup, the crux can
be reduced to the following natural question:

Given a unital simple ASH algebra A with slow dimension growth, what
are the possible ranks of positive operators in A ⊗ K?

Here by the rank of a positive operator a ∈ A ⊗ K we mean the function
on the tracial state space of A given by

τ �→ dτ (a) = lim
n→∞ τ(a1/n).

We prove that every strictly positive lower semicontinuous affine function
occurs in this manner by giving an approximate answer to the same question
for recursive subhomogeneous C∗-algebras, the building blocks of ASH al-
gebras. This, in turn, requires proving that the homotopy groups of certain
rank-constrained sets of positive operators in C(X)⊗ K vanish in low dimen-
sions (Sect. 2). The proofs of Theorem 1.2 and Corollaries 1.3 and 1.4 are
contained in Sect. 3.

2 Rank-constrained homotopies

The main result of this Section is Proposition 2.9. It allows one to extend
a positive element in a matrix algebra over a closed subset Y of a compact
metric space X to all of X subject to a pair of rank bounds given by a lower
and an upper semicontinuous Z-valued function on X.

Lemma 2.1 Let X be a compact metric space, and let a ∈ Mn(C(X)) be
positive. Let g : X → Z

+ be upper semicontinuous, and suppose that

rank(a(x)) ≥ g(x), ∀x ∈ X.

1It is conjectured that the separation of traces by projections can be dropped from the hy-
potheses of Corollary 1.4 if one augments the invariant K∗ by the simplex of tracial states.
Corollary 1.3 and the results of [35] make some progress on this conjecture by showing that it
need only be addressed for algebras which absorb a fixed UHF algebra of infinite type tensori-
ally. This problem should in turn be accessible to tracial approximation techniques in the spirit
of Lin (see [15], for instance).
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It follows that for some η > 0, for each x ∈ X, the spectral projection
χ(η,∞](a(x)) has rank at least g(x).

Proof For each x ∈ X, let ηx ≥ 0 be half of the smallest nonzero eigenvalue
of a(x), if it exists, and zero otherwise. The map x �→ rank(a(x)) is lower
semicontinuous, so there is an open neighborhood Vx of x with the property
that

rank[χ(ηx,∞](a(y))] ≥ g(x), ∀y ∈ Vx.

Since g is upper semicontinuous and Z-valued, there is an open neighborhood
Wx of x such that g(y) ≤ g(x) for each y ∈ Wx . Set Ux = Vx ∩ Wx . Now

rank[χ(ηx,∞](a(y))] ≥ g(x) ≥ g(y), ∀y ∈ Vx. (1)

Since {Vx | x ∈ X} is an open cover of X, it admits a finite subcover Vx1 ∪· · ·∪
Vxn . Let η be the minimum of the nonzero ηxi

s. Now rank[χ(η,∞](a(x))] ≥
g(x) on each Vxi

such that ηxi
> 0 by (1), and the same inequality holds on

the remaining Vxi
since g is identically zero on these sets. �

From here on we use dim(X) to denote the covering dimension of a
compact Hausdorff space X. We also recall that a projection-valued map
φ : X → Mn is said to be lower semicontinuous (resp. upper semicontinuous)
if the map x �→ 〈φ(x)ξ, ξ〉 is lower semicontinuous (resp. upper semicontin-
uous) for every ξ ∈ C

n.

Lemma 2.2 Let X be a compact Hausdorff space for which dim(X) < ∞,
and let a ∈ Mn(C(X)) be positive. Suppose that

rank(a(x)) ≥ k, ∀x ∈ X.

It follows that there is a homotopy h : [0,1] → Mn(C(X))+ with the following
properties:

(i) h(0) = a;
(ii) rank(h(t)(x)) = rank(h(0)(x)) = rank(a(x)), ∀x ∈ X;

(iii) there is a trivial projection p ∈ Mn(C(X)) of rank at least k − dim(X)

which is a direct summand of h(1).

Proof Let a be given. We may assume that ‖a‖ ≤ 1. Use Lemma 2.1 to
find η > 0 such that the rank of χ(η,∞](a(x)) is at least k for each x ∈ X.
For each s ∈ (0,1] define a continuous map fs : [0,1] → [0,1] by insist-
ing that fs is identically equal to one on [s,1], that fs(0) = 0, and that fs

is linear elsewhere. Let s = 1 − t (1 − η/2), and define h(t)(x) = fs(a(x)).
This is clearly a homotopy. When t = 0, s = 1, so f1(a(x)) = a(x) and so
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h(0) = a as required by (i). Since the support of fs is (0,1], we have that
rank(fs(a(x))) = rank(a(x)) for each x ∈ X and s ∈ (0,1], establishing (ii).

