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Abstract

Let A be a unital simple separable C∗-algebra with strict comparison of positive elements. We prove
that the Cuntz semigroup of A is recovered functorially from the Murray–von Neumann semigroup and
the tracial state space T(A) whenever the extreme boundary of T(A) is compact and of finite covering
dimension. Combined with a result of Winter, we obtain Z ⊗ A ∼= A whenever A moreover has locally
finite decomposition rank. As a corollary, we confirm Elliott’s classification conjecture under reasonably
general hypotheses which, notably, do not require any inductive limit structure. These results all stem from
our investigation of a basic question: what are the possible ranks of operators in a unital simple C∗-algebra?
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction and statement of main results

The notion of rank for operators in C∗-algebras is of fundamental importance. Indeed, one
may view Murray and von Neumann’s type classification of factors as a complete answer to the
question of which ranks occur for projections in a factor. For separable simple C∗-algebras the
question of which ranks may occur has received rather less attention. This is unfortunate given the
many interesting areas it bears upon: calculating the Cuntz semigroup, the question of whether
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or not a C∗-algebra is Z -stable, the classification of nuclear simple C∗-algebras by K-theory,
and the classification of countably generated Hilbert modules, to name a few. In this article we
explore the rank question for a general tracial simple C∗-algebra, and give applications in each
of these areas.

What do we mean by the rank of an operator x in a unital C∗-algebra A? It is reasonable to
assume that whatever the definition, x and x∗x should have the same rank. We therefore consider
only positive elements of A. Let τ : A → C be a tracial state. For a positive element a of A we
define

dτ (a) = lim
n→∞ τ

(
a1/n

)
.

This defines the rank of a with respect to τ . Our notion of rank for a is then the rank function
of a, a map ι(a) from the tracial state space T(A) to R+ given by the formula ι(a)(τ ) = dτ (a).
(The maps dτ and ι extend naturally to positive elements in A⊗ K, and we always take this set of
positive elements to be the domain of ι.) These rank functions are lower semicontinuous, affine,
and nonnegative; if A is simple, then they are strictly positive. We will be working extensively
with various subsets of affine functions on T(A), so let us fix some convenient notation: Aff(K)

denotes the set of real-valued continuous affine functions on a (typically compact metrizable)
Choquet simplex K , LAff(K) denotes the set of bounded, strictly positive, lower semicontinuous
and affine functions on K , and SAff(K) denotes the set of extended real-valued functions which
can be obtained as the pointwise supremum of an increasing sequence from LAff(K). The range
question for ranks of operators in a unital simple tracial C∗-algebra A can then be phrased as
follows:

When is the range of ι equal to all of SAff(T(A))?

This brings us to our main result.

Theorem 1.1. Let A be a unital simple separable infinite-dimensional C∗-algebra with nonempty
tracial state space T(A). Consider the following three conditions:

(i) The extreme boundary of T(A) is compact and of finite covering dimension.
(ii) The extreme boundary of T(A) is compact, and for each n ∈ N there is a positive a ∈ A⊗ K

with the property that

ndτ (an) � 1 � (n + 1)dτ (a), ∀τ ∈ T(A).

(iii) For each positive b ∈ A ⊗ K such that dτ (b) < ∞, ∀τ ∈ T(A), and each δ > 0, there is a
positive c ∈ A ⊗ K such that

∣∣2dτ (c) − dτ (b)
∣∣ < δ, ∀τ ∈ T(A).

If (ii) or (iii) is satisfied, then the uniform closure of the range of the map ι contains Aff(T(A)).
If any of (i)–(iii) is satisfied and A moreover has strict comparison of positive elements, then the
range of ι is all of SAff(T(A)).
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Some remarks are in order.

• Finite-dimensional approximation properties such as nuclearity or exactness are not required
by Theorem 1.1.

• In the presence of strict comparison, conditions (i), (ii), and (iii) are equivalent to the range
of ι being all of SAff(T(A)).

• Condition (ii) asks for the existence of positive operators with “almost constant rank”. These,
we shall prove, are connected to the existence of unital ∗-homomorphisms from so-called
dimension drop algebras in to A, and so to the important property of Z -stability. These
operators exist, for example, in any crossed product of the form C(X) � G, where X is an
infinite, finite-dimensional compact space and at least one element of G acts by a minimal
homeomorphism [15], and in many other C∗-algebras whose finer structure is presently out
of reach.

• Condition (iii) is automatically satisfied in Z -stable C∗-algebras [11] and in unital simple
ASH algebras with slow dimension growth [14].

• It is possible that ι((A ⊗ K)+) = SAff(T(A)) for any unital simple separable infinite-
dimensional C∗-algebra with nonempty tracial state space. Conditions (ii) and (iii) guarantee
that the range of ι is dense in the sense that any element of SAff(T(A)) is a supremum of an
increasing sequence from ι((A⊗ K)+). In the absence of strict comparison, however, the el-
ements of (A ⊗ K)+ giving rise to this sequence are not themselves increasing for the Cuntz
relation, and so one cannot readily find a positive a ∈ A⊗ K for which ι(a) is the supremum
of the said sequence.

Theorem 1.1 has several consequences for the algebras it covers. We describe them briefly
here, and in detail in Section 6. If A as in Theorem 1.1 satisfies any of (i)–(iii) and has
strict comparison, then the Cuntz semigroup Cu(A) is recovered functorially from the Murray–
von Neumann semigroup of A and T(A), leading to the confirmation of two conjectures of
Blackadar–Handelman concerning dimension functions [2,3]. In fact, Cu(A) ∼= Cu(A ⊗ Z), and
so if A moreover has locally finite decomposition rank—a mild condition satisfied by unital sep-
arable ASH algebras, for instance—then A ∼= A ⊗ Z by a result of Winter [9,18]. This leads to
the complete classification of countably generated Hilbert modules over A up to isomorphism
via K0(A) and T(A) in a manner analogous to the classification of W∗-modules over a II1 fac-
tor [3]. Finally, if C is the class of all such A which, additionally, have projections separating
traces, then C satisfies Elliott’s classification conjecture: the members of C are determined up to
∗-isomorphism by their graded ordered K-theory [16,17,8].

The paper is organized as follows: Section 2 reviews the Cuntz semigroup and dimension
functions; Section 3 develops a criterion for embedding dimension drop algebras in C∗-algebras
with strict comparison; Section 4 develops several techniques for constructing positive elements
with prescribed rank function; Section 5 contains the proof of Theorem 1.1; Section 6 details our
applications.

