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Stability in the Cuntz semigroup of a
commutative C∗-algebra

Andrew S. Toms

Abstract

Let A be a C∗-algebra. The Cuntz semigroup W (A) is an analogue for positive elements of the
semigroup V (A) of Murray–von Neumann equivalence classes of projections in matrices over A.
We prove stability theorems for the Cuntz semigroup of a commutative C∗-algebra which are
analogues of classical stability theorems for topological vector bundles over compact Hausdorff
spaces.

Let SDG denote the class of simple, unital, and infinite-dimensional AH algebras with slow
dimension growth, and let A be an element of SDG. We apply our stability theorems to obtain
the following:

(i) A has strict comparison of positive elements;
(ii) W (A) is recovered functorially from the Elliott invariant of A;
(iii) the lower semicontinuous dimension functions on A are weak-∗ dense in the dimension

functions on A;
(iv) the dimension functions on A form a Choquet simplex.

Statement (ii) confirms a conjecture of Perera and the author, while statements (iii) and (iv)
confirm, for SDG, conjectures of Blackadar and Handelman from the early 1980s.

1. Introduction

In 1978, Cuntz introduced a generalisation of Murray–von Neumann comparison: given positive
elements a and b in a C∗-algebra A, write a � b if there is a sequence (vi)∞

i=1 in A such that

‖vibv
∗
i − a‖ i→∞−−−→ 0

[7]. We say that a is Cuntz subequivalent to b. The relation ∼ given by

a ∼ b ⇐⇒ a � b ∧ b � a

is an equivalence relation known as Cuntz equivalence. If A is unital, then one can mimic the
construction of the ordered semigroup V (A) of Murray–von Neumann equivalence classes of
projections in matrices over A by substituting positive elements for projections and Cuntz
equivalence for Murray–von Neumann equivalence. This yields a positively ordered Abelian
monoid W (A) called the Cuntz semigroup of A, and its partially ordered Grothendieck envelope
K∗

0(A). If A is stably finite, then each tracial state on A gives rise to an order-preserving state
on W (A). If the partial order on W (A) is determined by these states, then A is said to have
strict comparison of positive elements, or simply strict comparison.

The study of the Cuntz semigroup has been resurgent of late. Rørdam has proved that
simple, unital, exact, and finite C∗-algebras which absorb the Jiang–Su algebra tensorially have
strict comparison [21], whence, by results of W. Winter and the author, this last property is
enjoyed by all classes of simple, separable, and nuclear C∗-algebras currently known to satisfy
Elliott’s classification conjecture [25, 26]. Coward, Elliott, and Ivanescu have recently identified
a category of partially ordered semigroups into which the Cuntz semigroup is a continuous
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functor with respect to inductive limits. Significantly, the Cuntz semigroup is deeply connected
to the classification programme for separable and nuclear C∗-algebras: such algebras cannot be
classified by their K-theory in the absence of strict comparison [22], and there is some evidence
that the converse will hold [27]. Brown, Perera, and the author recently proved a structure
theorem for the Cuntz semigroup which applies to most of our stock-in-trade simple, separable,
and nuclear C∗-algebras [6, 20].

In this paper we study the structure of the Cuntz semigroup for commutative and
approximately homogeneous (AH) C∗-algebras. Our main result is a positive answer to the
following question, raised in [23].

Question 1.1. Does there exist a constant K > 0 such that for any compact metrisable
Hausdorff space X, n ∈ N, and positive elements a, b ∈ Mn(C(X)) for which

rank(a)(x) + K dim(X) � rank(b)(x), for all x ∈ X,

one has a � b?

This question asks for an analogue in positive elements of the following well-known stability
theorem for vector bundles.

Theorem 1.2 [17, Chapter 8, Theorems 1.2 and 1.5]. Let X be a compact metrisable
Hausdorff space, and let ω and ξ be complex vector bundles over X. If the fibre dimension of
ω exceeds the fibre dimension of ξ by at least 
dim(X)/2� over every point in X, then ξ is
isomorphic to a sub-bundle of ω.

Our positive answer to Question 1.1 has several applications to AH algebras. Recall that an
AH algebra is an inductive limit C∗-algebra A = limi→∞(Ai, φi), where

Ai =
ni⊕
l=1

pi,l(C(Xi,l) ⊗ K)pi,l (1.1)

for compact connected Hausdorff spaces Xi,l, projections pi,l ∈ C(Xi,l) ⊗ K, and natural
numbers ni. If A is separable, then one may assume that the Xi,l are finite CW-complexes
[1, 16]. The algebras Ai are called semi-homogeneous, and the inductive system (Ai, φi) is
referred to as a decomposition for A. All AH algebras in this paper are assumed to be separable.

If an AH algebra A admits a decomposition as in (1.1) for which

max
1�l�ni

{
dim(Xi,1)
rank(pi,1)

, . . . ,
dim(Xi,ni)
rank(pi,ni)

}
i→∞−−−→ 0,

then we say that A has slow dimension growth. Let SDG denote the class of simple, unital,
and infinite-dimensional AH algebras with slow dimension growth. The class SDG was studied
intensively during the early to mid 1990s by Blackadar, Bratteli, Dădărlat, Elliott, Gong,
Kumjian, Li, Rørdam, Thomsen, and others (see [2, 3, 5, 8–11, 13, 15]). The crowning
achievement of this study was the confirmation of Elliott’s classification conjecture for SDG
under the additional assumption of real rank zero [8, 10, 15], and the same confirmation in
the real-rank-one case under the stronger hypothesis of very slow dimension growth for A [13]:

max
1�l�ni

{
dim(Xi,1)3

rank(pi,1)
, . . . ,

dim(Xi,ni)
3

rank(pi,ni)

}
i→∞−−−→ 0.
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This strengthened hypothesis is thought by experts to be unnecessary, but there has been no
progress on this problem. In fact, there has been no progress on the basic structure of elements
of SDG since the late 1990s.

