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Abstract: We prove that the C∗-algebra of a minimal diffeomorphism satisfies
Blackadar’s Fundamental Comparability Property for positive elements. This leads to
the classification, in terms of K-theory and traces, of the isomorphism classes of coun-
tably generated Hilbert modules over such algebras, and to a similar classification for
the closures of unitary orbits of self-adjoint elements. We also obtain a structure theo-
rem for the Cuntz semigroup in this setting, and prove a conjecture of Blackadar and
Handelman: the lower semicontinuous dimension functions are weakly dense in the
space of all dimension functions. These results continue to hold in the broader setting
of unital simple ASH algebras with slow dimension growth and stable rank one. Our
main tool is a sharp bound on the radius of comparison of a recursive subhomogeneous
C∗-algebra. This is also used to construct uncountably many non-Morita-equivalent
simple separable amenable C∗-algebras with the same K-theory and tracial state space,
providing a C∗-algebraic analogue of McDuff’s uncountable family of II1 factors. We
prove in passing that the range of the radius of comparison is exhausted by simple
C∗-algebras.

1. Introduction

The comparison theory of projections is fundamental to the theory of von Neumann
algebras, and is the basis for the type classification of factors. For a general C∗-algebra
this theory is vastly more complicated, but no less central. Blackadar opined in [1]
that “the most important general structure question concerning simple C∗-algebras is
the extent to which the Murray-von Neumann comparison theory for factors is valid
in arbitrary simple C∗-algebras.” In this article we answer Blackadar’s question for the
C∗-algebras associated to smooth minimal dynamical systems, among others, and give
several applications.

� This research was supported in part by an NSERC Discovery Grant.
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Tellingly, Blackadar’s quote makes no mention of projections. A C∗-algebra may
have few or no projections, in which case their comparison theory says little about the
structure of the algebra. The appropriate replacement for projections is positive ele-
ments, along with a notion of comparison for the latter which generalises Murray-von
Neumann comparison for projections. This idea was first introduced by Cuntz in [9]
with a view to studying dimension functions on simple C∗-algebras. His comparison
relation is conveniently encoded in what is now known as the Cuntz semigroup, a positi-
vely ordered Abelian monoid whose construction is analogous to that of the Murray-von
Neumann semigroup. When the natural partial order on this semigroup is governed by
traces, then we say that the C∗-algebra has strict comparison of positive elements (see
Subsec. 2.2 for a precise definition); this property, first introduced in [1], is also known as
Blackadar’s Fundamental Comparability Property for positive elements. It is the best
available analogue among simple C∗-algebras for the comparison theory of projections
in a factor, and a powerful regularity property necessary for the confirmation of G.
A. Elliott’s K-theoretic rigidity conjecture (see [11 and 27]). Its connection with the
comparison theory of projections in a von Neumann algebra is quite explicit: if a uni-
tal simple stably finite C∗-algebra A has strict comparison of positive elements, then
Cuntz comparison for those positive elements with zero in their spectrum is synony-
mous with Murray-von Neumann comparison of the corresponding support projections
in the bidual; the remaining positive elements have support projections which are contai-
ned in A, and Cuntz comparison for these elements reduces to Murray-von Neumann
comparison of their support projections in A, as opposed to A∗∗.

Our main result applies to a class of C∗-algebras which contains properly the
C∗-algebras associated to minimal diffeomorphisms. Recall that a C∗-algebra is sub-
homogeneous if there is a uniform bound on the dimensions of its irreducible represen-
tations, and approximately subhomogeneous (ASH) if it is the limit of a direct system of
subhomogeneous C∗-algebras. There are no known examples of simple separable ame-
nable stably finite C∗-algebras which are not ASH. Every unital separable ASH algebra
is the limit of a direct sequence of recursive subhomogeneous C∗-algebras, a particularly
tractable kind of subhomogeneous C∗-algebra ([19]).

Theorem 1.1. Let (Ai , φi ) be a direct sequence of recursive subhomogeneous
C∗- algebras with slow dimension growth. Suppose that the limit algebra A is unital
and simple. It follows that A has strict comparison of positive elements.

We note that the hypothesis of slow dimension growth is necessary, as was shown by
Villadsen in [31]. The relationship between Theorem 1.1 and the C∗-algebras of minimal
dynamical systems is derived from the following theorem:

Theorem 1.2 ([17]). Let M be a compact smooth connected manifold, and let h : M →
M be a minimal diffeomorphism. It follows that the transformation group C∗-algebra
C∗(M,Z, h) is a unital simple direct limit of recursive subhomogeneous C∗-algebras
with slow dimension growth (indeed, no dimension growth).

K-theoretic considerations show the class of C∗-algebras covered by Theorem 1.1 to
be considerably larger than the class covered by Theorem 1.2.

Let us describe briefly the applications of our main result. In a C∗-algebra A of stable
rank one, the Cuntz semigroup can be identified with the semigroup of isomorphism
classes of countably generated Hilbert A-modules—addition corresponds to the direct
sum, and the partial order is given by inclusion of modules ([7]). It is also known that
positive elements a, b ∈ A are approximately unitarily equivalent if and only if the
canonical maps from C0(0, 1] into A induced by a and b agree at the level of the Cuntz
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semigroup ([5]). Thus, to the extent that one knows the structure of the Cuntz semigroup,
one also knows what the isomorphism classes of Hilbert A-modules and the closures of
unitary orbits of positive operators look like. If A is in addition unital, simple, exact, and
has strict comparison of positive elements, then its Cuntz semigroup can be described
in terms of K-theory and traces (see [4, Theorem 2.6]), and the Ciuperca-Elliott clas-
sification of orbits of positive operators extends to self-adjoint elements. Thus, for the
algebras of Theorem 1.1, under the additional assumption of stable rank one, we have a
description of the countably generated Hilbert A-modules and of the closures of unitary
orbits of self-adjoints in terms of K-theory and traces. (In fact, this description also cap-
tures the inclusion relation for the said modules, and the structure of their direct sums.)
This result applies to the C∗-algebras of minimal diffeomorphisms as these were shown
to have stable rank one by N. C. Phillips ([23]). Our classification is quite practical, as
the K-theory of these algebras is accessible through the Pimsner-Voiculescu sequence
and their traces have a nice description as the invariant measures on the manifold M .
The classification of Hilbert modules obtained is analogous to the classification of
W∗-modules over a II1 factor. (See [4] and Subsects. 5.4 and 5.5.) Finally, we note
that Jacob has recently obtained a description of the natural metric on the space of
unitary orbits of self-adjoint elements in a unital simple ASH algebra under certain
assumptions, one of which is strict comparison. This gives another application of
Theorem 1.1 ([15]).

It was shown in [3, Theorem 6.4] that if the structure theorem for the Cuntz semigroup
alluded to above holds for A, then the lower semicontinuous dimension functions on A
are weakly dense in the space of all dimension functions on A, confirming a conjecture
of Blackadar and Handelman from the early 1980s. This conjecture therefore holds for
the algebras of Theorem 1.1. (See Subsects. 5.2 and 5.3.)

If A is a unital stably finite C∗-algebra, then one can define a nonnegative real-valued
invariant called the radius of comparison which measures the extent to which the order
structure on the Cuntz semigroup of A is determined by (quasi-)traces. This invariant
has proved useful in the matter of distinguishing simple separable amenable C∗-algebras
both in general ([29]) and in the particular case of minimal C∗-dynamical systems ([12]).
The proof of Theorem 1.1 follows from a sharp upper bound that we obtain for the radius
of comparison of a recursive subhomogeneous C∗-algebra. This bound generalises and
improves substantially upon our earlier bound for homogeneous C∗-algebras ([30]). In
addtion to being crucial for the proof of Theorem 1.1, this bound has other applications.
We use it to prove that the range of the radius of comparison is exhausted by simple
C∗-algebras, and that there are uncountably many non-Morita-equivalent simple sepa-
rable amenable C∗-algebras which all have the same K-theory and tracial state space
(Theorem 5.11). This last result is proved using approximately homogenenous (AH)
algebras of unbounded dimension growth, and so may be viewed as a strong converse
to the Elliott-Gong-Li classification of simple AH algebras with no dimension growth
([10]). It can also be viewed as a C∗-algebraic analogue of McDuff’s uncountable family
of pairwise non-isomorphic II1 factors ([18]). (See Subsect. 5.1 and 5.6.)

W. Winter has recently announced a proof of Z-stability for a class of C∗-algebras
which includes unital simple direct limits of recursive subhomogeneous C∗-algebras with
no dimension growth, leading to an alternative proof of Theorem 1.1 under the stronger
hypothesis of no dimension growth. Those working on G. A. Elliott’s classification pro-
gram for separable amenable C∗-algebras suspect that the conditions of slow dimension
growth and no dimension growth are equivalent, but this problem remains open even for
AH C∗-algebras. Gong has shown that no dimension growth and a strengthened version
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of slow dimension growth are equivalent for unital simple AH algebras, an already
difficult result (see [13]).

The paper is organised as follows: Section 2 collects our basic definitions and prepara-
tory results; Section 3 establishes a relative comparison theorem in the Cuntz semigroup
of a commutative C∗-algebra; Section 4 applies the said comparison theorem to obtain
sharp bounds on the radius of comparison of a recursive subhomogeneous algebra;
Section 5 describes our applications in detail.

2. Preliminaries

2.1. The Cuntz semigroup. Let A be a C∗-algebra, and let Mn(A) denote the n × n
matrices whose entries are elements of A. If A = C, then we may simply write Mn .

Let M∞(A) denote the algebraic limit of the direct system (Mn(A), φn), where φn :
Mn(A)→ Mn+1(A) is given by

a �→
(

a 0
0 0

)
.

Let M∞(A)+ (resp. Mn(A)+) denote the positive elements in M∞(A) (resp. Mn(A)).
Given a, b ∈ M∞(A)+, we say that a is Cuntz subequivalent to b (written a � b) if
there is a sequence (vn)

∞
n=1 of elements of M∞(A) such that

||vnbv∗n − a|| n→∞−→ 0.

We say that a and b are Cuntz equivalent (written a ∼ b) if a � b and b � a. This
relation is an equivalence relation, and we write 〈a〉 for the equivalence class of a. The
set

W (A) := M∞(A)+/ ∼
becomes a positively ordered Abelian monoid when equipped with the operation

〈a〉 + 〈b〉 = 〈a ⊕ b〉
and the partial order

〈a〉 ≤ 〈b〉 ⇔ a � b.

In the sequel, we refer to this object as the Cuntz semigroup of A. (It was originally
introduced by Cuntz in [9].) The Grothendieck enveloping group of W (A) is denoted
by K∗

0(A).
Given a ∈ M∞(A)+ and ε > 0, we denote by (a − ε)+ the element of C∗(a)

corresponding (via the functional calculus) to the function

f (t) = max{0, t − ε}, t ∈ σ(a).
(Here σ(a) denotes the spectrum of a.) The proposition below collects some facts about
Cuntz subequivalence due to Kirchberg and Rørdam.

Proposition 2.1 ([16,26]). Let A be a C∗-algebra, and a, b ∈ A+.

(i) (a − ε)+ � a for every ε > 0.
(ii) The following are equivalent:

(a) a � b;
(b) for all ε > 0, (a − ε)+ � b;
(c) for all ε > 0, there exists δ > 0 such that (a − ε)+ � (b − δ)+.

(iii) If ε > 0 and ||a − b|| < ε, then (a − ε)+ � b.
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2.2. Dimension functions and strict comparison. Now suppose that A is unital and
stably finite, and denote by QT(A) the space of normalised 2-quasitraces on A (v.
[2, Def. II.1.1]). Let S(W (A)) denote the set of additive and order preserving maps
d : W (A) → R

+ having the property that d(〈1A〉) = 1. Such maps are called states.
Given τ ∈ QT(A), one may define a map dτ : M∞(A)+ → R

+ by

dτ (a) = lim
n→∞ τ(a

1/n). (1)

This map is lower semicontinous, and depends only on the Cuntz equivalence class of
a. It moreover has the following properties:

(i) if a � b, then dτ (a) ≤ dτ (b);
(ii) if a and b are mutually orthogonal, then dτ (a + b) = dτ (a) + dτ (b);

(iii) dτ ((a − ε)+)↗ dτ (a) as ε → 0.