2. Preliminaries

Let A be a C∗-algebra and let K denote the algebra of compact operators on a separable
infinite-dimensional Hilbert space. Let (A ⊗ K)+ denote the set of positive elements in A ⊗ K.
Given a, b ∈ (A ⊗ K)+, we write a � b if there is a sequence (vn) in A ⊗ K such that
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∥∥vnbv∗
n − a

∥∥ → 0.

We then say that a is Cuntz subequivalent to b (this relation restricts to usual Murray–von Neu-
mann comparison on projections). We write a ∼ b if a � b and b � a, and say that a is Cuntz
equivalent to b. Set Cu(A) = (A ⊗ K)+/∼, and write 〈a〉 for the equivalence class of a. We
equip Cu(A) with the binary operation

〈a〉 + 〈b〉 = 〈a ⊕ b〉

(using an isomorphism between M2(K) and K) and the partial order

〈a〉 � 〈b〉 ⇔ a � b.

This ordered Abelian semigroup is the Cuntz semigroup of A.
It was shown in [4] that increasing sequences in Cu(A) always have a supremum, and we

shall use this fact freely in the sequel. Suppose now that A is unital and τ : A → C is a tracial
state. The function dτ introduced in Section 1 is constant on Cuntz equivalence classes, and drops
to an additive order-preserving map on those classes in Cu(A) coming from positive elements
in matrices over A. This map has a unique supremum- and order-preserving extension to all
of Cu(A), and we also denote this extension by dτ (see [3, Lemma 2.3]).

Definition 2.1. Let A be a unital C∗-algebra. We say that A has strict comparison of positive
elements (or simply strict comparison) if a � b for a, b ∈ (A ⊗ K)+ whenever

dτ (a) < dτ (b), ∀τ ∈ {
γ ∈ T(A)

∣∣ dγ (b) < ∞}
.

For positive elements a, b in a C∗-algebra A we write that a ≈ b if here is x ∈ A such that
x∗x = a and xx∗ = b. The relation ≈ is an equivalence relation [10], sometimes referred to as
Cuntz–Pedersen equivalence. It is known that a ≈ b implies a ∼ b.

If a ∈ A is a positive element and τ ∈ T(A) we denote by μτ the measure induced on the
spectrum σ(a) of a by τ . Then dτ (a) = μτ ((0,∞) ∩ σ(a)) and more generally

dτ

(
f (a)

) = μτ

({
t ∈ σ(a): f (t) > 0

})
for all nonnegative continuous functions f defined of σ(a).

3. A criterion for embedding quotients of dimension drop algebras

The Jiang–Su algebra Z is an important object in the structure theory of separable nuclear
C∗-algebras. One wants to know when a given algebra A has the property that A ⊗ Z ∼= A, as
one can then frequently obtain detailed information about A through its K-theory and positive
tracial functionals. If A is separable, then A ⊗ Z ∼= A whenever one can find, for any natural
number m > 1, an approximately central sequence (φn) of unital ∗-homomorphisms from the
prime dimension drop algebra

Im,m+1 := {
f ∈ C

([0,1];Mm ⊗ Mm+1
) ∣∣ f (0) ∈ 1m ⊗ Mm+1, f (1) ∈ Mm ⊗ 1m+1

}
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into A. It is therefore of interest to characterize when A admits a unital ∗-homomorphism
φ : Im,m+1 → A. In this section we obtain such a characterization in the case that A has strict
comparison (Theorem 3.6). Our result should be compared with [13, Proposition 5.1], which uses
the assumption of stable rank one instead of strict comparison. Some of the results we develop
here will be employed later to construct positive elements with specified rank functions.

Lemma 3.1. Let A be a unital C∗-algebra with T(A) �= ∅, and let a ∈ Mk(A) be positive.
Suppose that there are 0 < α < β such that α < dτ (a) < β for every τ in a closed subset X

of T(A). Then there exist ε > 0 and an open neighborhood U of X with the property that for
α < dτ ((a − ε)+) < β , ∀τ ∈ U.

Proof. Since dτ ((a − ε)+) ↗ dτ (a) as ε ↘ 0 for each τ , we can fix ετ > 0 such that
dτ ((a − ετ )+) > α; since γ �→ dγ ((a − ετ )+) is lower semicontinuous, we can find an open
neighborhood Vτ of τ such that

dγ

(
(a − ετ )+

)
> α, ∀γ ∈ Vτ .

The family {Vτ }τ∈X is an open cover of X, and so X ⊂ Vτ1 ∪ · · · ∪ Vτn for some τ1, . . . , τn ∈ X.
Set ε := min{ετ1, . . . , ετn} and V := Vτ1 ∪ · · · ∪ Vτn , so that for each τ ∈ V , τ ∈ Vτi

for some i,
and we have

dτ

(
(a − ε)+

)
� dτ

(
(a − ετi

)+
)
> α.

Let μτ be the measure induced on σ(a) by τ . We also have

dτ

(
(a − ε)+

) = μτ

(
(ε,∞) ∩ σ(a)

)
� μτ

([ε,∞) ∩ σ(a)
)

� μτ

(
(0,∞) ∩ σ(a)

)
� dτ (a), ∀τ ∈ T(A).

In particular, dτ ((a−ε)+) � μτ ([ε,∞)∩σ(a)) < β for all τ ∈ X. By the Portmanteau Theorem,
the map γ �→ μτ ([ε,∞) ∩ σ(a)) is upper semicontinuous, and so the set

W = {
γ ∈ T(A): μγ

([ε,∞) ∩ σ(a)
)
< β

}
is open and contains X. Moreover, for any γ ∈ W , we have

dγ

(
(a − ε)+

)
< β.

We conclude the proof by setting U = V ∩ W . �
For each η > 0 define a continuous map fη : R+ → [0,1] by the following formula:

fη(t) =
{

t/η, 0 < t < η,

1, t � η.
(1)
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Lemma 3.2. Let A be a unital separable C∗-algebra with nonempty tracial state space, and let
X ⊆ T(A) be closed. Suppose that a ∈ Mk(A) is a positive element with the property that

β − α < dτ (a) � β, ∀τ ∈ X

for some 0 < α < β . Then there is η > 0 such that

k − β � dτ

(
1 − fη(a)

)
< k − β + 2α, ∀τ ∈ X.

Proof. Let μτ be the measure induced on σ(a) by τ . By Lemma 3.1 there is η > 0 such that
dτ ((a − η)+) > β − α for all τ ∈ X. Therefore

dτ

(
(a − η)+

) = μτ

(
(η,∞) ∩ σ(a)

)
> β − α, ∀τ ∈ X.