To prove (iii), first note that x �→ χ(η,∞](a(x)) is a lower semicontin-
uous projection-valued map having rank at least k at each x ∈ X. Since
χ(η,∞](a(x)) ≤ fη/2(a(x)) for each x, we see by functional calculus that
χ(η,∞](a(x)) is a direct summand of h(1)(x) for each x ∈ X. It follows
from Proposition 3.2 of [5] that there is a continuous projection-valued map
q : X → Mn which is pointwise a direct summand of χ(η,∞](a) and satisfies
rank(q) ≥ k − �(dim(X) − 1)/2�. It is well known that such a q admits a
direct summand p which corresponds to a trivial vector bundle and satisfies
rank(p) ≥ rank(q) − �(dim(X) − 1)/2�. Note that p(x) is a direct summand
of q(x), that q(x) is a direct summand of χ(η,∞](a(x)), and, as noted above,
that χ(η,∞](a(x)) is a direct summand h(1)(x); it follows that p is a direct
summand of h(1) as required. The preceding rank inequality between p and
q entails that rank(p) ≥ k − dim(X). �

Definition 2.3 (Definition 3.4 (iii), [26]) Let X be a compact Hausdorff space
and let a ∈ Mn(C(X)) be positive. Let n1 < n2 < · · · < nk be the rank values
taken by a on X, and set

Ei = {x ∈ X | rank(a(x)) = ni}.
We say that a is well supported if there are constant rank projections pi ∈
Mn(C(Ei)) with the following properties:

• pi(x) ≤ pj (x) whenever i ≤ j and x ∈ Ei ∩ Ej ;
• pi(x) = limn→∞(a(x))1/n for each x ∈ Ei .

In the next lemma and elsewhere, we use “�” to denote the Cuntz relation
on the positive elements of a C∗-algebra (see [10], for instance).

Lemma 2.4 Let X be a compact Hausdorff space, and let a ∈ Mn(C(X)) be
positive. Suppose that

l ≤ rank(a(x)) ≤ k, ∀x ∈ X

for l, k ∈ N satisfying k ≤ n, l ≤ dim(X) and 4dim(X) ≤ k − l. It follows that
there is a homotopy h : [0,1] → Mn(C(X))+ with the following properties:

(i) h(0) = a;
(ii) l ≤ rank(h(t)(x)) ≤ k, ∀x ∈ X, t ∈ [0,1];

(iii) rank(h(1)(x)) ≥ l + dim(X), ∀x ∈ X.

Proof Use Lemma 2.1 to find η > 0 such that χ(η,∞](a(x)) has rank at least
l at each x ∈ X. By [27, Theorem 2.3], there is a well supported positive
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element b of Mn(C(X)) such that b ≤ a and ‖b−a‖ < η. Set at = (1− t)a +
tb. Since at ≤ a, we have

rank(at (x)) ≤ rank(a(x)) ≤ k, ∀x ∈ X.

On the other hand, we have ‖at − a‖ < η, whence (a − η)+ � at for each t .
Now by our choice of η, we have

l ≤ rank((a − η)+(x)) ≤ rank(at (x)), ∀x ∈ X.

We therefore have the bounds required by part (ii) of the conclusion of the
Lemma for the homotopy at . It follows that we may simply assume that the
element a of the Lemma is well supported from the outset. Let n1 < n2 <

· · · < nk , E1,E2, . . . ,Ek , and p1,p2, . . . , pk be as in Definition 2.3. To com-
plete the proof of the Lemma, we treat two cases.

Case I. Here we assume that S = {x ∈ X | rank(a(x)) > l + 2dim(X)} is
empty. The upper semicontinuous projection-valued map φ : X → Mn given
by

φ(x) =
k∨

i=1

pi(x)

therefore has rank less than or equal to l + 2dim(X) everywhere, and it fol-
lows from [2, Theorem 3.1] that there is a projection p ∈ Mn(C(X)) which
is orthogonal to the image of φ and satisfies rank(p(x)) ≥ dim(X). It is now
easy to check that the homotopy h(t) = a + tp satisfies (i)–(iii) in the conclu-
sion of the Lemma.

Case II. Assume that S = {x ∈ X | rank(a(x)) > l + 2dim(X)} �= ∅. Let r be
the smallest index for which nr > l + 2dim(X), and set Y = ⋃

i≥r Ei . The
lower semicontinuous projection-valued map ψ : X → Mn given by

ψ(x) =
{∧

{i | i≥r,x∈Ei} pi(x), x ∈ Y

1Mn, x ∈ X\Y
therefore has rank strictly greater than l+2dim(X) everywhere, and it follows
from [5, Proposition 3.2] that there is a projection q ∈ Mn(C(X)) satisfying
rank(q) = l + dim(X) and q(x) ≤ pi(x) whenever x ∈ Ei and i ≥ r . Set
h(t) = a + tq .