Thus, dτ defines a state on W (A). Such states are called lower semicontinuous dimen-
sion functions, and the set of them is denoted LDF(A). QT(A) is a simplex ([2, Theorem
II.4.4]), and the map from QT(A) to LDF(A) defined by (1) is bijective and affine ([2,
Theorem II.2.2]). A dimension function on A is a state on K∗

0(A), assuming that the
latter has been equipped with the usual order coming from the Grothendieck map. The
set of dimension functions is denoted DF(A). LDF(A) is a (generally proper) face of
DF(A). If A has the property that a � b whenever d(a) < d(b) for every d ∈ LDF(A),
then we say that A has strict comparison of positive elements.

2.3. Preparatory results. We now recall and improve upon some results that will be
required in the sequel.

Definition 2.2 (cf. Definition 3.4 of [30]). Let X be a compact Hausdorff space, and
let a ∈ Mn(C(X)) be positive with (lower semicontinuous) rank function f : X → Z

+

taking values in {n1, . . . , nk}, n1 < n2 < · · · < nk. Set

Fi,a := {x ∈ X | f (x) = ni }.
We say that a is well supported if, for each 1 ≤ i ≤ k, there is a projection

pi ∈ Mn(C(Fi,a)) such that

lim
r→∞ a(x)1/r = pi (x), ∀x ∈ Fi,a,

and pi (x) ≤ p j (x) whenever x ∈ Fi,a ∩ Fj,a and i ≤ j .

Theorem 2.3 (cf. Theorem 3.9 of [30]). Let X be a compact Hausdorff space, and let
a ∈ Mn(C(X))+ and ε > 0 be given. It follows that there is ã ∈ Mn(C(X))+ with the
following properties:

(i) ã ≤ a;
(ii) ||a − ã|| < ε;

(iii) ã is well supported.

Remark 2.4. In the statement of Theorem 3.9 of [30], X is required to be a finite simplicial
complex, but this is only to ensure that some further conclusions about the approximant
ã can be drawn. The proof of this theorem, followed verbatim, also proves Theorem
2.3—one simply ignores all statements which concern the simplicial structure of X . An
alternative proof can be found in [17].
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For our purposes, we require a different and in some ways strengthened version of
Theorem 2.3. It says that the well-supported approximant ã can be obtained as a cut-down
of a, at the possible expense of condition (i).

Lemma 2.5. Let X, a, and ε be as in the statement of Theorem 2.3. Suppose further that
a has norm at most one. It follows that there is a positive element h of Mn(C(X)) of
norm at most one such that the following statements hold:

(i) ||hah − a|| < ε;
(ii) ||ha − a|| < ε/2 and ||ah − a|| < ε/2;

(iii) hah is well-supported.

Proof. Apply Theorem 2.3 to a with the tolerance ε/4 to obtain the approximant ã.
This approximant can be described as follows (the details can be found in the proof of
Theorem 3.9, [30], which is constructive). At every x ∈ X there are mutually orthogonal
positive elements a1(x), . . . , ak(x) of Mn(C) such that

a(x) = a1(x)⊕ a2(x)⊕ · · · ⊕ ak(x).

Note that k varies with x , and that we make no claims about the continuity of the ai s.
Our approximant then has the form

ã(x) = λ1a1(x)⊕ λ2a2(x)⊕ · · · ⊕ λkak(x),

where λi ∈ [0, 1]. We also have that ||ai (x)|| < ε/4 whenever λi �= 1, and that there
is an η > 0, independent of x , such that the spectrum of ai (x) is contained in [η, 1]
whenever λi = 1.

Let f : [0, 1] → [0, 1] be the continuous map given by

f (t) =
{

t/η, t ≤ η

1, t > η
.

Set

h(x) = f (ã(x)) = f (λ1a1(x))⊕ f (λ2a2(x))⊕ · · · ⊕ f (λkak(x)),

and note that h : X → Mn(C) is indeed a positive element of Mn(C(X)) since ã is.
Let us first verify that ||ha − a|| < ε/2; the proof that ||ah − a|| < ε/2 is similar.

For every x ∈ X we have

h(x)a(x)− a(x) =
k⊕

i=1

( f (λi ai (x))ai (x)− ai (x)) .

If λi = 1, then f (λi ai (x)) = pi (x), where pi (x) is the support projection of ai (x) in
Mn(C). Thus,

f (λi ai (x))ai (x)− ai (x) = pi (x)ai (x)− ai (x) = ai (x)− ai (x) = 0.

Otherwise, ||ai (x)|| < ε/4 and || f (λi ai (x))|| ≤ 1, whence

|| f (λi ai (x))ai (x)− ai (x)|| < ε/4 + ε/4 = ε/2.
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We have shown that || f (λi ai (x))ai (x)− ai (x)|| < ε/2 for each i ∈ {1, . . . , k}, so that
||ha − a|| < ε/2, proving (ii). For (i), we have

‖hah − a‖ = ‖hah − ha + ha − a‖
≤ ‖h‖ · ‖ah − a‖ + ‖ha − a‖
< ε/2 + ε/2 = ε.

To complete the proof, we must show that hah is well-supported. The property of
being well-supported depends only on the support projection of hah(x) as x ranges over
X . It will thus suffice for us to show that the support projection of hah(x) is the same as
that of ã(x), since ã is well-supported. Ifλi is zero, then so is f (λi ai (x))ai (x) f (λi ai (x)),
whence both it and λi ai (x) have the same support projection, namely, zero. If λi �= 0,
then f (λi ai (x))ai (x) f (λi ai (x)) is the image of λi ai (x) under the map t �→ f (t)(t/λi )

f (t). This map is nonzero on (0, 1], and it follows that λi ai (x) and f (λi ai (x))ai (x)
f (λi ai (x)) again have the same support projection. Since these statements hold for each
i ∈ {1, . . . , k}, we conclude that the support projections of ã(x) and hah(x) agree for
each x ∈ X . ��
Proposition 2.6 (Proposition 4.2 (1) of [22]). Let X be a compact Hausdorff space
of finite covering dimension d, and let E ⊂ X be closed. Let p, q ∈ Mn(C(X)) be
projections with the property that

rank(q(x)) +
1

2
(d − 1) ≤ rank(p(x)), ∀x ∈ X.

Let s0 ∈ Mn(C(E)) be such that s∗0 s0 = q|E and s0s∗0 ≤ p|E . It follows that there is
s ∈ Mn(C(X)) such that

s∗s = q, ss∗ ≤ p, and s0 = s|E .
We record a corollary of Proposition 2.6 for use in the sequel.

Corollary 2.7. Let X be a compact Hausdorff space of covering dimension d ∈ N, and
let E1, . . . , Ek be a cover of X by closed sets. Let p ∈ Mn(C(X)) and qi ∈ Mn(C(Ei ))

be projections of constant rank for each i ∈ {1, . . . , k}. Set ni = rank(qi ), and assume
that n1 < n2 < · · · < nk. Assume that qi (x) ≤ q j (x) whenever x ∈ Ei ∩ E j and i ≤ j .
Finally, suppose that ni − rank(p) ≥ (1/2)(d − 1) for every i .

The following statements hold:

(i) there is a partial isometry w ∈ Mn(C(X)) such that w∗w = p and

(ww∗)(x) ≤
∧

{i | x∈Ei }
qi (x), ∀x ∈ X;

(ii) if Y ⊆ X is closed, p|Y corresponds to a trivial vector bundle, and

p(y) ≤
∧

{i | y∈Ei }
qi (y), ∀y ∈ Y,

then p|Y can be extended to a projection p̃ on X which also corresponds to a
trivial vector bundle and satisfies

p̃(x) ≤
∧

{i | x∈Ei }
qi (x), ∀x ∈ X.
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Proof. (i) The rank inequality hypothesis and the stability properties of vector bundles
imply that there is a partial isometry w1 ∈ Mn(C(E1)) such that w∗

1w1 = p and
w1w

∗
1 ≤ q1. Since q1(x) ≤ q j (x) whenever x ∈ E1 ∩ E j , we have

(w1w
∗
1)(x) ≤

∧
{ j | x∈E j }

q j (x), ∀x ∈ E1.

Suppose now that we have found a partial isometry wi ∈ Mn(C(E1 ∪ · · · ∪ Ei ))

such that w∗
i wi = p and

(wiw
∗
i )(x) ≤

∧
{ j | x∈E j }

q j (x), ∀x ∈ E1 ∪ · · · ∪ Ei . (2)

We may now apply Proposition 2.6 with X = Ei+1, E = Ei+1 ∩ (E1 ∪ · · · ∪ Ei ),
and s0 = wi |Ei+1∩(E1∪···∪Ei ) to extendwi to a partial isometrywi+1 ∈ Mn(C(E1∪
· · · ∪ Ei+1)) which satisfies (2) with i + 1 in place of i . Continuing inductively
yields the desired result.

(ii) We will explain how to extend p|Y to p̃ defined on Y ∪ E1. The desired result
then follows from iteration of this procedure.

Let r be a projection over Y ∪E1 which corresponds to a trivial bundle and has
rank equal to rank(p). Since r |Y and p|Y are Murray-von Neumann equivalent,
we may use Proposition 2.6 to find a partial isometry s defined over Y ∪ E1 with
the property that s∗s = r and ss∗|Y = p. Thus, without loss of generality, we
may assume that r |Y = p|Y .

Now r |Y∩E1 corresponds to a trivial vector bundle and is subordinate to
q1|Y∩E1 . We may view this subordination as the statement that r |Y∩E1 is a partial
isometry such that

r |Y∩E1 = (r |Y∩E1)
∗(r |Y∩E1) = (r |Y∩E1)(r |Y∩E1)

∗ ≤ q1|Y∩E1 .

By Proposition 2.6, we may extend r |Y∩E1 to a partial isometry v defined on E1
with the property that

r |E1 = v∗v ∼ vv∗ ≤ q1.

We can extend v to Y ∪ E1 by setting v(x) = r(x) for each x ∈ Y\E1. Now set
p̃ = vv∗, so that p̃, by virtue of being equivalent to r , must correspond to a trivial
vector bundle. It follows that for every x ∈ Y, v(x)v(x)∗ = (r |Y )(x) = (p|Y )(x),
and for every x ∈ E1

p̃(x) = v(x)v(x)∗ ≤ q1(x).

��
The proof of the next lemma is contained in the proof of [30, Prop. 3.7].

Lemma 2.8. Let X be a compact Hausdorff space, and let a, b ∈ Mn(C(X)) be positive.
Suppose that there is a non-negative integer k such that

rank(a(x)) + k ≤ rank(b(x)), ∀x ∈ X.

It follows that for every ε > 0 there is δ > 0 with the property that

rank((a − ε)+(x)) + k ≤ rank((b − δ)+(x)), ∀x ∈ X.
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3. A Relative Comparison Result in Mn(C(X))

The goal of this section is to prove the following lemma.

Lemma 3.1. There is a natural number N such that the following statement holds: Let X
be a compact metrisable Hausdorff space of finite covering dimension d, and let Y ⊆ X
be closed. Let a, b ∈ Mn(C(X)) be positive and, for a given tolerance 1 > ε > 0, satisfy

(i) ||a(x)− b(x)|| < ε for each x ∈ Y , and
(ii) rank(a(x)) + (d − 1)/2 ≤ rank(b(x)) for each x /∈ Y .

It follows that there are positive elements c, d and a unitary element u in M4n(C(X))
whose restrictions to Y are all equal to 1 ∈ M4n(C(Y )), and which, upon viewing a and
b as elements of the upper left n × n corner of M4n(C(X)), satisfy the inequality

||(duc)b(duc)∗ − a|| < N
√
ε.

The proof of Lemma 3.1 proceeds in several steps.