It follows that

μτ

(
(0, η]) = dτ (a) − μτ

(
(η,∞) ∩ σ(a)

)
< β − (β − α) = α, ∀τ ∈ X.

Then, dτ (1 − fη(a)) = μτ ([0, η) ∩ σ(a)) = μτ ((0, η) ∩ σ(a)) + μτ ({0} ∩ σ(a)) and hence

dτ

(
1 − fη(a)

) = μτ

(
(0, η) ∩ σ(a)

) + k − dτ (a) < α + k − (β − α) = k − β + 2α, ∀τ ∈ X.

Moreover, dτ (1 − fη(a)) � k − dτ (a) � k − β . �
Lemma 3.3. Let a, b be positive elements in a C∗-algebra A. If a ≈ b then f (a) ≈ f (b) for any
continuous function f : [0,∞) → [0,∞) with f (0) = 0.

Proof. By assumption there is x ∈ A such that x∗x = a and xx∗ = b. Let x = v|x| be the polar
decomposition of x where v is a partial isometry in the enveloping von Neumann algebra A∗∗.
Then as in [6, Lemma 2.4] the map d �→ vdv∗ defines an isomorphism from aAa to bAb which
maps a to b and hence f (a) to f (b). Therefore vf (a)v∗ = f (b). Let us note that y := vf (a)1/2

is an element of A. Indeed, since f (0) = 0, vf (a)1/2 ∈ va1/2A = v|x|A = xA. It follows that

f (b) = vf (a)v∗ = yy∗ ≈ y∗y = f (a)1/2v∗vf (a)1/2 = f (a),

as required. �
Lemma 3.4. Let A be a unital separable C∗-algebra with strict comparison of positive elements.
Also suppose that for each m ∈ N, there is x ∈ Cu(A) such that

mdτ (x) � 1 � (m + 1)dτ (x), ∀τ ∈ T(A) �= ∅.

It follows that for each n ∈ N and for any 0 < ε < 1/n, there exist mutually orthogonal positive
elements a1, . . . , an ∈ A with the following properties:

(i) ai ≈ aj for all i, j ∈ {1, . . . , n};
(ii) 1/n − ε < dτ (ai) < 1/n for each τ ∈ T(A) and i ∈ {1, . . . , n}.
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Proof. Let us first show that for any ε > 0, there is a in Mk(A), k � 1, with the property that

1/n − ε < dτ (a) < 1/n, ∀τ ∈ T(A). (2)

Let r,m be a natural numbers such that [r/(m + 1), r/m] ⊂ (1/n − ε,1/n). By hypothe-
sis there is x ∈ Cu(A) such that dτ (x) ∈ [1/(m + 1),1/m] for all τ ∈ T(A). It follows that
dτ (rx) ∈ [r/(m + 1), r/m] for all τ ∈ T(A). Let a ∈ (A ⊗ K)+ representing rx ∈ Cu(A). Then
a satisfies (2). By [3, Lemma 2.2] we may arrange that a ∈ Mk(A) for some k � 1.

We will now prove the lemma by induction. Let n and ε > 0 be given. Find a ∈ Mk(A)

satisfying (2). By Lemma 3.1 there is η > 0 such that

1/n − ε < dτ

(
(a − η)+

)
< 1/n, ∀τ ∈ T(A).

Since dτ (a) < 1/n � 1 for each τ ∈ T(A), we have a � 1A by strict comparison. There is v

in Mk(A) such that v1Av∗ = (a − η)+, whence A � a1 := 1Av∗v1A ≈ (a − η)+ also satisfies

1/n − ε < dτ (a1) < 1/n, ∀τ ∈ T(A).

This proves the lemma in the case n = 1; for larger n we proceed inductively.
Suppose that for some k < n and 0 < ε < 1/n we have found mutually orthogonal positive

elements a1, . . . , ak ∈ A with the following properties:

(i) ai ≈ aj for all i, j ∈ {1, . . . , k};
(ii) 1/n − ε < dτ (ai) < 1/n for each i ∈ {1, . . . , k} and τ ∈ T(A).

We will explain how to use these ai to construct mutually orthogonal positive elements
ã1, . . . , ãk+1 in A which satisfy (i) and (ii) above with k replaced by k + 1. Repeated application
of this construction yields the lemma in full.

By Lemma 3.1 there is η > 0 such that

1/n − ε < dτ

(
(ai − η)+

)
< 1/n, ∀τ ∈ T(A), ∀i ∈ {1, . . . , k}.

Set a := ∑k
i=1 ai and c := 1 − fη(a), where fη is given by (1). Note that c is orthogonal to

(a − η)+ and hence to each (ai − η)+. For each τ ∈ T(A),

dτ (a) =
k∑

i=1

dτ (ai) ∈ (k/n − kε, k/n).

By Lemma 3.2 it follows that for all τ ∈ T(A)

dτ (c) = dτ

(
1 − fη(a)

)
� 1 − k/n � 1/n.

We are in a position to construct ã1, . . . , ãk+1 ∈ A. Since dτ (a1) < 1/n < dτ (c) for all
τ ∈ T(A), it follows that a1 � c by strict comparison. Therefore there exists w ∈ A such that
(a1 −η)+ = wcw∗. Set ãi := (ai −η)+ for i ∈ {1, . . . , k} and ãk+1 := c1/2w∗wc1/2 ≈ (a1 −η)+.
By Lemma 3.3 we have



1216 M. Dadarlat, A.S. Toms / Journal of Functional Analysis 259 (2010) 1209–1229
ãi = (ai − η)+ ≈ (a1 − η)+, ∀i ∈ {1, . . . , k}.

This establishes (i). Our choice of η establishes (ii). The mutual orthogonality of the ãi follows
from the orthogonality of c to all of (ai − η)+, i ∈ {1, . . . , k}, and the fact that ãk+1 ∈ cAc. �
Lemma 3.5. Let A be a separable unital C∗-algebra with strict comparison of positive elements.
Suppose that b1, . . . , bn, n � 2, are orthogonal positive elements in A with the following proper-
ties:

(i) bi ≈ bj for each i, j ∈ {1, . . . , n};
(ii) 1/n − 1/3n2 < dτ (bi) < 1/n for all τ ∈ T(A) �= ∅ and each i ∈ {1, . . . , n}.

It follows that there is a unital ∗-homomorphism γ : In,n+1 → A.

Proof. By [13, Proposition 5.1], it will suffice to find orthogonal positive elements a1, . . . , an

of A such that ai ≈ aj for each i, j ∈ {1, . . . , n} and (1 − ∑n
i=1 ai) � (a1 − ε)+ for some ε > 0.