If x ∈ Ei and i ≥ r , then

h(t)(x) = a(x) + tq(x) ≤ 2a(x) � a(x),

and so rank(h(t)(x)) ≤ rank(a(x)) ≤ k. If i < r , then

rank(h(t)(x)) ≤ rank(a(x)) + rank(q(x)) ≤ 2l + 3dim(X)

≤ l + 4dim(X) = k.
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If t = 1, then

h(t)(x) = a(x) + q(x) ≥ q(x),

whence rank(h(t)(x)) ≥ l + dim(X). This completes the proof. �

Proposition 2.5 Let X be a compact Hausdorff space for which dim(X) <

∞, and let k, l, n ∈ N satisfy k ≤ n and 4dim(X) ≤ k − l. It follows that the
set

S = {a ∈ Mn(C(X))+ | l ≤ rank(a(x)) ≤ k, ∀x ∈ X}
is path connected.

Proof Let a, b ∈ S. If l ≤ dim(X), then by Lemma 2.4 we may assume that

rank(a(x)) ≥ l + dim(X)

for each x ∈ X. If l > dim(X), then use Lemma 2.2 to see that a is homotopic
inside S to a1 = a2 ⊕ p, where p is a trivial projection of rank l − dim(X)

and a1 is positive. Now use Lemma 2.4 to find a homotopy

h(t) ∈ (1 − p)(Mn(C(X))(1 − p) ∼= Mn−rank(p)(C(X))

between a2 and a3 := h(1). (Note that 1 − p corresponds to a trivial vec-
tor bundle because it has the correct K0-class and satisfies rank(1 − p) ≥
dim(X)/2.) It follows that g(t) = h(t) ⊕ p is a homotopy in S, and that
a4 := g(1) satisfies

l + dim(X) ≤ rank(a4(x)) ≤ k, ∀x ∈ X.

Thus, we may assume that a and b satisfy

l + dim(X) ≤ rank(a(x)), rank(b(x)) ≤ k, ∀x ∈ X.

Use Lemma 2.2 again to see that a is homotopic inside S to a5 = a6 ⊕ q ,
where a5 is positive and q is a trivial projection of rank l. The upshot of these
observations is that we may assume from the outset that

a = ã ⊕ q and b = b̃ ⊕ q ′,

where q and q ′ are trivial projections of rank l. From stable rank consider-
ations there is a path u(t) of unitaries in Mn such that u(0)qu(0)∗ = q and
u(1)qu(1)∗ = q ′. We may therefore assume further that q = q ′. Define a ho-
motopy t �→ at in

(1 − q)(Mn(C(X))(1 − q) ∼= Mn−rank(q)(C(X))
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by the following formula:

at =
{

(1 − 2t)ã, t ∈ [0,1/2],
(2t − 1)b̃, t ∈ (0,1/2].

It is clear that rank(at (x)) ≤ k − l, whence t �→ at ⊕ q is a path in S connect-
ing a and b, as desired. �

Remark 2.6 A continuous map f : Sk → Mn(C(X)) is naturally identified
with an element of Mn(C(X ×Sk)). It follows that if k, l as in Proposition 2.5
satisfy k − l ≥ 4dim(X)+ 4r , then any two such maps are homotopic in S, so
that πr(S) vanishes.

Lemma 2.7 Let X be a compact metric space, and let Y ⊆ X be closed.
Let f,g : X → Z

+ be bounded functions which are lower semicontinuous
and upper semicontinuous, respectively. Assume that f (x) ≥ g(x) for each
x ∈ X, and let a ∈ Mn(C(Y )) be positive and satisfy

g(y) ≤ rank(a(y)) ≤ f (y), ∀y ∈ Y.

It follows that there are an open set U ⊇ Y and a positive element b ∈
Mn(Cb(U)) such that b|Y = a and

g(z) ≤ rank(b(z)) ≤ f (z), ∀z ∈ U.

Proof By Tietze’s Extension Theorem we can find an open set V ⊇ Y and a
positive element ã ∈ Mn(Cb(V )) such that ã|Y = a. The map z �→ rank(ã(z))

is lower semicontinuous on V , and so for each y ∈ Y there is an open neigh-
borhood Wy of y in V with the property that

rank(ã(z)) ≥ rank(ã(y)), ∀z ∈ Wy.

The function g, on the other hand, is upper semicontinuous, and so for each
y ∈ Y there is an open neighborhood Uy of y in V with the property that

g(z) ≤ g(y), ∀z ∈ Uy.