Lemma 3.2. Let X be a compact metrisable Hausdorff space, and let Y be a closed
subset of X. Suppose that we have positive elements a, b ∈ Mn(C(X)), a tolerance
ε > 0, and a natural number k satisfying

(i) ||a|Y − b|Y || < ε, and
(ii) rank(a(x)) + k ≤ rank(b(x) for each x /∈ Y .

It follows that there are a positive element ã ∈ Mn(C(X)) and open neighbourhoods
U1 ⊆ U2 of Y with the following properties:

(a) ||a − ã|| < 4ε;
(b) U1 ⊆ U2;
(c) ã(x) = (b(x)− 2ε)+ for every x ∈ U2\U1;
(d) rank(ã(x)) + k ≤ rank(b(x)) for each x ∈ X\U1.

Proof. By the continuity of a and b we can find open neighbourhoods U1 ⊆ U2 ⊆ U3
of Y such that U1 ⊆ U2, U2 ⊆ U3, and ||a|U3

− b|U3
|| < (3/2)ε. Let f : X → [0, 1]

be a continuous map which is equal to zero on Y ∪ (X\U3) and equal to one on U2\U1.
As a first approximation to our desired element ã, we define

a1(x) = (1 − f (x))a(x) + f (x)b(x).

We then have ||a1|U3
−b|U3

|| < 2ε and ||a −a1|| < 2ε. Now find a continuous function
g : X → [0, 1] which is zero on Y , and equal to one on X\U1. Set
ã(x) = (a1(x)− 2εg(x))+. Thus, conclusions (a) and (b) are satisfied.

For each x ∈ U2\U1 we have f (x) = g(x) = 1, so that a1(x) = b(x) and
ã(x) = (b(x)− 2ε)+. This establishes part (c) of the conclusion.

For part (d) of the conclusion we treat two cases. For x ∈ U3\U1 we have the estimate
||a1(x)− a(x)|| < 2ε and the fact that ã(x) = (a1(x)− 2ε)+. Proposition 2.1 (iii) then
implies that ã(x) � a(x), whence

rank(ã(x)) ≤ rank(a(x)) ≤ rank(b(x))− k.

For x ∈ X\U3 we have a1(x) = a(x) and ã(x) = (a1(x) − 2ε)+. Thus, ã(x) � a(x)
and we proceed as before. ��

We can now make our first reduction.
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Lemma 3.3. In order to prove Lemma 3.1, it will suffice to prove the following statement,
hereafter referred to as (S): Let X be a compact metrisable Hausdorff space of covering
dimension d ∈ N, and let Y ⊆ X be closed. Let 1 > ε > 0 be given. Suppose that
â, b̂ ∈ Mn(C(X))+ have the following properties:

(i) ||(â − b̂)|U || < ε for some open set U ⊇ Y ;
(ii) b̂|X\U is well-supported;

(iii) there are an open set V ⊇ U and γ > 0 such that

â(x) = (b̂(x)− γ )+, ∀x ∈ V \U ;
(iv)

rank(â(x)) + (d − 1)/2 ≤ rank(b̂(x)), ∀x ∈ X\U.

It follows that there are positive elements ĉ, d̂ and a unitary element v in M4n(C(X))
whose restrictions to U are all equal to 1 ∈ M4n(C(U )), and which, upon viewing â
and b̂ as elements of the upper left n × n corner of M4n(C(X)), satisfy the inequality

||(d̂vĉ)b̂(d̂vĉ)∗ − â|| < 4
√
ε.

Proof. Let a and b be as in the hypotheses of Lemma 3.1. One can immediately find an
open set U ⊇ Y such that ||a(x) − b(x)|| ≤ ε0 < ε for every x ∈ U . By Lemma 2.8,
there is a δ > 0 such that

rank(a(x)− ε)+) + (d − 1)/2 ≤ rank(b(x)− δ)+, ∀x ∈ X.

Set η = min{ε − ε0, δ}.
Fix an open set W ⊇ Y such that W ⊆ U . Apply Lemma 2.5 to b|X\W with the

tolerance η to produce a positive element ĥ ∈ Mn(C(X\W )) with the properties listed
in the conclusion of that lemma. Fix a continuous map f : X → [0, 1] which is equal
to one on W and equal to zero on X\U . Set

h(x) = f (x)1Mn + (1 − f (x))ĥ(x), ∀x ∈ X,

and b̂(x) = h(x)b(x)h(x). For each x ∈ X\U , we have f (x) = 0. It follows that
b̂|X\U = (ĥ|X\U )(b|X\U )(ĥ|X\U ), whence, by part (i) of the conclusion of Lemma 2.5,
b̂|X\U is well-supported.

We have

||hbh − b||
= sup

x∈X
||h(x)b(x)h(x)− b(x)||

= sup
x∈X

||[ f (x)1 + (1 − f (x))ĥ(x))]b(x)[( f (x)1 + (1 − f (x))ĥ(x))] − b(x)|| < η,

where the last inequality follows from part (ii) of the conclusion of Lemma 2.5. Since
η ≤ ε− ε0, we have ||a|U − b̂|U || < ε. The inequality η ≤ δ implies that ||b̂ − b|| < δ.
Combining this fact with part (iii) of Proposition 2.1 yields

rank((a(x)− ε)+) + (d − 1)/2 ≤ rank(b(x)− δ)+) ≤ rank(b̂(x)), ∀x ∈ X.
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We will now apply Lemma 3.2 with b̂, (a − ε)+, and 2ε substituted for b, a, and ε,
respectively. Note that by shrinking U and W above, we may assume that they will serve
as the sets U2 and U1 of Lemma 3.2, respectively. Form the approximant ã to (a − ε)+
provided in the conclusion of Lemma 3.2, and set â = ã. Note that ‖â− (a−ε)+‖ < 8ε.
We have

||(â − b̂)|U || ≤ ||(â − (a − ε)+)|U || + ||((a − ε)+ − b̂)|U ||
< 2(4ε) + 2ε = 10ε

and

ã(x) = (b̂(x)− 4ε)+, ∀x ∈ X.

Our â and b̂ now satisfy the hypotheses of statement (S) with 10ε and 4ε substituted
for ε and γ , respectively. Let ĉ, d̂, and v be as in the conclusion of statement (S). Set
u = v, d = d̂, and c = ĉh. It follows that

||(duc)b(duc)∗ − a|| = ||(d̂vĉ)(hbh)(d̂vĉ)∗ − a||
≤ ||((d̂vĉ)b̂(d̂vĉ)∗ − â|| + ||â − a||
< 40

√
ε‖ + ‖â − (a − ε)+‖ + ‖a − (a − ε)+‖

< 40
√
ε + 9ε < 49

√
ε.

This shows that if (S) holds, then Lemma 3.1 holds (with N = 49). ��
The next lemma constructs the unitary u of Lemma 3.1.

Lemma 3.4. Let X be a compact metrisable Hausdorff space of covering dimension
d ∈ N, and let a, b ∈ Mn(C(X)) be well-supported positive elements with the property
that

rank(a(x)) +
1

2
(d − 1) ≤ rank((b − ε)+(x))

for some ε > 0 and every x ∈ X. Suppose further that a(y) ≤ (b(y) − ε)+ for each y
in the closure of an open subset Y of X, and that a and b have norm at most one.

For each k ∈ {0, 1, . . . , n}, set

Ek = {x ∈ Z | rank(a(x)) = k}; Fk = {x ∈ Z | rank(b(x)) = k}.
For each x ∈ Ek, let pk(x) be the support projection of a(x); for each x ∈ Fk let qk(x)
be the support projection of b(x). Since a and b are well-supported, the continuous
projection-valued maps x �→ pk(x) and x �→ qk(x) can be extended to Ek and Fk,
respectively. We also denote these extended maps by pk and qk.

View Mn(C(X)) as the upper-left n × n corner of M4n(C(X)), and let Z ⊆ Y be
closed. It follows that there is a unitary u ∈ M4n(C(X)) with the following properties:

(i) u(z) = 14n ∈ M4n(C) for each z ∈ Z;
(ii)

(u∗ pku)(x) ≤
∧

{ j | x∈Fj }
q j (x), ∀x ∈ Ek, ∀k ∈ {0, . . . , n};

(iii) u is homotopic to the unit of M4n(C(X)).
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Proof. Step 1. For each y ∈ Y , set v(y) = 1n . Let us verify conclusion (ii) above with
v in place of u for each x ∈ Y ∩ Ek . For each y ∈ Y we have a(y) ≤ b(y), and so

a(y)1/2
n ≤ b(y)1/2

n
, ∀n ∈ N.

It follows that pk(y) ≤ q j (y) for each y ∈ Y ∩ Ek ∩ Fj , and so

(v∗ pkv)(y) = pk(y) ≤
∧

{ j | y∈Fj }
q j (y)

for each y ∈ Y ∩ Ek and k ∈ {1, . . . , n}. It remains to prove that the inequality above
holds when y ∈ Y ∩ Ek .

Set r(x) = χ[ε/2,1](b(x)) for each x ∈ X , so that r(x) dominates the support projec-
tion of (b − ε)+ at x . It follows that pk(x) ≤ r(x) for each x ∈ Ek . In fact,

pk(x) ≤ r(x) ≤
∧

{ j | x∈Fj }
q j (x) (3)

for each k ∈ {0, . . . , n} and x ∈ Ek , where the second inequality follows from the fact
that ∧

{ j | x∈Fj }
q j (x)

is the support projection of b(x) for each x ∈ Ek . It will suffice to prove that the first
inequality holds for y ∈ Y ∩ Ek . It is well known that r(x) is an upper semicontinuous
projection-valued map from X into Mn(C(X)). Fix y ∈ Y ∩ Ek , and let (yn) be a
sequence in Y ∩ Ek converging to y. Since pk(yn) ≤ r(yn) for each n ∈ N we have

(pk(yn)ξ |ξ) ≤ (r(yn)ξ |ξ), ∀ξ ∈ C
n, n ∈ N.

Now

(pk(y)ξ |ξ) = lim
n→∞(pk(yn)ξ |ξ) ≤ lim sup

n→∞
(r(yn)ξ |ξ) ≤ (r(y)ξ |ξ), ∀ξ ∈ C

n,

where the last inequaltiy follows from the upper semicontinuity of r . It follows that
pk(y) ≤ r(y), as required.
Step 2. We will construct partial isometries vk ∈ Mn(C(Ek\Y )) with the following
properties:

(a)

(v∗k pkvk)(x) ≤
∧

{ j | x∈Fj\Y }
q j (x), ∀x ∈ Ek\Y, ∀k ∈ {1, . . . , n};

(b) the vks are compatible in the sense that for each x ∈ Ei ∩ E j\Y with i ≤ j ,

(v∗i pivi )(x) = (v∗j piv j )(x);

(c) for each x ∈ Ek ∩ ∂Y , vk(x) = pk(x) = v(x)pk(x).
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In the third step of the proof, we will extend the v from Step 1 and the vk’s above to
produce the unitary u required by the lemma.

We will prove the existence of the required vk’s by induction on the number of rank
values taken by a. Let us first address the case where a has constant rank equal to k0. In this
case Ek0 = Ek0 = X , and a is Cuntz equivalent to the projection pk0 ∈ Mn(C(X)). We
set vk0(y) = pk0(y) for each y ∈ ∂Y , thus satisfying requirements (a) and (c) for these y.
(Note that condition (b) is met trivially in the present case.) Let j1 < j2 < · · · < jl be
the indices for which Fji �= ∅. The existence of the required partial isometry extending
the definition of vk0 on ∂Y now follows from repeated application of Proposition 2.6: one
substitutes pk0 and q ji for q and p, respectively, in the hypotheses of said proposition.

Now let us suppose that we have found partial isometries v0, . . . , vk satisfying (a),
(b), and (c) above. We must construct vk+1, assuming k < n. We will first construct vk+1
on the boundary

Ek+1 ∩ (E1 ∪ E2 ∪ · · · ∪ Ek) ∩ Y c.

For x ∈ Ek+1 ∩ Ek ∩ Y c, we have

(v∗k pkvk)(x) ≤
∧

{ j | x∈Fj\Y }
q j (x).