The latter condition can be replaced by dτ (1 − ∑n
i=1 ai) < dτ ((a1 − ε)+), ∀τ ∈ T(A), due to the

strict comparison assumption.
Let b1, . . . , bn be as specified in the statement of the lemma and set b = ∑n

i=1 bi . In view of
the mutual orthogonality of the bi , (ii) implies

1 − 1/3n < dτ (b) < 1, ∀τ ∈ T(A). (3)

Apply Lemma 3.2 to find η > 0 such that

dτ

(
1 − fη(b)

)
< 2/3n

where fη is defined by (1). Set ai = fη(bi) and note that the mutual orthogonality of the bi

implies that

fη(b) =
n∑

i=1

fη(bi) =
n∑

i=1

ai .

Since dτ (a1) = dτ (b1), by Lemma 3.1 there is ε > 0 such that 1/n − 1/3n2 < dτ ((a1 − ε)+) for
all τ ∈ T(A). Now for each τ ∈ T(A) we have

dτ

(
1 −

n∑
i

ai

)
= dτ

(
1 − fη(b)

)
< 2/3n � 1/n − 1/3n2 < dτ

(
(a1 − ε)+

)
.

To complete the proof of the lemma, we observe that ai ≈ aj for each i, j ∈ {1, . . . , n} as a
consequence of Lemma 3.3. �
Theorem 3.6. Let A be a separable unital C∗-algebra with strict comparison of positive elements
and nonempty tracial state space. The following statements are equivalent:
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(i) for each m ∈ N, there is x ∈ Cu(A) such that

mx � 〈1A〉 � (m + 1)x;

(ii) for each m ∈ N, there is x ∈ Cu(A) such that

mdτ (x) � 1 � (m + 1)dτ (x), ∀τ ∈ T(A);

(iii) for each m ∈ N, there is a unital ∗-homomorphism φm : Im,m+1 → A.

Proof. For (i) ⇒ (ii), we apply the order-preserving state dτ to the inequality

mx � 〈1A〉 � (m + 1)x.

The implication (ii) ⇒ (iii) is the combination of Lemmas 3.4 and 3.5. Finally, (iii) ⇒ (i) is due
to Rørdam [12]. �
4. Rank functions on trace spaces

Lemma 4.1. Let A be a unital simple separable infinite-dimensional C∗-algebra and τ a nor-
malized trace on A. Let 0 < s < r be given. It follows that there is an open neighborhood U of τ

in T(A) and a positive element a in some Mk(a) such that

s < dγ (a) < r, ∀γ ∈ U.

Proof. Let τ and 0 < s < r as in the hypotheses of the lemma be given. Since A is infinite-
dimensional, there is b ∈ A+ with zero as an accumulation point of its spectrum. For each n ∈ N,
let fn be a positive continuous function with support (0,1/n) and set bn := fn(b). It follows that

0 < dτ (bn) = μτ

(
(0,1/n) ∩ σ(b)

) n→∞−→ 0.

Choose n ∈ N large enough such that dτ (bn) < r − s. Then

s < kdτ (bn) < r

for some k ∈ N. If we set b := ⊕k
i=1 bn ∈ Mk(A), then dτ (b) = dτ (

⊕k
i=1 bn) = kdτ (bn) and

hence

s < dτ (b) < r.

We conclude the proof by applying Lemma 3.1 with X = {τ }. �
Lemma 4.2. Let A be a unital C∗-algebra and τ a normalized trace on A. Let x, y be posi-
tive elements in Mk(A). Then dτ (y

1/2xy1/2) � dτ (x) − dτ (1k − y), where 1k denotes the unit
of Mk(A).
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Proof. We have

x = x1/2yx1/2 + x1/2(1k − y)x1/2

� x1/2yx1/2 ⊕ x1/2(1k − y)x1/2

≈ y1/2xy1/2 ⊕ x1/2(1k − y)x1/2

� y1/2xy1/2 ⊕ (1k − y).

Applying dτ we obtain dτ (x) � dτ (y
1/2xy1/2) + dτ (1k − y). �

We recall a result from [7] based on work of Cuntz and Pedersen:

Theorem 4.3. (See [7, Theorem 9.3].) Let A be a unital simple C∗-algebra with nonempty tracial
state space, and let f be a strictly positive affine continuous function on T(A). It follows that
for any ε > 0 there is a positive element a of A such that f (τ) = τ(a), ∀τ ∈ T(A), and ‖a‖ <

‖f ‖ + ε.

Lemma 4.4. Let A be a separable unital simple infinite-dimensional C∗-algebra whose tracial
state space has compact extreme boundary X = ∂eT(A). It follows that for any δ > 0 and closed
set Y ⊆ X there is a nonzero positive element a of A with the property that dτ (a) < δ, ∀τ ∈ Y

and dτ (a) = 1, ∀τ ∈ X\Y .

Proof. Let δ and Y be given. Let us assume first that Y �= X. Fix a decreasing sequence {Un}∞n=2
of open subsets of X with the property that Y = ⋂∞

n=2 Un and Uc
n �= ∅. The compactness of X

implies that the natural restriction map Aff(T(A)) → C(∂eT(A),R) is an isometric isomorphism
of Banach spaces [5, Corollary 11.20]. We may therefore use Theorem 4.3 to produce, a sequence
(bn)

∞
n=2 in A+ with the following properties:

(i) τ(bn) > 1 − 1/n, ∀τ ∈ Uc
n ;

(ii) τ(bn) < δ/2nn, ∀τ ∈ Y ;
(iii) ‖bn‖ � 1.

For any τ ∈ Uc
n we have

dτ

(
(bn − 1/n)+

) (iii)
� τ

(
(bn − 1/n)+

)
� τ(bn) − 1/n

(i)
> 1 − 2/n.

In particular (bn − 1/n)+ �= 0. Moreover, for any τ ∈ Y we have

dτ

(
(bn − 1/n)+

) = n

∫
1

n
χ(1/n,∞) dμτ � nτ(bn)

(ii)
< δ/2n.

Set cn := 2−n(bn − 1/n)+, so that dτ (cn) > 1 − 2/n for each τ ∈ Uc
n , dτ (cn) < δ/2n for each

τ ∈ Y and ‖cn‖ � 2−n. Now set

a :=
∞∑

cn ∈ A+.
n=2



M. Dadarlat, A.S. Toms / Journal of Functional Analysis 259 (2010) 1209–1229 1219
If τ ∈ Y , then, using the lower semicontinuity of dτ , we have

dτ (a) � lim inf
k

dτ

(
k∑

n=2

cn

)

� lim inf
k

k∑
n=2

dτ (cn)

< δ.