Setting Ey = Wy ∩ Uy we have an open cover {Ey}y∈Y of Y which has the
property that

g(z) ≤ g(y) ≤ rank(ã(y)) ≤ rank(ã(z)), ∀z ∈
⋃

y∈Y

Ey. (2)

In other words, setting U = ⋃
y∈Y Ey , we have an extension ã of a to U

which satisfies the lower bound required by the conclusion of the Lemma.
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Let n1 < n2 < · · · < nk be the values taken by f . Set

Ei = {x ∈ X | f (x) ≤ ni}, 1 ≤ i ≤ k,

and note that each Ei is closed. We set E0 = ∅ as a notational convenience.
Let us take ã and U as above; by shrinking U slightly, we may assume that
ã is defined on U . Also, combining (2) with Lemma 2.1, we can find η > 0
such that

rank((ã − η′)+(x)) ≥ g(x), ∀x ∈ U,0 < η′ ≤ η. (3)

The uniform continuity of ã on U implies that for each n ∈ N there is
δn > 0 such that for each x ∈ U and y ∈ Y satisfying dist(x, y) < δn we
have ‖ã(x) − ã(y)‖ < η/2n. Let i1 < i2 < · · · < it be the indices for which
Y ∩ (Eil\Eil−1) �= ∅. Set δ

(1)
n = δn and

U1
n = {

x ∈ X | dist(x,Y ∩ (Ei1\Ei1−1)) < δ(1)
n

}
.

Suppose that we have found, for some r < t , open sets U1
n (as above),

U2
n , . . . ,Ur

n and positive tolerances δ
(1)
n , . . . , δ

(r)
n < δ with the following prop-

erties:

• for each s ≤ r ,

Us
n =

{
x ∈ X

∣∣∣ dist

(
x, (Y ∩ (Eis\Eis−1))

∖(⋃

l<s

Ul
n

))
< δ(s)

n

}

• Us
n ∩ Eis−1 = ∅.

Since
⋃

l<r+1 Ul
n contains Y ∩ (Eir \Eir−1) and is open, we see that

(Y ∩ (Eir+1\Eir+1−1))
∖( ⋃

l<r+1

Ul
n

)

is a closed subset of Eir+1\Eir+1−1, and there is therefore 0 < δ
(r+1)
n < δn

such that the bullet points above hold with s = r + 1, too. Continuing in this
manner we arrive at open sets U1

n , . . . ,U t
n, and we set Un = ⋃

l≤t U
l
n ⊇ Y .

Let us fix U1, and note that by shrinking the tolerances δ
(l)
n used to construct

Un if necessary, we may assume that Un+1 ⊆ Un for each n ∈ N. From our
bullet points we extract the following fact:

(i) for each 1 < i ≤ k, for each x ∈ Un ∩ (Ei\Ei−1), there are j ≤ i and
y ∈ Y ∩ (Ej\Ej−1) such that ‖ã(x) − ã(y)‖ ≤ η/2n.

Fix a continuous function f : U1 → [0,1] with the following properties:



K-theoretic rigidity and slow dimension growth 235

(ii) f (y) = 0, ∀y ∈ Y ;
(iii) η > f (x) ≥ η/2n−1, ∀x ∈ Un\Un+1.

Now define b(x) = (ã(x) − f (x))+ for each x ∈ U1, and note that a : U1 →
Mn is continuous since f is.

If y ∈ Y then b(y) = ã(y) = a(y) by (ii), and the desired rank inequal-
ity holds for b by assumption. If x ∈ U1\Y , then (iii) and (3) imply that
rank(b(x)) ≥ g(x). It remains to establish our upper bound for such x. If
x ∈ (Un\Y) ∩ (Ei\Ei−1), then by (i) there are j ≤ i and y ∈ Y ∩ (Ej\Ej−1)

such that ‖ã(x) − ã(y)‖ < η/2n. Combining this with (iii) yields

rank(b(x)) = rank((ã(x) − f (x))+) ≤ rank(ã(y)) = rank(a(y)) = nj

≤ ni = f (x).

Replacing U with U1 completes the proof. �

Proposition 2.8 Let X be a compact metric space, and let Y ⊆ X be closed.
Let k, l ∈ N satisfy k − l ≥ 4dim(X). Suppose that a ∈ Mn(C(Y ))+ satisfies

l ≤ rank(a(y)) ≤ k, ∀y ∈ Y.

It follows that there is a positive element b ∈ Mn(C(X)) such that b|Y = a

and

l ≤ rank(b(x)) ≤ k, ∀x ∈ X.