From (3) on Ek+1 we also have that the rank of the right-hand side exceeds that of the
left-hand side by at least

rank(pk+1(x)− pk(x)) +
1

2
(d − 1).

Working over Ek+1 ∩ Ek ∩ Y c, we have that (pk+1 − pk) is Murray-von Neumann
equilvalent to a projection fk which is orthogonal to v∗k pkvk and satisfies

fk(x) ≤
∧

{ j | x∈Fj\Y }
q j (x).

(This follows from part (i) of Corollary 2.7.) Let wk be a partial isometry defined over
Ek+1 ∩ Ek ∩ Y c such that w∗

k (pk+1 − pk)wk = fk , and set vk+1 = vk + wk . With this
definition we have

(v∗k+1 pk+1vk+1)(x) ≤
∧

{ j | x∈Fj\Y }
q j (x),

and

(v∗k pkvk)(x) = (v∗k+1 pkvk+1)(x)

for each x ∈ Ek+1 ∩ Ek ∩ Y c.
Let us now show how to extend vk+1 one step further, to Ek+1 ∩ (Ek ∪ Ek−1) ∩ Y c;

its successive extensions to the various

Ek+1 ∩ (Ek ∪ · · · ∪ Ek− j ) ∩ Y c, j ∈ {1, . . . , k − 1},
are similar, and the details are omitted.
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In this paragraph we work over the set Ek+1 ∩ (Ek ∪ Ek−1) ∩ Y c. We will suppose
that this set contains Ek+1 ∩ Ek ∩ Y c strictly, for there is otherwise no extension of vk+1
to be made. Over (Ek+1 ∩ Ek ∩ Y c) ∩ Ek−1, we set wk−1 = vk+1(pk+1 − pk). Thus,
wk−1 is a partial isometry carrying (the restriction of) pk+1 − pk−1 to a subprojection of

Q(x)
def=

⎛
⎜⎝ ∧

{ j | x∈Fj\Y }
q j (x)

⎞
⎟⎠− (vk−1 pk−1v

∗
k−1)(x), x ∈ (Ek+1 ∩ Ek ∩ Y c) ∩ Ek−1.

We moreover have the rank inequality

[rank(Q(x))− rank((vk−1 pk−1v
∗
k−1)(x))] − rank((wk−1w

∗
k−1)(x)) ≥

1

2
(d − 1).

Applying part (i) of Corollary 2.7, we extend wk−1 to a partial isometry defined on all
of Ek+1 ∩ Ek−1 ∩ Y c which has the property that (wk−1w

∗
k−1) ≤ Q(x). Finally, set

vk+1 = vk−1 +wk−1 on this set. It is straightforward to check that vk+1 has the required
properties.

Iterating the arguments above, we have an appropriate definition of vk+1 on

Ek+1 ∩ (E1 ∪ E2 ∪ · · · ∪ Ek) ∩ Y c.

To extend the definition of vk+1 from the set above to all of Ek+1 ∩ Y c, we simply apply
part (i) of Corollary 2.7.
Step 3. Set H−1 = Y and Hk = Ek\Y , so that H−1, . . . , Hn is a closed cover of X . For
each k ∈ {−1, 0, . . . , n} we have a partial isometry vk ∈ Mn(C(Hk)) from Steps 1 and
2 (assuming that v−1 = v = 1). Let rk denote the source projection of vk . Notice that
rk agrees with pk off Y . In this final step of our proof, we will construct the required
unitary u in a manner which extends the vk : (u|Hk )rk = vk .

Suppose that we have found a partial isometry wk ∈ M2n(C(H−1 ∪ · · · ∪ Hk)) with
source projection equal to 1n (i.e., the unit of the upper-left n × n corner) and satisfying
(wk |Hj )r j = v j for each j ∈ {0, . . . , k}. Let us show that k can be replaced with k + 1,
and that wk+1 may moreover be chosen to be an extension of wk .

Over (H−1∪· · ·∪Hk)∩Hk+1,wk carries the projection 1n −rk+1 into a subprojection
of 12n − vk+1v

∗
k+1. The rank of the latter projection exceeds that of the former by at least

(d−1)/2, and so the partial isometrywk(1n −rk+1) defined over (H−1∪· · ·∪Hk)∩Hk+1

can be extended to a partial isometry w
′
k+1 defined over Hk+1 which carries 1n − rk+1

into a subprojection of 12n − vk+1v
∗
k+1 (cf. Proposition 2.6). Settingwk+1 = vk+1 +w

′
k+1

on Hk+1 and wk+1 = wk otherwise gives the desired extension. Iterating this extension
process yields a partial isometry w ∈ M2n(C(X)) with source projection 1n satisfying
(w|Hk )rk = vk .

To complete the proof, it will suffice to find a unitary u ∈ M4n(C(X)) which is
homotopic to the identity (for conclusion (iii)), satisfies u1n = w (for conclusion (ii)),
and is equal to 1 ∈ M4n(C) over Z (for conclusion (i)). We will find a unitary s satisfying
(ii) and (iii), and then modify it to obtain u.

The complement of 1n in M2n(C(X)) is Murray-von Neumann equivalent to the
complement ofww∗, as both projections have the same K0-class and are of rank at least
(d − 1)/2. Let w

′
be a partial isometry implementing this equivalence. It follows that

w+w
′ ∈ M2n(C(X)) is unitary. Setting s = (w+w

′
)⊕(w+w

′
)∗ yields our precursor to

the required unitary u ∈ M4n(C(X))—the K1-class of s is zero, so it is homotopic to 14n
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by virtue of its rank ([24, Theorem 10.12]). The unitary s|Y ∈ M4n(C(Y )) has the form
1n⊕s̃, where s̃ is a 3n×3n unitary homotopic to the identity. (This follows from two facts:
the K1-class of 1n ⊕ s̃ is zero, and the natural map ι : U(M3n(C(Y )) → U(M4n(C(Y ))
given by x �→ 1n ⊕ x is injective by [24, Theorem 10.12].) Let

H : Y × [0, 1] → U(M3n(C))

be a homotopy such that H(y, 0)= s̃(y) and H(y, 1)=13n ∈M3n(C). Let h : Y → [0, 1]
be a continuous map equal to one on Z and equal to zero on ∂Y . Finally, define

u(x) =
{

s(x), x /∈ Y
1n ⊕ H(x, f (x)), x ∈ Y

.

The unitary u is clearly homotopic to s, and so satisfies conclusion (iii). Conclusion (i)
holds for u by construction, and conclusion (ii) holds since u1n = s1n = w. ��
Lemma 3.5. The statement (S) (cf. Lemma 3.3) holds.

Proof. Step 1. To avoid cumbersome notation, we use a, b, c, and d in place of their
“hatted” versions in the hypotheses and conclusion of (S). We will first find the unitary
v and the positive elements c and d required by the conclusion of (S) with two failings:
c and d are not necessarily equal to 1 ∈ M4n(C) at each point of U , and the estimate

∣∣∣∣(cvd)b(cvd)∗ − a
∣∣∣∣ < 4

√
ε

only holds on X\U . Both of these failings will be attributable to c and d alone, and will
be repaired later in Steps 2. and 3.

By combining the hypotheses (i) and (iii) of (S), we may, after perhaps shrinking the
set V , assume that γ < ε. With this choice of V we also have that hypothesis (i) holds
with V in place of U . We will also weaken hypothesis (iii) to an inequality. This has two
advantages. First, by replacing a with (a−δ)+ for some small δ > 0, we can assume that
(iv) holds with b replaced by (b−η)+ for some γ > η > 0. Second, we can assume that
a|X\U is well-supported by using the following procedure: let W ⊇ Y be an open set
whose closure is contained in U ; replace a with a suitably close approximant ã on X\W ,
as provided by Lemma 2.5; choose a continuous map f : X → [0, 1] which is equal to
one on W and equal to zero on X\U ; replace the original a with the positive element
equal to f (x)a(x) + (1 − f (x))ã(x) at each x ∈ X . Let us summarise our assumptions:

(i) ||(a − b)|V || < ε for some open set V ⊇ Y ;
(ii) b|X\U and a|X\U are well-supported (and U ⊆ V );

(iii) there is 0 < γ < ε such that

a(x) ≤ (b(x)− η)+, ∀x ∈ V \U ;
(iv)

rank(a(x)) + (d − 1)/2 ≤ rank((b − η)+(x)), ∀x ∈ X\U.

Set Z = X\U and W = V \U .
For each k ∈ {0, 1, . . . , n}, set

Ek = {x ∈ Z | rank(a(x)) = k}; Fk = {x ∈ Z | rank(b(x)) = k}.
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For each x ∈ Ek , let pk(x) be the support projection of a(x). Similarly, define qk(x)
to be the support projection of b(x) for each x ∈ Fk . Since (the restrictions of) a and
b are well-supported on Z , the continuous projection-valued maps x �→ pk(x) and
x �→ qk(x) can be extended to Ek and Fk , respectively. We also denote these extended

maps by pk and qk . Let Ṽ1 be an open subset of X such that U ⊆ Ṽ1 ⊆ Ṽ1 ⊆ V , and
set V1 = Ṽ1 ∩ Z . Apply Lemma 3.4 with b|Z , a|Z , Z , W , V1, and η substituted for the
variables b, a, X , Y , Z , and ε in the hypotheses of the lemma, respectively. Let u be the
unitary in M4n(C(Z)) provided by the conclusion of said lemma. Define v ∈ M4n(C(X))
to be the unitary which is equal to u on Z and equal to 1 ∈ M4n(C) at each point of U .
This v will serve as the unitary required in the conclusion of (S). We will simply use v
in place of v|Z whenever it is clear that we are working over Z .

From conclusion (ii) of Lemma 3.4 we have

pk(x) ≤ v(x)

⎡
⎢⎣ ∧

{ j | x∈Fj }
q j (x)

⎤
⎥⎦ v(x)∗, ∀x ∈ Ek, ∀k ∈ {0, . . . , n}. (4)

For each δ > 0 let fδ, gδ : [0, 1] → [0, 1] be given by the formulas

fδ(t) =
⎧⎨
⎩

0, t ∈ [0, δ/2]
(2t − δ)/δ, t ∈ (δ/2, δ)
1, t ∈ [δ, 1]

,

and

gδ(t) =
{

0, t ∈ [0, δ/2]
fδ(t)/t, t ∈ (δ/2, 1] .

Note that fδ(t) and gδ(t) are continuous, and that tgδ(t) = fδ(t).
Consider the following product in M4n(C(Z)):

(
√

av
√

gδ(b))b(
√

av
√

gδ(b))
∗ = (

√
av
√

gδ(b))b(
√

gδ(b)v
∗√a). (5)

As δ → 0 we have

[√gδ(b)b
√

gδ(b)](x) = fδ(b)(x)→
∧

{ j | x∈Fj }
q j (x), ∀x ∈ Z .

Thus, by (4), [v√gδ(b)b
√

gδ(b)v∗](x) converges to a projection which dominates the
support projection of a(x). It follows that the product (5), evaluated at x ∈ Z , converges
to a(x) as δ → 0. We will prove that this convergence is uniform in norm on Z .

If δ < κ , then fδ(b) ≥ fκ(b). It follows that
√

av fδ(b)v
∗√a ≥ √

av fκ(b)v
∗√a. (6)

Since b ≤ 1, we have
√

av fδ(b)v
∗√a ≤ √

avv∗
√

a = a,

and similarly for fκ(b). Combining this with (6) yields

0 ≤ a − √
av fδ(b)v

∗√a ≤ a − √
av fκ (b)v

∗√a.