If τ ∈ X\Y , then τ ∈ Uc
k for all k sufficiently large. It follows that for these same k,

dτ (a) = dτ

( ∞∑
n=2

cn

)
� dτ (ck) � 1 − 2/k.

We conclude that dτ (a) � 1 for each such τ . On the other hand, a ∈ A, so dτ (a) � 1 for any
τ ∈ T(A). This completes the proof in the case that Y �= X.

If Y = X and X is a singleton, then the theorem follows from Lemma 4.1; we assume that X

contains at least two points, say τ, γ . Since X is Hausdorff we can find open subsets U and V

of X such that τ ∈ U , γ ∈ V , and U ∩ V = ∅. Use the case of the theorem established above
twice, with Y replaced by Uc and V c , to obtain positive elements b, c of A with the following
properties:

dν(c) = 1, ∀ν ∈ U and dν(c) < δ, ∀ν ∈ X\U ;
dν(b) = 1, ∀ν ∈ V and dν(b) < δ, ∀ν ∈ X\V.

It follows by Lemma 3.2 applied to the element b ∈ A and the compact set {γ }, with k = 1, β = 1
and α = dγ (c)/2 > 0, that there is η > 0 such that dγ (1 − fη(b)) < 2α = dγ (c), where fη is the
function given in (1).

Since dν(b) = dν(fη(b)) for any ν ∈ T(A), we may replace b with fη(b) and hence arrange
that

dγ (1 − b) < dτ (c). (4)

Set a = b1/2cb1/2. Since a � c, we have dν(a) < δ for every ν ∈ X\U . Also, a ≈
c1/2bc1/2 � b, so dν(a) < δ for every ν ∈ X\V . Since U and V are disjoint we conclude
that dν(a) < δ for every ν ∈ X. It remains to prove that a �= 0. To this purpose we show that
dγ (a) > 0. By Lemma 4.2 and (4) above we have

dγ (a) = dγ

(
b1/2cb1/2) � dγ (c) − dγ (1 − b) > 0. �

Lemma 4.5. Let A be a unital simple separable infinite-dimensional C∗-algebra. Suppose that
the extreme boundary X of T(A) is compact and nonempty. Let a ∈ A be positive, and let there



1220 M. Dadarlat, A.S. Toms / Journal of Functional Analysis 259 (2010) 1209–1229
be given an open subset U of X and δ > 0. It follows that there is a positive element b of A ⊗ K
with the following properties:

dτ (b) = dτ (a), ∀τ ∈ U and dτ (b) � δ, ∀τ ∈ X\U.

Proof. Use Lemma 4.4 to find a positive element h of A with the property that

dτ (h) < δ, ∀τ ∈ X\U and dτ (h) = 1, ∀τ ∈ U. (5)

Let V1 ⊆ V2 ⊆ V3 ⊆ · · · be a sequence of open subsets of X such that V i ⊆ U for each i and⋃∞
i=1 Vi = U . Trivially,

1 − 1/2i < dτ (h) � 1, ∀τ ∈ Vi, (6)

and so Lemma 3.2 applied for k = β = 1 and α = 1/2i yields ηi > 0 such that

dτ

(
1 − fηi

(h)
)
< 1/i, ∀τ ∈ V i. (7)

To simplify notation in the remainder of the proof, let us simply re-label fηi
(h) as hi . We may

assume that the sequence (ηi) is decreasing so that the sequence (hi) is increasing. Since dτ (h) =
dτ (fη(h)) for any τ ∈ T(A) and η > 0, it follows from (5) that

dτ (hi) < δ, ∀τ ∈ X\U and dτ (hi) = 1, ∀τ ∈ U. (8)

Set ai := h
1/2
i ah

1/2
i . Since ai � a, we have

dτ (ai) � dτ (a), ∀τ ∈ U.

Also, since h
1/2
i ah

1/2
i ≈ a1/2hia

1/2 � hi , we have

dτ (ai) � dτ (hi) < δ, ∀τ ∈ X\U.

For our lower bound, we observe that by Lemma 4.2 and (7) we have for any τ ∈ V i :

dτ (ai) = dτ

(
h

1/2
i ah

1/2
i

)
� dτ (a) − dτ (1 − hi) > dτ (a) − 1/i.

Therefore we have

dτ (ai) < δ, ∀τ ∈ X\U and dτ (a) − 1/i < dτ (ai) < dτ (a), ∀τ ∈ Vi. (9)

Since hi � hi+1 and

ai = h
1/2
i dh

1/2
i � h

1/2
i+1dh

1/2
i+1 = ai+1.

The increasing sequence (〈ai〉)∞i=1 has a supremum y, where y = 〈b〉 for some positive element b

of A ⊗ K by [4]. Since each dτ is a supremum-preserving state on Cu(A), we conclude from (9)
that
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dτ (b) � δ, ∀τ ∈ X\U and dτ (b) = dτ (a), ∀τ ∈ U,

as desired. �
Lemma 4.6. Let A be a unital simple separable C∗-algebra with strict comparison of positive
elements and at least one bounded trace. Suppose that X = ∂eT(A) is compact, and let a, b ∈ A

be positive. Suppose that there are 0 < α < β < γ � 1 and open sets U,V ⊆ X with the property
that

α < dτ (a) < β, ∀τ ∈ U and β < dτ (b) < γ, ∀τ ∈ V.

It follows that for any closed set K ⊂ U ∪ V , there is a positive element c of M2(A) with the
property that

α < dτ (c) < γ, ∀τ ∈ K.

Proof. Since the topology on X is metrizable and K is compact there exist closed subsets E ⊆ U

and F ⊆ V such that K ⊆ E◦ ∪ F ◦ ⊆ E ∪ F and E and F are the closures of their interiors.
By Lemma 4.5 and strict comparison we may assume that dτ (a) < β for all τ ∈ X \U . Apply

Lemma 3.1 to a to find an ε > 0 such that dτ ((a − ε)+) > α for each τ ∈ E. Likewise find δ > 0
such that dτ ((b − δ)+) > β for each τ ∈ F . For τ ∈ X we have

dτ

(
(b − δ)+

)
� μτ

([δ,∞) ∩ σ(b)
)
� dτ (b) < γ.

The map τ �→ μτ ([δ,∞) ∩ σ(b)) is upper semicontinuous on the compact set X, and so attains
a maximum γ0 < γ . Use Lemma 4.4 to find a positive element z ∈ A with the property that

dτ (z) < γ − γ0, ∀τ ∈ F and dτ (z) = 1, ∀τ ∈ X\F.