Proof This is a more or less standard argument. Using Lemma 2.7 we may
assume that a is defined on the closure U of an open superset U of Y , and
that a still satisfies the required rank bounds on U . Fix an open set V in X

such that Y ⊆ V ⊆ V ⊆ U and a continuous map f : X → [0,1] such that
f |V = 0 and f |Uc = 1. Fix a positive element d of Mn(C(V c)) such that

l ≤ rank(d(x)) ≤ k, ∀x ∈ V c.

Apply Lemma 2.5 to find a path h(t) between a|V c and d satisfying the req-
uisite rank bounds. Finally, define b(x) = h(f (x)). �

Proposition 2.9 Let X be a compact metric space for which dim(X) < ∞,
and let Y ⊆ X be closed. Let f,g : X → Z

+ be bounded functions which are
lower semicontinuous and upper semicontinuous, respectively, and suppose
that f (x) − g(x) ≥ 4dim(X) for each x ∈ X. Let a ∈ Mn(C(Y ))+ satisfy

g(y) ≤ rank(a(y)) ≤ f (y), ∀y ∈ Y.

It follows that there is b ∈ Mn(C(X))+ such that b|Y = a and

g(x) ≤ rank(b(x)) ≤ f (x), ∀x ∈ X. (4)
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Proof Let n1 < n2 < · · · < nk be the values attained by f , and set Ei =
{x ∈ X | f (x) ≤ ni}. The Ei ’s then are closed. It suffices to consider the
case where f is constant on X\Y , for if this case of the Proposition holds,
then we may apply it successively to extend a from Y to Y ∪E1, from Y ∪E1
to Y ∪ E2, and so on.

Let m1 > m2 > · · · > mk be the values taken by g, and let r be the value
attained by f on X\Y . Set

Fj = {x ∈ X | g(x) ≥ mj }.
Note that each Fj is closed, and that Fj ⊇ Fj+1. We will construct b by mak-
ing successive extensions to Y ∪ F1, Y ∪ F2, . . . , Y ∪ Fk = X. First consider
Y as a closed subset of Y ∪ F1. Using Lemma 2.7, we can extend a to an
open subset U of Y ∪ F1 containing Y in such a manner that the extension
satisfies (4) for each x ∈ U ; by shrinking U slightly, we can assume that a

is defined and satisfies the said bounds on U . Let V be an open subset of
Y ∪ F1 such that Y ⊆ V and V ⊆ U . Now extend a|V c∩U to all of V c using
Proposition 2.8, so that the extension satisfies (4), too. This completes the ex-
tension of a to Y ∪ F1. The remaining extensions are carried out in the same
manner. �

3 Proof of Theorem 1.2

Let us recall some of the terminology and results from [19]. A C∗-algebra
R is a recursive subhomogeneous (RSH) algebra if it can be written as an
iterated pullback of the following form:

R = [· · · [[C0 ⊕
C

(0)
1

C1
] ⊕

C
(0)
2

C2
] · · ·] ⊕

C
(0)
l

Cl, (5)

with Ck = Mn(k)(C(Xk)) for compact Hausdorff spaces Xk and integers n(k),

with C
(0)
k = Mn(k)(C(X

(0)
k )) for compact subsets X

(0)
k ⊆ X (possibly empty),

and where the maps Ck → C
(0)
k are always the restriction maps. We refer

to the expression in (5) as a decomposition for R. Decompositions for RSH
algebras are not unique.

Associated with the decomposition (5) are:

(i) its length l;
(ii) its kth stage algebra

Rk = [· · · [[C0 ⊕
C

(0)
1

C1
] ⊕

C
(0)
2

C2
] · · ·] ⊕

C
(0)
k

Ck;

(iii) its base spaces X0,X1, . . . ,Xl and total space X := ∐l
k=0 Xk ;
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(iv) its matrix sizes n(0), n(1), . . . , n(l) and matrix size function m : X → N

given by m(x) = n(k) when x ∈ Xk (this is called the matrix size of R

at x);
(v) its topological dimension dim(X) and topological dimension function

d : X → N ∪ {0} given by d(x) = dim(Xk) when x ∈ Xk ;
(vi) its standard representation σR : R → ⊕l

k=0 Mn(k)(C(Xk)) defined to be
the obvious inclusion;

(vii) the evaluation maps evx : R → Mn(k) for x ∈ Xk , defined to be the com-
position of evaluation at x on

⊕l
k=0 Mn(k)(C(Xk)) and σR .

Remark 3.1 If R is separable, then the Xk can be taken to be metrizable. It is
clear from the construction of Rk+1 as a pullback of Rk and Ck+1 that there
is a canonical surjective ∗-homomorphism λk : Rk+1 → Rk . By composing
several such, one has also a canonical surjective ∗-homomorphism from Rj

to Rk for any j > k. Abusing notation slightly, we denote these maps by λk as
well. The C∗-algebra Mm(R) ∼= R ⊗Mm(C) is an RSH algebra in a canonical
way.