Comparison Theory and Smooth Minimal C∗-Dynamics 417

By positivity, ∣∣∣∣a − √
av fδ(b)v

∗√a
∣∣∣∣ ≤ ∣∣∣∣a − √

av fκ(b)v
∗√a

∣∣∣∣ . (7)

Let (δn) be a sequence of strictly positive tolerances converging to zero. By (7),∣∣∣∣∣∣[a − √
av
√

gδn (b)b
√

gδn (b)v
∗√a](x)

∣∣∣∣∣∣ = ∣∣∣∣[a − √
av fδn (b)v

∗√a](x)∣∣∣∣
is a monotone decreasing sequence converging to zero for each x ∈ Z . By Dini’s
Theorem, this sequence converges uniformly to zero on Z . For the remainder of the
proof we fix ε > δ > 0 with the property that∣∣∣∣∣∣a − √

av
√

gδ(b)b
√

gδ(b)v
∗√a

∣∣∣∣∣∣ < ε. (8)

Extend
√

a and
√

gδ(b) to positive elements c and d in M4n(C(X)), respectively. This
choice of c and d completes Step 1.
Step 2. We must now modify our choice of c and d to address their failings, outlined
at the beginning of Step 1. This modification will be made in three smaller steps. In a
slight abuse of notation, we will use c and d to denote the successive modifications of
the present c and d.

For each x ∈ W we have b(x) − a(x) ≥ 0 and ||b(x) − a(x)|| < ε. It is a straight-
forward exercise to show that∣∣∣∣∣∣√b(x)−√

a(x)
∣∣∣∣∣∣ < √

ε.

Choose a continuous map f1 : Z → [0, 1] which is equal to one on Z\W and equal
to zero on V1. Set a1(x) = f1(x)

√
a(x) + (1 − f1(x))

√
b(x) for each x ∈ Z , and set

s = v
√

gδ(b)b
√

gδ(b)v∗ for brevity. Note that ||s|| ≤ 1. Now for each x ∈ W we have

||[a1sa1](x)||
=
∣∣∣∣∣∣[√a + (1 − f1)(

√
b −√

a)](x)s(x)[√a + (1 − f1)(
√

b −√
a)](x)

∣∣∣∣∣∣
= ∣∣∣∣[√as

√
a](x) + r(x)

∣∣∣∣ ,
where ||r(x)|| < 2

√
ε + ε. We revise our definition of c by setting it equal to a1 on X\U

and extending it in an arbitrary fashion to a positive element of M4n(C(X)). Combining
this new definition of c with (8) above we have the estimate∣∣∣∣[(cvd)b(cvd)∗](x)− a(x)

∣∣∣∣ < 2(
√
ε + ε), ∀x ∈ X\U. (9)

Choose an open subset V2 of Z such that U ⊆ V2 ⊆ V2 ⊆ V1, and a continuous map
f2 : Z → [0, 1] equal to zero on Z\V1 and equal to one on V2. For each x ∈ V1 we
have c(x) = √

b(x), d(x) = √
gδ(b), and v(x) = 1, whence

∣∣∣∣[(cvd)b(cvd)∗](x)− a(x)
∣∣∣∣ = ∣∣∣

∣∣∣b(x)2gδ(b)(x)− a(x)
∣∣∣
∣∣∣ (10)

= ||b(x) fδ(b)(x)− a(x)|| (11)

≤ ||b(x) fδ(b)(x)− b(x)|| + ||b(x)− a(x)||<2ε. (12)

For each s ∈ [0, 1] define

hs(t) =
{

2ts/δ, t ∈ [0, δ/2]
(2t − δ)[(1 − s)/(2 − δ)] + s, t ∈ (δ/2, 1] .



418 A. S. Toms

It straightforward to verify that hs(t) is a homotopy of maps such that

h0(t) = t; h1(t) =
{

2t/δ, t ∈ [0, δ/2]
1, t ∈ (δ/2, 1] .

Set

gδ,s(t) =
{

0, t ∈ [0, δ/2]
fδ(t)/hs(t), t ∈ (δ/2, 1] .

With these definitions we have hs(t)gδ,s(t) = fδ(t), ∀s, t ∈ [0, 1]. For each x ∈ V1, we
adjust our definitions of c(x) and d(x) as follows:

c(x) =
√

h f2(x)(b(x)); d(x) =
√

gδ, f2(x)(b(x)).

Since f2(x) = 0 on ∂V1, the definitions of c(x) and d(x) are not altered on ∂V1. Thus, our
modified versions of c and d are still positive elements of M4n(C(Z)), and the estimate
(9) still holds on Z\V1. For x ∈ V1 we have∣∣∣∣[(cvd)b(cvd)∗](x)− a(x)

∣∣∣∣ = ∣∣∣∣h f2(x)(b(x))gδ, f2(x)(b(x))b(x)− a(x)
∣∣∣∣ (13)

= || fδ(b(x))b(x)− a(x)|| < 2ε, (14)

where the last inequality follows from (10) above. Thus, (9) continues to hold with our
new definitions of c and d.

Choose an open subset V3 of Z such that U ⊆ V3 ⊆ V3 ⊆ V2, and a continuous
map f3 : Z → [0, 1] equal to zero on Z\V2 and equal to one on V3. For each s ∈ [0, 1]
define continuous maps rs, ws : [0, 1] → [0, 1] by

rs(t) = max
{

s,
√

h1(t)
}
; ws(t) = max

{
s,
√

gδ,1(t)
}
.

Thus, rs and ws define homotopies of self-maps of [0, 1] such that r0 = h1, w0 = gδ,1,
and r1 = w1 = 1. For each x ∈ V2 we adjust our definitions of c(x) and d(x) as follows:

c(x) =
√

r f3(x)(b(x)); d(x) =
√
w f3(x)(b(x)).

Since f3 = 0 on ∂V2, the definitions of c(x) and d(x) are not altered on ∂V2. Thus, our
modified versions of c and d are still positive elements of M4n(C(Z)), and the estimate
(9) still holds on Z\V2. For x ∈ V2 we have∣∣∣∣[(cvd)b(cvd)∗](x)− a(x)

∣∣∣∣ = ∣∣∣∣r f3(x)(b(x))w f3(x)(b(x))b(x)− a(x)
∣∣∣∣ < 2ε

by a functional calculus argument similar to (13) above—one need only observe that

fδ(t) ≤ rs(t)ws(t) ≤ 1, ∀s, t ∈ [0, 1].
Thus, (9) continues to hold with our new definitions of c and d. Moreover, we have
c(x) = d(x) = 1 ∈ M4n(C) for each x ∈ V3. We may thus extend our definitions of c
and d to all of X by setting c(x) = d(x) = 1 ∈ M4n(C) for every x ∈ U ∪ V3. With
this final definition of c and d, we see that∣∣∣∣[(cvd)b(cvd)∗](x)− a(x)

∣∣∣∣ = ||b(x)− a(x)|| < ε, ∀x ∈ U ∪ V3.

We conclude that the estimate (9) holds on all of X , whence (S) holds. ��
With (S) in hand, we have completed the proof of Lemma 3.1.
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4. A Comparison Theorem for Recursive Subhomogeneous C∗-Algebras

4.1. Background and notation. Let us recall some of the terminology and results from
[22].

Definition 4.1. A recursive subhomogeneous algebra (RSH algebra) is given by the
following recursive definition:

(i) If X is a compact Hausdorff space and n ∈ N, then Mn(C(X)) is a recursive
subhomogeneous algebra.

(ii) If A is a recursive subhomogeneousalgebra, X is a compact Hausdorff space,

X (0) ⊆ X is closed, φ : A → Mk(C(X (0))) is a unital ∗-homomorphism, and ρ :
Mk(C(X))→ Mk(C(X (0))) is the restriction homomorphism, then the pullback

A ⊕Mk (C(X (0))) Mk(C(X)) = {(a, f ) ∈ A ⊕ Mk(C(X)) | φ(a) = ρ( f )}
is a recursive subhomogeneous algebra.

It is clear from the definition above that a C∗-algebra R is an RSH algebra if and only
if it can be written in the form

R =
[
· · ·

[[
C0 ⊕

C(0)1
C1

]
⊕

C(0)2
C2

]
· · ·

]
⊕

C(0)l
Cl , (15)

with Ck = Mn(k)(C(Xk)) for compact Hausdorff spaces Xk and integers n(k), with

C (0)
k = Mn(k)(C(X

(0)
k )) for compact subsets X (0)k ⊆ X (possibly empty), and where the

maps Ck → C (0)
k are always the restriction maps. We refer to the expression in (15) as

a decomposition for R. Decompositions for RSH algebras are not unique.
Associated with the decomposition (15) are:

(i) its length l;
(ii) its kth stage algebra

Rk =
[
· · ·

[[
C0 ⊕

C(0)1
C1

]
⊕

C(0)2
C2

]
· · ·

]
⊕

C(0)k
Ck;

(iii) its base spaces X0, X1, . . . , Xl and total space �l
k=0 Xk ;

(iv) its matrix sizes n(0), n(1), . . . , n(l) and matrix size function m : X → N given
by m(x) = n(k) when x ∈ Xk (this is called the matrix size of R at x);

(v) its minimum matrix size minkn(k) and maximum matrix size maxkn(k);
(vi) its topological dimension dim(X) and topological dimension function d : X →

N ∪ {0} given by d(x) = dim(Xk) when x ∈ Xk ;
(vii) its standard representation σR : R → ⊕l

k=0Mn(k)(C(Xk)) defined to be the
obvious inclusion;

(viii) the evaluation maps evx : R → Mn(k) for x ∈ Xk , defined to be the composition
of evaluation at x on ⊕l

k=0Mn(k)(C(Xk)) and σR .

Remark 4.2. If R is separable, then the Xk can be taken to be metrisable ([22, Prop.
2.13]). If R has no irreducible representations of dimension less than or equal to N , then
we may assume that n(k) > N . It is clear from the construction of Rk+1 as a pullback
of Rk and Ck+1 that there is a canonical surjective ∗-homomorphism λk : Rk+1 → Rk .
By composing several such, one has also a canonical surjective ∗-homomorphism from
R j to Rk for any j > k. Abusing notation slightly, we denote these maps by λk as well.
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Remark 4.3. The C∗-algebra Mm(R) ∼= R ⊗ Mm(C) is an RSH algebra in a canonical
way: Ck and C (0)

k are replaced with Ck ⊗ Mm(C) and C (0)
k ⊗ Mm(C), respectively, and

the clutching maps φk : Rk → C (0)
k+1 are replaced with the amplifications

φk ⊗ idm : Ck ⊗ Mm(C)→ C (0)
k+1 ⊗ Mm(C).

From here on we assume that Mm(R) is equipped with this canonical decomposition
whenever R is given with a decomposition. We will abuse notation by using φk to denote
both the original clutching map in the given decomposition for R and its amplified
versions.

4.2. A comparison theorem.

Lemma 4.4. Let X be a compact metrisable Hausdorff space, and Y a closed subset
of X. If a ∈ Mn(C(Y )) is positive, then a can be extended to ã ∈ Mn(C(X)) with
the property that ã(x) is invertible for every x ∈ X\Y . If u = v ⊕ v∗ for a unitary
v ∈ Mn(C(Y )), then u can be extended to a unitary ũ ∈ M2n(C(X)).

Proof. By the semiprojectivity of the C∗-algebras they generate, both a and u can be
extended to the closure of an open neighbourhood V of Y . We will also denote these
extensions by a and u. Fix a continuous map f : X → [0, 1] which is equal to zero on
Y , equal to one on X\V , and nonzero at every x ∈ X\Y .

Define

ã(x) =
{

a(x) + f (x)(||a|| − a(x)), x ∈ V
||a||, x ∈ X\V

.

Clearly, ã belongs to Mn(C(X)) and extends a. It follows that for each x ∈ X\Y , either
ã(x) = ||a|| ∈ GLn(C), or

ã(x) = a(x) + f (x)(||a|| − a(x)) = f (x)||a|| + (1 − f (x))a(x) ≥ f (x)||a|| > 0.

In the latter case we conclude that the rank of ã(x) is n, whence ã(x) ∈ GLn(C) as
desired.

Now let us turn to u. We have

u|V \Y = v|V \Y ⊕ v∗|V \Y ∼h 1 ∈ M2n
(
C
(
V \Y

))

by the Whitehead Lemma, where ∼h denotes homotopy within the unitary group. Let
H(x, t) : V \Y × [0, 1] → U(M2n(C)) be an implementing homotopy, with H(x, 0) =
u|V \Y and H(x, 1) = 1. Define

ũ(x) =
⎧⎨
⎩

u(x), x ∈ Y
H(x, f (x)), x ∈ V \Y
1, x ∈ X\V

.