Set y = (b − δ)+ ⊕ z ∈ M2(A), so that

β < dτ (y) < γ, ∀τ ∈ F and dτ (y) � β, ∀τ ∈ X\F.

It follows that dτ (y) > dτ (a) for every τ ∈ X, whence a � y by strict comparison. Using this we
can find v ∈ M2(A) such that (a − ε)+ = vyv∗. Set x = y1/2v∗vy1/2, so that x ≈ (a − ε)+ and
x ∈ yM2(A)y. Moreover, dτ (x) < β for all τ ∈ X.

Choose 0 < λ < min{β − α,γ − β}. Use Lemma 4.4 to find a positive element h in M2(A)

with the following property:

dτ (h) = 2, ∀τ ∈ F ◦ and dτ (h) < λ, ∀τ ∈ X\F ◦.

We can find closed sets E1 ⊆ E◦ and F1 ⊆ F ◦ such that K ⊆ E1 ∪F1. Replacing h with fη(h),
for sufficiently small η, we may arrange by Lemma 3.2 applied with k = β = 2 and α = λ/2,
that

dτ (12 − h) < λ, ∀τ ∈ F1.
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We define

c = x + y1/2hy1/2.

Let us prove that this definition yields the inequality required by the lemma. Let τ ∈ K be given.
If τ ∈ E1, then

dτ (c) � dτ (x) = dτ

(
(a − ε)+

)
> α.

If τ ∈ F1, then, by Lemma 4.2, we have

dτ (c) � dτ

(
y1/2hy1/2) = dτ

(
h1/2yh1/2) � dτ (y) − dτ (12 − h) > β − λ > α.

Thus, dτ (c) > α for each τ ∈ K . For the upper bound, observe first that c ∈ yM2(A)y, whence
dτ (c) � dτ (y) for every τ ∈ X. In particular,

dτ (c) < γ, ∀τ ∈ F.

If τ ∈ K\F then τ ∈ X\F ◦. It follows that

dτ (c) � dτ (x) + dτ

(
y1/2hy1/2) � dτ (x) + dτ (h) < β + λ < γ. �

5. The proof of Theorem 1.1

For clarity of exposition we separate Theorem 1.1 into three parts, considering conditions (iii),
(ii), and (i) in order. The idea for the proof of Theorem 5.1 is contained in [2].

Theorem 5.1. Let A be a unital simple separable C∗-algebra with nonempty tracial state space.
Suppose that for each positive b ∈ A ⊗ K such that dτ (b) < ∞, ∀τ ∈ T(A) and δ > 0, there is a
positive c ∈ A ⊗ K such that

∣∣2dτ (c) − dτ (b)
∣∣ < δ, ∀τ ∈ T(A). (10)

It follows that for any f ∈ Aff(T(A)) and ε > 0 there is positive h ∈ A ⊗ K with the property
that

∣∣dτ (h) − f (τ)
∣∣ < ε, ∀τ ∈ T(A).

If A moreover has strict comparison, then for any f ∈ SAff(T(A)) there is positive h ∈ A ⊗ K
such that dτ (h) = f (τ) for each τ ∈ T(A).

Proof. Let f ∈ Aff(T(A)); we may assume ‖f ‖ = 1. It will suffice to consider ε = 1/k for
given k = 2n ∈ N. Use Theorem 4.3 to find positive a ∈ A such that 1 � ‖a‖ � 1 + 1/k and
τ(a) = f (τ), ∀τ ∈ T(A). Consider the function g(t) = ∑2k+1

(1/2k)χ(i/2k,∞)(t).
i=1
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Using the Borel functional calculus we have ‖a − g(a)‖ � 1/2k, and hence

∣∣τ(a) − τ
(
g(a)

)∣∣ =
∣∣∣∣∣τ(a) −

2k+1∑
i=1

(1/2k)τ
(
χ(i/2k,∞)(a)

)∣∣∣∣∣ � 1

2k
(11)

for each τ ∈ T(A). For each i and τ we have dτ ((a − i/2k)+) = τ(χ(i/2k,∞)(a)). It is straight-
forward to see that (10) implies the following statement: for b as in the statement of the theorem,
for any l ∈ N and δ > 0, there is a positive c ∈ A ⊗ K such that

∣∣ldτ (c) − dτ (b)
∣∣ < δ, ∀τ ∈ T(A).

All that is actually needed is the case when l is a power of two. Apply this with l = 2k, b =
(a − i/2k)+, and δ < 1/(4k + 2) to obtain positive hi ∈ A ⊗ K such that

∣∣dτ (hi) − (1/2k)dτ

(
(a − i/2k)+

)∣∣ < 1/
(
4k2 + 2k

)
, ∀τ ∈ T(A).

Thus, setting h = ⊕2k+1
i=1 hi , we have

∣∣τ(
g(a)

) − dτ (h)
∣∣ =

∣∣∣∣∣
2k+1∑
i=1

(1/2k)τ
(
χ(i/2k,∞)(a)

) − dτ

(
2k+1⊕
i=1

hi

)∣∣∣∣∣
=

∣∣∣∣∣
2k+1∑
i=1

(1/2k)dτ

(
(a − i/2k)+

) − dτ (hi)

∣∣∣∣∣
<

2k + 1

4k2 + 2k
= 1

2k
.

Using (11) we arrive at

∣∣f (τ) − dτ (h)
∣∣ = ∣∣τ(a) − dτ (h)

∣∣ �
∣∣τ(a) − τ

(
g(a)

)∣∣ + ∣∣τ(
g(a)

) − dτ (h)
∣∣

<
1

2k
+ 1

2k
= 1

k
= ε, ∀τ ∈ T(A),

as desired.
Now suppose that A has strict comparison. The final conclusion of the theorem then follows

from the proof of [3, Theorem 2.5], which shows how one produces an arbitrary f ∈ SAff(T(A))

by taking suprema. �
Theorem 5.2. Let A be a unital simple separable C∗-algebra. Suppose that the extreme bound-
ary X of T(A) is compact and nonempty, and that for each m ∈ N there is x ∈ Cu(A) with the
property that

mdτ (x) � 1 � (m + 1)dτ (x), ∀τ ∈ T(A). (12)

It follows that for any f ∈ Aff(T(A)) and ε > 0 there is positive h ∈ A ⊗ K with the property
that
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∣∣dτ (h) − f (τ)
∣∣ < ε, ∀τ ∈ T(A). (13)

If A moreover has strict comparison, then we may take f ∈ SAff(T(A)) and arrange that
dτ (h) = f (τ) for each τ ∈ T(A).