Each unital separable ASH algebra is the limit of an inductive system of
RSH algebras by the main result of [18], whence the following definition of
slow dimension growth is sensible.

Definition 3.2 Let (Ai,φi)i∈N be a direct system of RSH algebras with
each φi : Ai → Ai+1 a unital ∗-homomorphism. Let li be the length of
Ai , ni(0), ni(1), . . . , ni(li) its matrix sizes, and Xi,0,Xi,1, . . . ,Xi,li its base
spaces. We say that the system (Ai,φi) has slow dimension growth if

lim sup
i

(
max

0≤j≤li

dim(Xi,j )

ni(j)

)
= 0.

If A is a unital ASH algebra, then we say it has slow dimension growth if it
can be written as the limit of a slow dimension growth system as above.

This definition is equivalent to that of Phillips [20, Definition 1.1] for simple
algebras, as shown by the proof of [27, Theorem 5.3]. It is, however, suitable
only for simple algebras.

For an inductive system as above with limit algebra A, we let φi∞ : Ai →
A denote the canonical ∗-homomorphism. Before proving the main result of
this section, we need one more Lemma.

Lemma 3.3 Let X be a topological space and let α : X → R be bounded and
continuous. Given n ∈ N, define maps αn,αn : X → R as follows:



238 A. Toms

• αn is the largest lower semicontinuous function on X which takes values in
{k/n | k ∈ Z} and satisfies αn ≤ α;

• αn is the smallest upper semicontinuous function on X which takes values
in {k/n | k ∈ Z} and satisfies αn ≥ α.

It follows that if f : X → R is any function taking values in {k/n | k ∈ Z}
and satisfying f ≥ α,then f ≥ (α − δ)n for each δ > 0; and clearly if f is
instead lower semicontinuous and satisfies f ≤ α, then f ≤ αn. Finally, we
have |f (x) − αn(x)|, |f (x) − αn| < 2/n.

Proof Families of lower semicontinuous functions are closed under taking
pointwise suprema. Since α is bounded, the set of lower semicontinuous func-
tions f on X taking values in {k/n | k ∈ Z} and satisfying f ≤ α is not empty,
and so αn exists. A similar argument using infima of upper semicontinuous
functions establishes the existence of αn.

Define hα : X → {k/n | k ∈ Z} as follows: if k/n ≤ α(x) < (k + 1)/n,
then h(x) = (k + 1)/n. It is straightforward to check that hα is upper semi-
continuous and hα > α(x) by definition. If follows that hα ≥ αn. Let f be
any function on X taking values in {k/n | k ∈ Z} and satisfying f ≥ α. If
k/n < α(x) < (k + 1)/n, then we must have

f (x) ≥ (k + 1)/n = hα(x) ≥ αn(x) ≥ (α − δ)n(x).

If f (x) = k/n, then α(x) ≤ k/n. It follows that (α − δ)(x) < k/n, and so

f (x) = k/n ≥ hα−δ(x) ≥ (α − δ)n(x).

By construction, we have

0 ≤ αn(x) − α(x) = |αn(x) − α(x)| ≤ hα(x) − α(x) ≤ 1/n < 2/n.

For the other estimate, define gα : X → {k/n | k ∈ Z} as follows: if k/n <

α(x) ≤ (k +1)/n, then set gα(x) = k/n. It is straightforward to check that gα

is lower semicontinuous, and so

0 ≤ α(x) − αn(x) = |α(x) − αn(x)| ≤ α(x) − gα(x) ≤ 1/n < 2/n. �

Theorem 3.4 Let (Ai,φi) be a direct system of RSH algebras with slow di-
mension growth, and let A = limi (Ai, φi). Assume that A is simple. Let f be
a strictly positive affine continuous function on T(A) and let ε > 0 be given.
It follows that there are i0, k ∈ N and a positive element a ∈ Mk(Ai0) with the
property that

|f (τ) − dτ (φi0∞(a))| < ε.



K-theoretic rigidity and slow dimension growth 239

Proof For a compact metrizable Choquet simplex K we let Aff(K) denote
the set of continuous affine functions on K . Each φi : Ai → Ai+1 induces a
continuous affine map φ

�
i : T(Ai+1) → T(Ai) and a dual map

φ•
i : Aff(T(Ai)) → Aff(T(Ai+1))

given by φ•
i (f )(τ ) = f (φ

�
i (τ )). It is well known that

⋃
i∈N

φ•
i∞(Aff(T(Ai)))

is uniformly dense in Aff(T(A)), so we may assume that f = φ•
i∞(g) for

some i ∈ N and g ∈ Aff(T(Ai)). Truncating and re-labeling our inductive
sequence, we may assume that i = 1. We may also assume, by replacing A

with Mk(A) for some large enough k ∈ N, that ‖g‖ ≤ 1. We shall also assume
that ε < ‖g‖.