It is straightforward to check that ũ is a unitary in M2n(C(X)), and ũ extends u by
definition. ��
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Lemma 4.5. Let A be a separable RSH algebra with a fixed decomposition as above.
Let a, b ∈ A be positive, and suppose that ||λk(b−a)|| < ε inside the kth stage algebra
Ak, k < l. Suppose further that

rank(a(x)) + (d(x)− 1)/2 ≤ rank(b(x)),∀x ∈ X j\X (0)j , j > k.

It follows that there are m ∈ N and v ∈ Mm(A) such that, upon considering A as the
upper-left 1 × 1 corner of Mm(A) we have ||λk+1(vbv∗ − a)|| < N

√
ε for the constant

N of Lemma 3.1 and

rank(a(x)) + (d(x)− 1)/2 ≤ rank((vbv∗)(x)),∀x ∈ X j\X (0)j , j > k + 1.

Proof. Let φk : Ak → C (0)
k+1 be the kth clutching map. Our hypotheses imply that

φk(b), φk(a) ∈ C (0)
k+1 = Mn(k+1)(C(X

(0)
k+1) satisfy ||φk(b)− φk(a)|| < ε. Apply Lemma

3.1 with φk(a), φk(b), Xk+1, X (0)k+1, and ε in place of a, b, X,Y , and ε, respectively. The
conclusion of Lemma 3.1 provides us with positive elements c, d and a unitary element
u in M4n(k+1)(C(Xk+1)) such that

(i) ||(cud)φk(b)(cud)∗ − φk(a)|| < N
√
ε, and

(ii) c(x) = d(x) = u(x) = 1 ∈ M4n(k+1)(C) for every x ∈ X (0)k+1.

Using (ii) we extend c, d, and u to M4(Ak+1) (keeping the same notation) by setting

λk(c) = λk(d) = λk(u) = 1 ∈ M4(Ak).

Set vk+1 = cud ∈ M4(Ak+1). We claim that

||vk+1λk+1(b)v
∗
k+1 − λk+1(a)|| < N

√
ε.

It will suffice to prove that the image of vk+1λk+1(b)v∗k+1 − λk+1(a) under the standard
representation

σM4(Ak+1) : M4(Ak+1)→
k+1⊕
j=0

M4n( j)(C(X j ))

is of norm at most N
√
ε. This in turn need only be checked in each of the direct summands

of the codomain. In the summand⊕k
j=0M4n( j)(C(X j )) the desired estimate follows from

two facts: σM4(Ak+1)(vk+1) is equal to the unit of said summand (see (ii) above), and the
images of a and b in this summand are at distance strictly less than ε < N

√
ε. In the

summand M4n(k+1)(C(Xk+1)) the desired estimate follows from (i) above.
If m ≥ 4, then any v ∈ Mm(A) which, upon viewing M4(A) as the upper-left

4 × 4 corner of Mm(A), has the property that λk+1(v) = vk+1 will at least satisfy
||λk+1(vbv∗ − a)|| < N

√
ε. It remains, then, to find such a v, while ensuring that

rank(a(x)) + (d(x)− 1)/2 ≤ rank((vbv∗)(x)),∀x ∈ X j\X (0)j , j > k + 1.

If k +1 = l, then there is nothing to prove. Suppose that k +1 < l. Let us first construct
an element vk+2 of M8(Ak+2) with the following properties: λk+1(vk+2) = vk+1, and

rank(a(x)) + (d(x)− 1)/2 ≤ rank((vk+2bv∗k+2)(x)),∀x ∈ Xk+2\X (0)k+2.
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Define ck+1 = c ⊕ 0, dk+1 = d ⊕ 0, and uk+1 = u ⊕ u∗. Use Lemma 4.4 to
extend φk+1(ck+1), φk+1(dk+1), and φk+1(uk+1) to positive elements c̃k+2, d̃k+2 and a
unitary element ũk+2, respectively, in M8n(k+2)(C(Xk+2)), all of which are invertible

at every x ∈ Xk+2\X (0)k+2. Consider M8(Ak+2) as a subalgebra of ⊕k+2
j=0M8n( j)(C(X j ))

via its standard representation, and define ck+2 to be equal to ck+1 in the first k + 1
summands, and equal to c̃k+2 in the last summand; define dk+2 and uk+2 similarly. Setting
vk+2 = ck+2uk+2dk+2 we have that

λk+1(vk+2) = λk+1(ck+2uk+2dk+2)

= ck+1uk+1dk+1

= (c ⊕ 0)(u ⊕ u∗)(d ⊕ 0)

= cud ⊕ 0

= vk+1.

Moreover, for each x ∈ Xk+2\X (0)k+2, we have

vk+2(x) = c̃k+2(x)ũk+2(x)d̃k+2(x) ∈ GL8n(k+2)(C).

It follows that

rank((vbv∗)(x)) = rank(b(x)) ≥ (d(x)− 1)/2 + rank(a(x)), ∀x ∈ Xk+2\X (0)k+2,

as required.
If k + 2 = l then we set v = vk+2 to complete the proof. Otherwise, we repeat the

arguments in the paragraph above using ck+2, dk+2, and uk+2 in place of c, d, and u,
respectively, to obtain vk+3 ∈ M82(Ak+3) such that λk+2(vk+3) = vk+2 and

rank(a(x)) + (d(x)− 1)/2 ≤ rank((vk+3bv∗k+3)(x)),∀x ∈ Xk+3\X (0)k+3.

Continuing this process until we arrive at vk+(l−k) = vl and setting v = vl yields the
lemma in full. ��
Theorem 4.6. Let A be a separable RSH algebra with a fixed decomposition as above.
Let a, b ∈ A be positive, and suppose that

rank(a(x)) + (d(x)− 1)/2 ≤ rank(b(x)), ∀x ∈ Xk\X (0)k , k ∈ {0, 1, . . . , l}.
It follows that a � b.

Proof. We view A as the upper-left 1 × 1 corner of Mm(A), and adopt the standard
notation for the decompositions of A and Mm(A). Let ε > 0 be given; we must find
m ∈ N and v ∈ Mm(A) such that ||vbv∗ − a|| < ε.

Let l be the length of the fixed decomposition for A. Given δ0 > 0, we define
δk = N

√
δk−1 for each k ∈ {1, . . . , l}, where N is the constant of Lemma 3.1. It follows

that

δk = δ
1/2k

0

k−1∏
j=0

N 1/2 j
.

Assume that δ0 has been chosen so that δl < ε.
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Apply Lemma 3.1 with λ0(a), λ0(b), X0, and ∅, in place of a, b, X, and Y . Since
Y is empty, we can arrange to have any value of ε appear in the conclusion of Lemma
3.1. We choose ε = δ2

0/N 2, so that the norm estimate in the conclusion of Lemma 3.1

is strictly less than N
√
δ2

0/N 2 = δ0. Let c0, d0, and u0 denote the positive elements and
the unitary element, respectively, of M4n(0)(C(X0)) produced by Lemma 3.1. Apply the
arguments of the second-to-last paragraph in the proof of Lemma 4.5 with c0, d0, and
u0 in place of c, d, and u, respectively, to produce an element v0 of M32(A) such that
||λ0(v0bv∗0 − a)|| < δ0, and

rank(a(x)) + (d(x)− 1)/2 ≤ rank((v0bv∗0)(x)),∀x ∈ X j\X (0)j , j > 0.

Suppose that we have found mk ∈ N and vk ∈ Mmk (A) such that ||λk(vkbv∗k −a)|| <
δk and

rank(a(x)) + (d(x)− 1)/2 ≤ rank((vkbv∗k )(x)),∀x ∈ X j\X (0)j , j > k.

An application of Lemma 4.5 yields vk+1 ∈ M8mk (A) such that ||λk+1(vk+1vkbv∗k v∗k+1 −
a)|| < N

√
δk = δk+1 and

rank(a(x)) + (d(x)− 1)/2 ≤ rank((vk+1vkbv∗k v∗k+1)(x)), ∀x ∈ X j\X (0)j , j > k + 1.

Starting with v0, we use the fact above to find, successively, v1, . . . , vl . With
v = vlvl−1 · · · v0 we have

||vbv∗ − a|| < δl < ε,

as desired. ��

5. Applications

5.1. The radius of comparison and strict comparison. Let A be a unital stably finite
C∗-algebra, and let a, b ∈ M∞(A) be positive. We say that A has r-strict comparison if
a � b whenever

d(a) + r < d(b), ∀d ∈ LDF(A).

The radius of comparison of A, denoted by rc(A), is defined to be the infimum of the set

{r ∈ R
+ | A has r − strict comparison}

whenever this set is nonempty; if the set is empty then we set rc(A) = ∞ ([28]). The
condition rc(A) = 0 is equivalent to A having strict comparison (see Subsect. 2.2).

The radius of comparison should be thought of as the ratio of the topological dimen-
sion of A to its matricial size, despite the fact that both may be infinite. It has been
useful in distinguishing C∗-algebras which are not K-theoretically rigid in the sense of
G. A. Elliott ([12,29]). Here we give sharp upper bounds on the radius of comparison
of a recursive subhomogeneous algebra. These improve significantly upon the upper
bounds established in the homogeneous case by [30, Theorem 3.15].
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Theorem 5.1. Let A be a separable RSH algebra with a fixed decomposition of length
l and matrix sizes n(0), . . . , n(l). It follows that

rc(A) ≤ max
0≤k≤l

dim(Xk)− 1

2n(k)
.

Proof. Use r to denote the upper bound in the statement of the theorem, and suppose
that we are given a, b ∈ M∞(A)+ such that dτ (a) + r < dτ (b) for every τ ∈ T(A).
Associated to each x ∈ Xk\X (0)k , 0 ≤ k ≤ l, is an extreme point of T(A), denoted by τx ,
obtained by composing evx with the normalised trace on Mn(k). For any a ∈ M∞(A)+
we have dτx (a) = [rank(evx (a))]/n(k), and so

rank(evx (a))

n(k)
+

dim(Xk)− 1

2n(k)
≤ rank(evx (a))

n(k)
+ r <

rank(evx (b))

n(k)
.

Multiplying through by n(k) we have

rank(a(x)) +
dim(Xk)− 1

2
< rank(b(x))

for every x ∈ Xk\X (0)k and k ∈ {0, . . . , l}, whence a � b by Theorem 4.6, as desired. ��
Specialising to the homogeneous case we have the following corollary.

Corollary 5.2. Let X be a compact metrisable Hausdorff space of covering dimension
d ∈ N, and p ∈ C(X)⊗ K a projection. It follows that

rc(p(C(X)⊗ K)p) ≤ d − 1

2rank(p)
.

Proof. The algebra p(C(X)⊗K)p admits a recursive subhomogeneous decomposition
in which every matrix size is equal to rank(p) and each Xk has covering dimension at
most d. (This decomposition comes from the fact that p corresponds to a vector bundle
of finite type—see Sect. 2 of [22].) The Corollary now follows from Theorem 5.1. ��
Corollary 5.2 improves upon [30, Theorem 3.15], or rather, the upper bound on the
radius of comparison that can be derived from it: the latter result leads to an upper bound
of (9d)/rank(p). The bound achieved here is sharp, as can by seen from [28, Theorem
6.6].

The property of strict comparison is a powerful regularity property with agreeable
consequences. We will see some examples of this in Subsects. 5.2, 5.3, and 5.4; a fuller
treatment of this topic can be found in [11].

Theorem 5.3. Let (Ai , φi ) be a unital direct sequence of recursive subhomogeneous
algebras with slow dimension growth. If A = limi→∞(Ai , φi ) is simple, then A has
strict comparison of positive elements.