Proof. Let f and ε be given, and assume ‖f ‖ = 1. We need only establish (13) over X. We may
assume that ε = 1/k for some k ∈ N. For i ∈ {0, . . . ,2k − 1}, let Ui be the open set {τ ∈ X |
f (τ) > i/2k}. We then have

∣∣∣∣∣f (τ) −
2k−1∑
i=0

(1/2k)χUi
(τ )

∣∣∣∣∣ � 1

2k
. (14)

Let us now prove the following statement: given 1 > r,η, δ > 0 and an open subset U of X,
there is a positive element a of A ⊗ K with the property that

r − η � dτ (a) � r, ∀τ ∈ U and dτ (a) � δ, ∀τ ∈ X\U.

Choose m large enough that r − η < k/(m + 1) < k/m < r for some k ∈ N. By assumption
there is x ∈ Cu(A) such that dτ (x) ∈ [1/(m + 1),1/m] for all τ ∈ T(A). It follows that dτ (rx) ∈
[r/(m + 1), r/m] for all τ ∈ T(A). Let c ∈ (A ⊗ K)+ representing rx ∈ Cu(A). Then c satisfies

r − η < dτ (c) < r, ∀τ ∈ X.

Obtaining the desired element a from c is a straightforward application of Lemma 4.5.
Apply the statement proved above with U = Ui , r = 1/2k, and η = δ = 1/4k2 to obtain

positive hi ∈ A ⊗ K such that

1

2k
− 1

4k2
� dτ (hi) � 1

2k
, ∀τ ∈ Ui

and dτ (hi) < 1/4k2 for each τ ∈ X\Ui . It is then straightforward to check that

∣∣∣∣∣
2k−1∑
i=0

(1/2k)χUi
(τ ) −

2k−1∑
i=0

dτ (hi)

∣∣∣∣∣ <
2k − 1

4k2
<

1

k
. (15)

It follows from (14) and (15) that h := ⊕2k−1
i=0 hi has the required property, since dτ (h) =∑2k−1

i=0 dτ (hi).
If A has strict comparison then the final conclusion of the theorem follows once again from

the proof of [3, Theorem 2.5]. �
Remark 5.3. If A is a unital simple separable C∗-algebra with the property that for any f ∈
SAff(T(A)) there is positive h ∈ A ⊗ K such that f (τ) = dτ (h), ∀τ ∈ T(A), then both (10) and
(12) hold.
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Theorem 5.4. Let A be a unital simple separable C∗-algebra with strict comparison of positive
elements. Suppose further that the extreme boundary X of T(A) is nonempty, compact, and of
finite covering dimension. It follows that for each f ∈ SAff(T(A)), there is a positive element
a ∈ A ⊗ K with the property that dτ (a) = f (τ) for each τ ∈ T(A).

Proof. By arguing as in the proof of Theorem 5.2, it will suffice to find, for each 1 > r, ε > 0, a
positive element a in some MN(A) with the property that

r − ε < dτ (a) < r, ∀τ ∈ X.

Set d := dim(X), and for i ∈ {0, . . . ,2d + 2} define

ri = r − (2d + 2 − i)ε

2d + 2
.

Fix τ ∈ X. Use Lemma 4.1 to find, for each k ∈ {0,1, . . . , d}, a positive element b̃k ∈ MN(A)

and an open neighborhood Vk of τ in X with the property that

r2k < dγ (b̃k) < r2k+1, ∀γ ∈ Vk. (16)

Set Uτ = ⋂
k Vk , so that U := {Uτ }τ∈X is an open cover of X. By the finite-dimensionality and

compactness of X, there is a refinement of a finite subcover of U , say W = {W1, . . . ,Wn}, and a
map c : W → {0,1, . . . , d} with the property that if i �= j then

c(Wi) = c(Wj ) ⇒ Wi ∩ Wj = ∅.

Each Wi is contained in some Uτ , and so (16) furnishes positive elements b̃k , k ∈ {0,1, . . . , d}
such that

r2k < dγ (b̃k) < r2k+1, ∀γ ∈ Wi.

Set η = ε/(n(2d + 2)), and use Lemma 4.5 to produce positive elements b
(i)
k in A ⊗ K with the

following properties:

r2k < dγ

(
b

(i)
k

)
< r2k+1, ∀γ ∈ Wi and dγ < η, ∀γ ∈ X\Wi.

Now for each k ∈ {0,1, . . . , d} define

bk =
⊕

{i|c(Wi)=k}
b

(i)
k ∈ A ⊗ K.

The Wi ’s appearing in the sum above are mutually disjoint. Suppose that τ ∈ Ws and c(Ws) = k.
We have the following bounds:
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dτ (bk) =
∑

{i|c(Wi)=k}
dτ

(
b

(i)
k

)

= dτ

(
b

(s)
k

) +
∑

{i|c(Wi)=k, i �=s}
dτ

(
b

(i)
k

)
< r2k+1 + nη

= r2k+1 + ε/(2d + 2)

= r2k+2

and

dτ (bk) > dτ

(
b

(s)
k

)
> r2k.

For each k ∈ {0,1, . . . , d} we define

Wk =
⋃

{i|c(Wi)=k}
Wi,

so that

r2k < dτ (bk) < r2k+2, ∀τ ∈ Wk.

Note that W0, W1, . . . , Wd is a cover of X.
To complete the proof of the theorem we proceed by induction. First observe that since

X is compact and metrizable, we may find a closed subset K0 of W0 with the property that
K◦

0 , W1, . . . , Wd is a cover of X. Set c0 = b0, so that

r − ε = r0 < dτ (c0) < r2, ∀τ ∈ K0.

Now suppose that we have found a closed set Kk ⊆ W0 ∪ · · · ∪ Wk , k < d , such that
K◦

k , Wk+1, . . . , Wd covers X, and a positive element ck in some MN(A) with the property that

r − ε = r0 < dτ (ck) < r2k+2, ∀τ ∈ Kk.

Since X is compact and metrizable, we can find a closed set Kk+1 ⊆ K◦
k ∪ Wk+1 such that

K◦
k+1, Wk+2, . . . , Wd covers X. Applying Lemma 4.6 to ck and bk+1 we obtain a positive ele-

ment ck+1 in some MN(A) with the property that

r − ε = r0 < dτ (ck+1) < r2k+4, ∀τ ∈ Kk+1.