Set φi,j = φj−1 ◦ · · · ◦ φi , and assume, contrary to our desire, that for each
j ≥ 1, for some τj ∈ T(Aj ), we have φ•

1,j (g)(τj ) ≤ 0. Let

γj = (φ
�
1,j (τj ), φ

�
2,j (τj ), . . . , φ

�
j−1,j (τj ), τj , τj+1, τj+2, . . .) ∈

∞∏

i=1

T(Ai).

Since
∏∞

i=1 T(Ai) is compact, the sequence (γj ) has a subsequence con-

verging to some η = (η1, η2, η3, . . .). Let γ
(i)
j denote the ith entry of the

sequence γj . We have that φ
�
i−1,i(γ

(i)
j ) = γ

(i−1)
j for each i ≤ j , whence

φ
�
i−1,i(ηi) = ηi−1 for each i ∈ N. It follows that η defines an element of T(A),

and that

f (η) = φ•
1∞(g)(η) = g(φ

�
1∞(η)) = g(η1).

Now η1 is a subsequential limit of the sequence (φ
�
1,j (τj ))j∈N, and we have

g(φ
�
1,j (τj )) = φ•

1,j (g)(τj ) ≤ 0, ∀j ∈ N.

It follows that 0 ≥ g(η1) = f (η), contradicting the strict positivity of f . We
conclude that for some j0 ∈ N, for each τ ∈ T(Aj0), we have φ•

1,j0
(g)(τ ) > 0.

Let us once again truncate and re-label our sequence, so that j0 = 1.
To complete the proof of the theorem, it will suffice to find i0 ≥ 1 and a

positive element b ∈ Ai0 with the property that

|φ•
1,i0

(g)(τ ) − dτ (b)| < ε, ∀τ ∈ T(Ai0);
it is then straightforward to check that a = φi0∞(b) has the required property.
Let us set gi = φ•

1,i (g) for convenience. Using the slow dimension growth of
the system (Ai,φi) and the simplicity of the limit, find i0 large enough that

(ε/4)ni0(j) > 4dim(Xi0,j ) + 4, 0 ≤ j ≤ li0 .
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(The simplicity of A guarantees that all of the ni0(j)s are large for large
enough i0, and this makes the “+4” term on the right hand side possible.)
From here on we will work only inside Ai0 , so let us avoid subscripts by re-
naming this algebra B, re-naming its matrix sizes n(0), . . . , n(l), re-naming
its base spaces X0, . . . ,Xl , and setting h = φ•

1,i0
(g). Thus, we have

(ε/4)n(j) > 4 dim(Xj ) + 4, 0 ≤ j ≤ l. (6)

The function h defines strictly positive continuous functions h0, h1, . . . , hl

on X0,X1, . . . ,Xl , respectively, via its standard representation σ—the func-
tion hj is the restriction of σ •(h) to Xj . We need only find a positive element
b ∈ B such that

|hj (x) − dτx (b)| < ε, ∀x ∈ Xj\X(0)
j , (7)

where τx denotes the extreme tracial state corresponding to evaluation at x ∈
Xj\X(0)

j composed with the usual trace on Mn(j). Combining Lemma 3.3
with (6) we have
∣∣∣hj (x) − hj

n(j)
(x)

∣∣∣,
∣∣∣(hj − 3ε/4)

n(j)
(x) − (hj − 3ε/4)(x)

∣∣∣ < 2/n(j) < ε/4,

∀x ∈ Xj,

from which we extract, for δ ≥ 3ε/4,

n(j)
(
hj

n(j)
(x) − (hj − δ)

n(j)
(x)

)

≥ n(j)
(
hj (x) − (hj − δ)(x) − 4/n(j)

)
(8)

> n(j)δ − 4 (9)

≥ n(j)3ε/4 − 4 (10)

(6)
> 4 dim(Xj ) (11)

for each x ∈ Xj . We also have
∣∣∣hj

n(j)
(x) − (hj − δ)

n(j)
(x)

∣∣∣ ≤ |hj (x) − (hj − δ)(x)| ≤ δ, ∀x ∈ Xj .