Proof. Let us first show that lim inf i→∞ rc(Ai ) = 0. We assume that each Ai is equipped
with a fixed decomposition. Let Yi = �li

k=0 Xi,k denote the total space of Ai , di : Yi →
{0} ∪ N its topological dimension function, and ni (0), . . . , ni (li ) its matrix sizes. From
[23, Def. 1.1], (Ai , φi ) has slow dimension growth if the following statement holds: for
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every i ∈ N, projection p ∈ M∞(Ai ), and N ∈ N, there exists j0 > i such that for
every j ≥ j0 and y ∈ Yi we have

evy(φi, j (p)) = 0 or rank(evy(φi, j (p))) ≥ Nd j (y);
if p = 1Ai , then only the latter statement can hold. If y ∈ X j,k\X (0)j,k , then

rank(evy(φi, j (1Ai ))) = rank(evy(1A j )) = n j (k) ≥ Ndim(X j,k).

It now follows from Theorem 5.1 that lim inf i→∞ rc(Ai ) = 0.
Theorem 4.5 of [30] would give us strict comparison for A if only each φi were

injective. The origin of this injectivity hypothesis lies in [30, Lemma 4.4]—the proof
of [30, Theorem 4.5] only uses injectivity of the φi in its appeal to this lemma. Thus,
we must drop injectivity from the assumptions of [30, Lemma 4.4]; we must prove the
following claim:

Claim. Let B be the limit of an inductive sequence (Bi , ψi ) of C∗-algebras, and let
a, b ∈ M∞(B) be positive. If ψi,∞(a) � ψi,∞(b), then for every ε > 0 there is a j > i
such that (ψi, j (a)− ε)+ � ψi, j (b).

Proof of Claim. If will suffice to prove the claim for a, b ∈ B. By assumption, there is
a sequence (vk) in B such that vkbv∗k → a. We may assume that the vk lie in the dense
local C∗-algebra∪i ψi,∞(Bi ) (see the proof of [30, Lemma 4.4]). In fact, by compressing
our inductive sequence, we may as well assume that vk = φk,∞(wk) for some wk ∈ Bk .
The statement that vkbv∗k → a can now amounts to

‖ψk,∞(wkψi,k(b)w
∗
k − ψi,k(a))‖ n→∞−→ 0.

Fix k0 large enough that the left-hand side above is< ε. Since‖ψk0, j (x)‖ → ‖ψk0,∞(x)‖
for any x ∈ Ak0 we may find j > i such that

‖ψk0, j (wk0ψi,k0(b)w
∗
k0

− ψi,k0(a))‖ < ε.

Setting r j = ψk0, j (wk0) and appealing to part (iii) of Proposition 2.1 we have

(ψi, j (a)− ε)+ � r jψi, j (b)r
∗
j � ψi, j (b),

as desired. This proves the claim, and hence the theorem. ��
We collect an improvement of [30, Theorem 4.5] as a corollary.

Corollary 5.4. Let A be the limit of an inductive sequence of stably finite C∗-algebras
(Ai , φi ), with each Ai and φi unital. Suppose that A is simple, and that

lim inf
i→∞ rc(Ai ) = 0.

It follows that A has strict comparison of positive elements.

Proof. Follow the proof of [30, Theorem 4.5] but use the claim in the proof of Theorem
5.3 instead of [30, Lemma 4.4]. ��
Corollary 5.5. Let M be a compact smooth connected manifold and h : M → M a mini-
mal diffeomorphism. It follows that the transformation group C∗-algebra C∗(M,Z, h)
has strict comparison of positive elements.

Proof. By the main result of [17], C∗(M,Z, h) can be written as the limit of an inductive
sequence of recursive subhomogeneous C∗-algebras with slow dimension growth. Apply
Theorem 5.3. ��
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5.2. The structure of the Cuntz semigroup. The Cuntz semigroup is a sensitive invariant
in the matter of distinguishing simple separable amenable C∗-algebras, and has recently
received considerable attention (see [3–5,7,8,11,27], and [30]). It is, however, very dif-
ficult to compute in general—see [27, Lemma 5.1]. This situation improves dramatically
in the case of simple C∗-algebras with strict comparison of positive elements.

Let A be a unital, simple, exact, stably finite C∗-algebra. In this case we may write
W (A) = V (A) � W (A)+ (as sets), where V (A) denotes the semigroup of Murray-von
Neumann equivalence classes of projections in M∞(A)—here interpreted as those Cuntz
equivalence classes represented by a projection—and W (A)+ denotes the subsemigroup
of W (A) consisting of Cuntz classes represented by positive elements having zero as
an accumulation point of their spectrum (cf. [21]). Let LAffb(T(A))++ denote the set
of lower semicontinuous, affine, bounded, strictly positive functions on the tracial state
space of A, and define a map ι : W (A) → LAffb(T(A))++ by ι(〈a〉)(τ ) = dτ (a). We
endow the set

V (A) � LAffb(T(A))++

with an Abelian binary operation +W which restricts to the usual semigroup opera-
tion in each component and is given by x +W f = ι(x) + f for x ∈ V (A) and
f ∈ LAffb(T(A))++. We also define a partial order ≤W on this set which restricts
to the usual partial orders in each component and satisfies

(i) x ≤W f if and only if ι(x) < f , and
(ii) x ≥W f if and only if ι(x) ≥ f .

Theorem 5.6 ([3,7]). Let A be a simple, unital, exact, and stably finite C∗-algebra with
strict comparison of positive elements. It follows that the map

V (A) � W (A)+
id�ι−→ V (A) � LAffb(T(A))++

is a semigroup order embedding.

If A is infinite-dimensional and monotracial, then the embedding of Theorem 5.6 is
an isomorphism. We suspect that the monotracial assumption is unneccessary. Theorem
5.6 applies to ASH algebras as in Theorem 5.3, and so to the minimal diffeomorphism
C∗-algebras C∗(M,Z, h) considered above.

5.3. A conjecture of Blackadar-Handelman. Blackadar and Handelman conjectured in
1982 that the lower semicontinuous dimension functions on a C∗-algebra should be
dense in the set of all dimension functions. This conjecture was proved for C∗-algebras
as in Theorem 5.6 in [3, Theorem 6.4]. Thus, we have the following result.

Theorem 5.7. Let A be a C∗-algebra as in Theorem 5.6 (in particular, A could be
the C∗-algebra of a minimal diffeomorphism). It follows that the lower semicontinuous
dimension functions on A are weakly dense in the set of all dimension functions on A.

5.4. Classifying Hilbert modules. In [7], Coward, Elliott, and Ivanescu gave a new
presentation of the Cuntz semigroup. Given a C∗-algebra A, they considered positive
elements in A⊗K (as opposed to M∞(A), as we have done—the difference is ultimately
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immaterial). If A is separable, then the hereditary subalgebras of A⊗K are singly genera-
ted, and any two generators of a fixed hereditary subalgebra are Cuntz equivalent. Thus,
Cuntz equivalence factors through the passage from a positive element to the hereditary
subalgebra it generates. These hereditary subalgebras are in one-to-one correspondence
with countably generated Hilbert A-modules, and in [7] the notion of Cuntz equiva-
lence, considered as a relation on hereditary subalgebras, is translated into a relation on
Hilbert modules. Thus, we may speak of Cuntz equivalence between countably generated
Hilbert A-modules.

Theorem 5.8 ([7]). Let A be a C∗-algebra of stable rank one. It follows that countably
generated Hilbert A-modules X and Y are Cuntz equivalent if and only if they are
isomorphic.

Corollary 5.9. Let A be as in Theorem 5.3. Suppose further that A has stable rank one.
(In particular, A could by the C∗-algebra of a minimal diffeomorphism, as these have
stable rank one by the main result of [23].) It follows that countably generated Hilbert
A-modules X and Y are isomorphic if and only if they are Cuntz equivalent.

If X and Y as in Corollary 5.9 are finitely generated and projective, then they are
Cuntz equivalent if and only if the projections in A ⊗ K which generate them as closed
right ideals have the same K0-class. Otherwise, X has associated to it an affine function
on the tracial state space of A: one extends the map ι of Subsect. 5.2 to have domain
A ⊗ K, applies it to any positive element of A ⊗ K which generates X as a closed
right ideal. This function determines non-finitely generated X up to isomorphism. This
classification of Hilbert A-modules is analogous to the classification of W∗-modules
over a II1 factor. We refer the reader to Sect. 3 of [4] for further details.

5.5. Classifying self-adjoints. We say that self-adjoint elements a and b in a unital
C∗-algebra A are approximately unitarily equivalent if there is a sequence (un)

∞
n=1 of

unitaries in A such that unau∗
n → b. For a ∈ A+ we let φa : C∗(a, 1) ↪→ A denote the

canonical embedding. Denote by Ell(a) the following pair of induced maps:

K0(φa) : K0(C
∗(a, 1))→ K0(A); φ�a : T(A)→ T(C∗(a, 1)).

Theorem 5.10 ([4]). Let A be a unital simple exact C∗-algebra of stable rank one and
strict comparison (in particular, A could have stable rank one and satisfy the hypotheses
of Theorem 5.3). If a, b ∈ A+, then a and b are approximately unitarily equivalent if
and only if σ(a) = σ(b) and Ell(a) = Ell(b).

5.6. The range of the radius of comparison, with applications. The classification theory
of operator algebras is a rich field. It was begun by Murray and von Neumann with their
type classification of factors in the 1930s, and has been active ever since. In the presence
of certain regularising assumptions, the theory is well-behaved. For instance, there is a
complete classification of injective factors with separable predual (due to Connes and
Haagerup—see [6 and 14]), and a similarly successful classification program for simple
C∗-algebras upon replacing injectivity and separability of the predual with amenability
and norm-separability, respectively (see [11 and 25]

Without these regularising assumptions, the theory is fractious, but nonetheless inter-
esting. One of the landmarks on this side of the theory is McDuff’s construction of
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uncountably many non-isomorphic factors of type II1 ([18]). (More recently there is
Popa’s work on II1 factors with Betti numbers invariants—see [20].) One might view
McDuff’s result as saying that there are uncountably many non-isomorphic factors which
all have the same naive invariant, namely, the mere fact that they are II1 factors. (Connes
proved that there is only one injective II1 factor with separable predual.) Here we prove
an analogue of McDuff’s theorem for simple, separable, amenable C∗-algebras, where
the corresponding naive invariant consists of Banach algebra K-theory and positive
traces. We even obtain a somewhat stronger result, replacing non-isomorphism with
non-Morita-equivalence. In passing we prove that the range of the radius of comparison
is exhausted by simple C∗-algebras, a result which represents the first exact calculations
of the radius of comparison for any simple C∗-algebra.

Recall that the Elliott invariant of a C∗-algebra A is the 4-tuple

Ell(A) := (
(K0 A,K0 A+, �A),K1 A,T+ A, ρA

)
, (16)

where the K-groups are the Banach algebra ones, K0 A+ is the image of the Murray-
von Neumann semigroup V(A) under the Grothendieck map, �A is the subset of K0 A
corresponding to projections in A, T+ A is the space of positive tracial linear functionals
on A, and ρA is the natural pairing of T+ A and K0 A given by evaluating a trace at a
K0-class.

Theorem 5.11. There is a family {A(r)}r∈R+\{0} of simple, separable, amenable
C∗-algebras such that rc(Ar ) = r and Ell(Ar ) ∼= Ell(As) for every s, r ∈ R

+\{0}.
In particular, Ar � As whenever r �= s. If As and Ar are Morita equivalent, then
s/r ∈ Q.

Proof. The general framework for the construction of A(r) follows [31]. Find sequences
of natural numbers (ni ) and (li ) and a natural number m0 with the following properties:

(i) ni → ∞;
(ii)

n0

2m0
· n1n2 · · · ni

(n1 + l1)(n2 + l2) · · · (ni + li )
i→∞−→ r;

(iii) li �= 0 for infinitely many i ;
(iv) every natural number divides some mi := m0(n1 + l1)(n2 + l2) · · · (ni + li ).