Starting with the base case k = 0, applying the inductive step above n times, and noting that we
must have Kd = X, we arrive at a positive element cn in some MN(A) with the property that

r − ε = r0 < dτ (cn) < r2d+2 = r, ∀τ ∈ X.

Setting a = cn completes the proof. �
Theorems 5.1, 5.2, and 5.4 together constitute Theorem 1.1.
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6. Applications

6.1. The structure of the Cuntz semigroup

Let A be a unital simple C∗-algebra with nonempty tracial state space. Consider the disjoint
union

V (A) � SAff
(
T(A)

)
,

where V (A) denotes the semigroup of Murray–von Neumann equivalence classes of projections
in A ⊗ K. Equip this set with an addition operation as follows:

(i) if x, y ∈ V (A), then their sum is the usual sum in V (A);
(ii) if x, y ∈ SAff(T(A)), then their sum is the usual (pointwise) sum in SAff(T(A));

(iii) if x ∈ V (A) and y ∈ SAff(T(A)), then their sum is the usual (pointwise) sum of x̂ and y in
SAff(T(A)), where x̂(τ ) = τ(x), ∀τ ∈ T(A).

Equip V (A) � SAff(T(A)) with the partial order � which restricts to the usual partial order on
each of V (A) and SAff(T(A)), and which satisfies the following conditions for x ∈ V (A) and
y ∈ SAff(T(A)):

(i) x � y if and only if x̂(τ ) < y(τ), ∀τ ∈ T(A);
(ii) y � x if and only if y(τ) � x̂(τ ), ∀τ ∈ T(A).

It is shown in [3] that the Cuntz semigroup of A is order isomorphic to the ordered Abelian
semigroup V (A) � SAff(T(A)) defined above whenever ι(A ⊗ K) = SAff(T(A)). This structure
theorem therefore applies to the algebras covered by Theorem 1.1 provided that they have strict
comparison.

6.2. Two conjectures of Blackadar–Handelman

In their 1982 study of dimension functions on unital tracial C∗-algebras—equivalently, ad-
ditive, unital, and order-preserving maps from the Cuntz semigroup into R

+—Blackadar and
Handelman made two conjectures [1]:

(i) The space of lower semicontinuous dimension functions—dimension functions of the
form dτ for a normalized 2-quasitrace τ—is weakly dense among all dimension functions.

(ii) The affine space of all dimension functions is a Choquet simplex.

It was proved in [2] that these conjectures hold for a unital simple separable exact C∗-algebra
whose Cuntz semigroup has the form described in Section 6.1, and so the conjectures hold for
the algebras covered by Theorem 1.1 provided that they are exact and have strict comparison.

6.3. Z -stability and a stably finite version of a theorem of Kirchberg

At the ICM Satellite Meeting on Operator Algebras in 1994, Kirchberg announced that a sim-
ple separable nuclear C∗-algebra is purely infinite if and only if it absorbs the Cuntz algebra O∞
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tensorially. This result is a cornerstone of the theory of purely infinite C∗-algebras and their clas-
sification. Using results of Rørdam from [12] and the definition of strict comparison, one can
rephrase Kirchberg’s result:

Theorem 6.1. Let A be a simple separable nuclear traceless C∗-algebra. It follows that

A ∼= A ⊗ Z ⇔ A has strict comparison.

Winter and the second named author have conjectured that Theorem 6.1 continues to hold in
the absence of the “traceless” hypothesis, giving a stably finite version of the Geneva Theorem.
As in the purely infinite case, confirmations of this conjecture lead to strong classification re-
sults for simple C∗-algebras. Indeed, we shall give such an application in Section 6.4 below. An
important step toward the solution of this conjecture has recently been taken by Winter.

Theorem 6.2. (See Winter [18].) Let A be a unital simple separable C∗-algebra with locally
finite decomposition rank. If Cu(A) ∼= Cu(A ⊗ Z), then A ∼= A ⊗ Z .

If A is a unital simple exact C∗-algebra with nonempty tracial state space, then the statement
“The Cuntz semigroup of A has the form described in Section 6.1” can be neatly summarized by
saying that Cu(A) ∼= Cu(A ⊗ Z). We therefore have

Corollary 6.3. Let A be a unital simple separable C∗-algebra with locally finite decomposition
rank and nonempty tracial state space. Suppose that A satisfies any of conditions (i)–(iii) in
Theorem 1.1. It follows that

A ∼= A ⊗ Z ⇔ A has strict comparison.

This represents a substantial confirmation of the conjecture described above.

6.4. Classification of C∗-algebras

Winter and Lin and Niu, have proved strong classification theorems under the assumption
of Z -stability [16,17,8]. In light of these, we have the following confirmation of Elliott’s classi-
fication conjecture.

Corollary 6.4. Let C denote the class of C∗-algebras which satisfy all of the conditions of Corol-
lary 6.3 and the UCT and have enough projections to separate their traces. It follows that Elliott’s
conjecture holds for C : if A,B ∈ C and

φ : K∗(A) → K∗(B)

is a graded order isomorphism with φ∗[1A] = [1B ], then there is an ∗-isomorphism � : A → B

which induces φ.
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6.5. Classification of Hilbert modules

Let A be a unital separable C∗-algebra with nonempty tracial state space, and let E be a
countably generated Hilbert module over A. It follows from [10] that E ∼= a(A ⊗ K) for some
positive a ∈ A ⊗ K. If A has stable rank one, then the isomorphism class of E depends only on
the Cuntz equivalence class of a, and we may define dτ (E) = dτ (ã) for any ã is this equivalence
class. By Kasparov’s stabilization theorem, there is a projection PE ∈ B(HA) such that E is
isomorphic to PEHA. (Here HA = �2 ⊗ A is the standard Hilbert module over A.) Corollary 6.3
yields Z -stability for an algebra A as in Theorem 1.1 provided that it has strict comparison and
locally finite decomposition rank. Appealing to [12], this gives stable rank one, and so a further
appeal to [3] gives the following classification result.

Corollary 6.5. Let A be a unital simple separable C∗-algebra satisfying all of the conditions of
Corollary 6.3. Given two countably generated Hilbert modules E, F over A, the following are
equivalent:

(i) E is isomorphic to F ;
(ii) either 〈PE〉 = 〈PF 〉 ∈ V(A) (in the case PE,PF ∈ A ⊗ K), or dτ (E) = dτ (F ), ∀τ ∈ T(A).

In particular, if neither E nor F is a finitely generated projective module, then E ∼= F if and only
if dτ (E) = dτ (F ), ∀τ ∈ T(A).
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