Fix strictly positive tolerances δ0, δ1, . . . , δl such that 3ε/4 ≤ δ0 and∑l
j=0 δj < ε. Set ηk = ∑k

j=0 δj . Suppose that we have found a positive ele-
ment bj of the j th stage algebra Bj (see terminology at the beginning of this
Section) with the following property:

(hk − ηj )(x) ≤ rank(bj (x))/n(k) ≤ hk(x), ∀x ∈ Xk, 0 ≤ k ≤ j. (12)
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It follows immediately that this same rank inequality holds with k = j + 1 at
each x ∈ X

(0)
j+1 by pushing forward with the map ψ•

j induced by the clutching

map ψj (let us assume that the definition of bj over X
(0)
j+1 is given by pushing

bj forward via ψj ). An application of Lemma 3.3 and the fact that ηj+1 > ηj

then gives

(hj+1 − ηj+1)n(j+1)
(x) ≤ rank(bj (x))/n(j + 1) ≤ hj+1

n(j+1)
(x),

∀x ∈ X
(0)
j+1.

We can now use (8) and the inequality above in order to apply Proposition
2.9 with X = Xj+1, Y = X

(0)
j+1, and a = bj to find a positive element bj+1 ∈

Mn(j+1)(C(Xj+1)) which restricts to bj on X
(0)
j+1 and satisfies

(hj+1 − ηj+1)n(j+1)
(x) ≤ rank(bj+1(x))/n(j + 1) ≤ hj+1

n(j+1)
(x),

∀x ∈ Xj+1.

Abusing notation slightly, we let bj+1 denote the positive element of Bj+1
which restricts to bj in Bj and which agrees with the element bj+1 above
over Xj+1. Now (12) holds with j +1 in place of j . Note that the existence of
an appropriate b0 follows from an application of Proposition 2.9 with Y = ∅,
so that iteration of the process we have just described will lead to a positive
element b of B satisfying

(hk − ηl)(x) ≤ rank(b(x))/n(k) ≤ hk(x), ∀x ∈ Xk, 0 ≤ k ≤ l.

If x ∈ Xk\X(0)
k , then dτx (b) = rank(b(x))/n(k). This gives (7), completing

the proof of the Theorem.
�

Now we can prove our main results. Throughout, A is a unital simple sep-
arable ASH algebra with slow dimension growth.

Proof of Theorem 1.2 By [27, Theorem 1.1], A has strict comparison of pos-
itive elements. Let SAff(T(A)) denote the set of suprema of increasing se-
quences of continuous affine strictly positive functions on T(A). By [4, The-
orem 2.5] and the comment thereafter, we know that

W(A ⊗ Z) ∼= V (A ⊗ Z) � SAff(T(A ⊗ Z))

∼= K0(A ⊗ Z)+ � SAff(T(A ⊗ Z))



242 A. Toms

where V (A) denotes the Murray-von Neumann semigroup. On the other
hand, [4, Theorem 2.5] (or rather, its proof) shows that any unital simple ex-
act tracial C∗-algebra B which has strict comparison of positive elements and
the property that any strictly positive f ∈ Aff(T(B)) is uniformly arbitrarily
close to a function of the form τ �→ dτ (a) for some a ∈ (B ⊗ K)+ must then
also satisfy

W(B) ∼= V (B) � SAff(T(B)). (13)

Using Theorem 3.4, we see that (13) holds with B = A. By [20, Theo-
rem 0.1(2)], A has cancellation of projections, whence V (A) ∼= K0(A)+.
Since A is simple and has strict comparison, its K0-group is unperforated,
so K0(A)+ ∼= K0(A ⊗ Z)+ by a result of Gong, Jiang, and Su [13]. It is
also known that T(A) ∼= T(A ⊗ Z), since Z admits a unique normalized tra-
cial state. To conclude that W(A) ∼= W(A ⊗ Z) we need to prove that the
now obvious identification of these semigroups as sets is in fact an isomor-
phism of ordered semigroups. This, however, follows from the description
of the order and addition (for both cases) given in the comments preceding
[4, Theorem 2.5]. �

Proof of Corollary 1.3 The forward implication follows from Theorems 1.2
and Winter’s Theorem 1.1. The reverse implication is Theorem 5.5 of [28]. �

Proof of Corollary 1.4 Let C denote the class of unital simple ASH algebras
with slow dimension growth in which projections separate traces. By Corol-
lary 1.3, each A ∈ C is Z -stable, and so by the main result of [16] (based on
[35]), we need only establish the conclusion of Corollary 1.4 for the collec-
tion C′ consisting of algebras of the form A ⊗ U with A ∈ C and U a UHF
algebra of infinite type. These algebras are Z -stable unital simple ASH alge-
bras with real rank zero, and so the desired classification result is given by
Corollary 2.5 of [32]. �
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