Set X1 = [0, 1]n0 and set Xi+1 = (Xi )
ni+1 . Let π j

i : Xi+1 → Xi , 1 ≤ j ≤ ni+1 be the
co-ordinate projections. Let Ai be the homogeneous C∗-algebra Mmi (C(Xi )), and let
φi : Ai → Ai+1 be the ∗-homomorphism given by

φi ( f )(x) = diag
(

f ◦ π1
i (x), . . . , f ◦ πni+1

i (x), a(x1
i ), . . . , a(xli

i )
)
, ∀x ∈ Xi+1,

where x1
i , . . . , xli

i ∈ Xi are to be specified. Set A(r) = limi→∞(Ai , φi ), and define

φi, j := φ j−1 ◦ · · · ◦ φi .

Let φi,∞ : Ai → A be the canonical map. We note that the x1
i , . . . , xli

i ∈ Xi may be
chosen to ensure that A is simple (cf. [31]); we assume that they have been so chosen,
whence A(r) is unital, simple, separable, and amenable.
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By Theorem 5.1, we have

lim
i→∞rc(Ai ) = lim

i→∞
n0n1 · · · ni − 1

2m0(n1 + l1)(n2 + l2) · · · (ni + li )
= r.

Since the construction of A(r) is the same as that of [29, Theorem 4.1], we conclude that
rc(A(r)) ≤ r by [29, Prop. 3.3].

Let η > 0 be given. We will exhibit positive elements a, b ∈ M∞(A(r)) with the
property that

dτ (a) + r − η < dτ (b), ∀τ ∈ T(A(r)),

and yet 〈a〉 � 〈b〉 in W (A(r)). This will show that rc(A(r)) ≥ r − η for every η > 0,
whence rc(A(r)) = r , as desired.

Choose i large enough that

�dim(Xi )/2 − 1

mi
> r − η/4.

It follows from [28, Theorem 6.6] that there are a, b ∈ M∞(Ai )+ such that 〈a〉 � 〈b〉 in
W (Ai ) and yet

dτ (a) + r − η < dτ (b), ∀τ ∈ T(Ai ).

Assumption (ii) above ensures that ni �= 0, whence each φi is injective. We may thus
identify a and b with their images in A(r) so that

dτ (a) + r − η < dτ (b), ∀τ ∈ T(A(r)).

We need only prove that 〈a〉 � 〈b〉 in W (A(r)). The technique for proving this is an
adaptation of Villadsen’s Chern class obstruction argument from [31].

With Ni := n0n1 · · · ni , we have Ai = Mmi (C([0, 1]Ni )). The element b of M∞(Ai )

has the following properties: there is a closed subset Y of [0, 1]Ni homeomorphic to
S2k , Ni − 2 ≤ 2k ≤ Ni , such that the restriction of b to Y is a projection of rank k
corresponding to the k-dimensional Bott bundle ξ over S2k ; and the rank of b is at most
2k over any point in Xi = [0, 1]Ni . The element a has constant rank—it is a projection
corresponding to a trivial line bundle over Xi —and need only have normalised rank
strictly less than 3η/4. By increasing i , and hence mi , if necessary, we may assume that
the normalised rank of a is at least η/2. This leads to

dτ (a) >
η

2
= 2r

( η
4r

)
≥ dτ (b)

( η
4r

)
, ∀τ ∈ T(Ai ). (17)

The map φi, j : Ai → A j has the form

φi, j ( f ) = diag
(

f ◦ π1
i, j (x), . . . , f ◦ πki, j

i, j (x), f (x1
i ), . . . , f (x

li, j
i )

)
, ∀x ∈ X j ,

where ki, j = ni+1ni+2 · · · n j and li, j = m j/mi − ki, j . Following [31], we have that
φi, j (a) is a projection of rank rank(a)m j/mi corresponding to the trivial vector bundle

θrank(a)m j /mi , while the restriction of φi, j (b) to Y ki, j ⊆ X
ki, j
i = X j is of the form

ξ×ki, j ⊕ fb, where fb is a constant positive element of rank at most 2kli, j . If p is the
image of 1 ∈ Ai under the eigenvalue maps of φi, j which are co-ordinate projections,
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then pφi, j (b)p = ξ×ki, j . Let x ∈ A j . Restricting to Y ki, j (and using the same notation
for the restriction of x) we have

‖x(ξ×ki, j ⊕ fb)x
∗ − θrank(a)m j /mi ‖

= ‖[x(p ⊕ f 1/2
b )](ξ×ki, j ⊕ θrank( fb))[x(p ⊕ f 1/2

b )]∗ − θrank(a)m j /mi ‖.
If we can show that θrank(a)m j /mi is not Murray-von Neumann equivalent to a subpro-
jection of ξ×ki, j ⊕ θrank( fb), then we will have that the last quantity above is ≥ 1/2 (cf.
[30, Lemma 2.1]). It will then follow that for every j > i and every x ∈ A j ,

‖xφi, j (b)x
∗ − φi, j (a)‖ ≥ 1/2;

in particular, 〈a〉 � 〈b〉, as desired.
By a straightforward adaptation of [31, Lemma 2.1] (using the fact that the top Chern

class of ξ is not zero), θrank(a)m j /mi will fail to be equivalent to a subprojection of
ξ×ki, j ⊕ θrank( fb) if rank(a)m j/mi > rank( fb). We have

rank( fb)− rank(a) · m j

mi
≤ 2kli, j − rank(a) · m j

mi

≤ Ni

(
m j

mi
− ki, j

)
− rank(a) · m j

mi

= (Ni − rank(a)) · m j

mi
− n0n1 · · · n j ,

so it will be enough to prove that

n0n1 · · · n j > (Ni − rank(a)) · m j

mi
.

Rearranging and using the definitions of mi and Ni we must show that

(ni+1 + li+1) · · · (n j + l j )

ni+1 · · · n j
· (1 − rank(a)/Ni ) < 1.

Now rank(a) > (η/2)mi , so the right hand side above is less than

(ni+1 + li+1) · · · (n j + l j )

ni+1 · · · n j
·
(

1 − miη

2Ni

)
. (18)

The sequence (miη)(2Ni ) is convergent to a nonzero limit, so for some γ > 0, for all i
sufficiently large, the expression in (18) is strictly less than

(ni+1 + li+1) · · · (n j + l j )

ni+1 · · · n j
· (1 − γ ). (19)

Increasing i if necessary we may assume that

(ni+1 + li+1) · · · (n j + l j )

ni+1 · · · n j
<

1

1 − γ
,

whence the expression in (19) is strictly less than one, as required. This completes the
proof that rc(A(r) = r .
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Since each natural number divides some mi and each Xi is contractible, we have
K0(A(r)) ∼= Q, with the usual order structure and order unit. The contractibility of Xi
also implies that K1(Ai ) = 0 for every i , whence K1(A(r)) = 0, too. The pairing ρ
between traces and K0 is determined uniquely since there is only one state on K0(A(r)).
In order to complete the proof that Ell(A(r)) ∼= Ell(A(s)) for every r, s ∈ R

+\{0}, we
must prove that T(A(r)) ∼= T(A(s)).

Recall that the tracial state space of Mk(C(X)) is homeomorphic to the space P(X)
of regular positive Borel probability measures on X . Let (A(r)i , φi ) and (A(s)i , ψi ) be
inductive sequences as above, with simple limits A(r) and A(s), respectively. We have
Spec(A(r)i ) = [0, 1]Ni and Spec(A(s)i ) = [0, 1]Mi . Using the superscript � to denote the
map induced on traces by a ∗-homomorphism, we have

T(A(r)) ∼= lim←− (P([0, 1]Ni , φ
�
i ); T(A(s)) ∼= lim←− (P([0, 1]Mi , ψ

�
i ).

We require sequences (γi ) and (δi ) of continuous affine maps making the triangles in
the diagram

P([0, 1]N1) P([0, 1]N2)
φ
�
1

��

δ1�������������
P([0, 1]N3)

φ
�
2

��

δ2�������������
· · ·

φ
�
3

��

δ3������������

P([0, 1]M1)

γ1

��

P([0, 1]M2)
ψ
�
1

��

γ2

��

P([0, 1]M3)
ψ
�
2

��

γ3

��

· · ·
ψ
�
3

��

(20)

commute ever more closely on ever larger finite sets as i → ∞. We will in fact be able
to arrange for near-commutation on the entire source space in each triangle.

Let µ be a probability measure on X N , and K a subset of {1, . . . , N }. We use µK
to denote the measure on X |K | defined by integrating out those co-ordinates of X N not
contained in K . Straightforward calculation shows that upon viewing Xi+1 as X Ni+1/Ni

i
we have

φ
�
i (µ) =

ni+1

ni+1 + li+1

⎡
⎣ Ni

Ni+1

Ni+1/Ni⊕
l=1

µ{l}

⎤
⎦ +

li+1

ni+1 + li+1
λi ,

where λi is a convex combination of finitely many point masses. A similar statement
holds forψ�i . Since li+1/(ni+1 + li+1) is negligible for large i , we may in fact assume that

φ
�
i (µ) =

Ni

Ni+1

Ni+1/Ni⊕
l=1

µ{l}; ψ
�
i (µ) =

Mi

Mi+1

Mi+1/Mi⊕
k=1

µ{k}

for the purposes of our intertwining argument. We may also assume, by compressing
our sequences if necessary, that N1 " M1 " N2 " M2 " · · · . Define

γ1(µ) = 1

�M1/N1 
�M1/N1 ⊕

l=1

µ{(l−1)N1+1,...,l N1}.
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Now set Bk = {(k − 1)M1 + 1, . . . , k M1} for each 1 ≤ k ≤ �N2/M1 , and Dt =
{(t − 1)N1, . . . , t N1} for each 1 ≤ t ≤ N2/N1. Define

δ1(µ) = 1

�N2/M1 
�N2/M1 ⊕

k=1

σ ∗
k (µBk ),

where σ ∗
k is the map induced on measures by the homeomorphism σk : Bk → Bk defined

by the following property: if j is the first co-ordinate of Bk contained in a Dt which
is itself contained in Bk , then σk is the permutation which subtracts j − 1(mod|Bk |)
from each co-ordinate. (The idea is that σk moves all of the Dt ’s contained in Bk “to the
beginning”.)

Let L be the number of Dt ’s which are contained in some Bk . Since N1 " M1 " N2,
we have that (N2 − N1L)/N2 is (arbitrarily) small. Now

γ1 ◦ δ1(µ) = 1

L

⊕
{t | Dt⊆Bk , for some k}

µDt ,

while

φ
�
1(µ) =

1

N2/N1

N2/N1⊕
k=1

µDk .

The difference [(γ1 ◦ δ1)−φ�1](µ) is a measure of total mass at most 2(N2 − N1L)/N2,
and so the first triangle from the diagram (20) commutes to within this tolerance on
all of P([0, 1]N2). The subsequent γi ’s and δi ’s are defined in a manner analogous
to our definition of δ1, and this leads to the desired intertwining. We conclude that
Ell(A(r)) ∼= Ell(A(s)), as desired.

It remains to prove that if A(r) and A(s) are Morita equivalent, then r/s ∈ Q. Suppose
that they are so. By the Brown-Green-Rieffel Theorem, A(r) and A(s) are stably isomor-
phic, and so there are projections p, q ∈ A(r) ⊗ K such that A(r) ∼= p(A(r) ⊗ K)p and
A(s) ∼= q(A(r)⊗K)q. Since K0(A(r)⊗K) = K0(A(r)) = Q, there are natural numbers
n and m such that n[p] = m[q] in K0. It is proved in [31] that the construction used to
arrive at A(r) and A(s) always produces C∗-algebras of stable rank one, whence A(r)⊗K
has stable rank one. Thus, ⊕n

i=1 p and ⊕m
j=1 q are Murray-von Neumann equivalent,

and

Mn(A
(r)) ∼= (⊕n

i=1 p)(A(r) ⊗ K)(⊕n
i=1 p)

∼= (⊕m
i=1 q)(A(r) ⊗ K)(⊕m

i=1 q) ∼= Mm(A
(s)).

By [28, Prop. 6.2 (ii)] we have

r/n = rc
(

Mn(A
(r))

)
= rc

(
Mm(A

(s))
)
= s/m,

whence r/s ∈ Q, as required. ��
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