In this paper we obtain significant new results on the structure of slow dimension growth
AH algebras. We use our positive answer to Question 1.1 to prove that if A ∈ SDG, then A
has strict comparison of positive elements. There is evidence that this powerful K-theoretic
condition will characterise those simple, separable, and nuclear C∗-algebras which are amenable
to K-theoretic classification — it already does so for a class of AH algebras intersecting
substantially with SDG (see [27]) — and so our result supports the belief that SDG will satisfy
the Elliott conjecture without the assumption of very slow dimension growth. By appealing to
our recent work with Brown and Perera [6], we confirm several conjectures pertaining to the
structure of the Cuntz semigroup for A ∈ SDG. First, W (A) is recovered functorially from the
Elliott invariant of A, allowing one to attack the Elliott conjecture for SDG with considerably
more information than would appear to be contained in the Elliott invariant alone. (This
functorial recovery was conjectured for a class of algebras containing SDG by Perera and the
author in [20].) Second, the states on W (A) coming from traces on A are weak-∗ dense in
the state space of W (A). Third, the state space of W (A) is a Choquet simplex. The results
concerning the state space of W (A) were conjectured by Blackadar and Handelman in 1982
(see [4]), but were only known to hold for commutative C∗-algebras at the time.

In a separate paper we will apply our positive answer to Question 1.1 to answer, affirmatively,
a question of N. C. Phillips: ‘Do there exist simple, separable, nuclear, and non-Z-stable
C∗-algebras which agree on the Elliott invariant, yet are not isomorphic?’ (See [24].)

This paper is organised as follows: Section 2 contains the definition of the Cuntz semigroup
and recalls some essential facts about Cuntz subequivalence; Section 3 contains the stability
theorems which answer Question 1.1; in Section 4 we establish results (i)–(iv) of the abstract.

Acknowledgements. The author thanks N. Christopher Phillips and Wilhelm Winter for
several inspiring conversations held during a visit to Münster in August of 2005 which incited
him to write this paper. He also thanks Mikael Rørdam for supplying Lemma 4.3, and Joachim
Cuntz for supporting his visit to Münster.

2. Preliminaries

Let A be a C∗-algebra, and let Mn(A) denote the n × n matrices whose entries are elements
of A. If A = C, then we simply write Mn. Let M∞(A) denote the algebraic limit of the direct
system (Mn(A), φn), where

φn : Mn(A) −→ Mn+1(A)

is given by

a −→
(

a 0
0 0

)
.

Let M∞(A)+ and Mn(A)+ denote the positive elements in M∞(A) and Mn(A) respectively.
Given a, b ∈ M∞(A)+, we say that a is Cuntz subequivalent to b (written a � b) if there is a
sequence (vn)∞

n=1 of elements of M∞(A) such that

‖vnbv∗
n − a‖ n→∞−−−−→ 0.

We say that a and b are Cuntz equivalent (written a ∼ b) if a � b and b � a. This relation is
an equivalence relation, and we write 〈a〉 for the equivalence class of a. The set

W (A) := M∞(A)+/∼
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becomes a positively ordered Abelian monoid when equipped with the operation

〈a〉 + 〈b〉 = 〈a ⊕ b〉

and the partial order

〈a〉 � 〈b〉 ⇐⇒ a � b.

In the sequel, we refer to this object as the Cuntz semigroup of A. The Grothendieck enveloping
group of W (A) is denoted K∗

0(A).
Given a ∈ M∞(A)+ and ε > 0, we denote by (a − ε)+ the element of C∗(a) corresponding

(via the functional calculus) to the function

f(t) = max{0, t − ε}, for t ∈ σ(a).

(Here σ(a) denotes the spectrum of a.) The proposition below collects some facts about Cuntz
subequivalence due to Kirchberg and Rørdam.

Proposition 2.1 (Kirchberg and Rørdam [18], Rørdam [21]). Let A be a C∗-algebra, and
a, b ∈ A+.

(i) We have (a − ε)+ � a for every ε > 0.
(ii) The following are equivalent:

(a) a � b;
(b) for all ε > 0, (a − ε)+ � b;
(c) for all ε > 0, there exists δ > 0 such that (a − ε)+ � (b − δ)+.

(iii) If ε > 0 and ‖a − b‖ < ε, then (a − ε)+ � b.

Now suppose that A is unital and stably finite, and denote by QT(A) the space of normalised
2-quasitraces on A (see [4, Definition II.1.1]). Let S(W (A)) denote the set of additive and
order-preserving maps s from W (A) to R

+ having the property that s(〈1A〉) = 1. Such maps
are called states. Given τ ∈ QT(A), one may define a map

sτ : M∞(A)+ −→ R
+

by

sτ (a) = lim
n→∞

τ(a1/n). (2.1)

This map is lower semicontinuous, and depends only on the Cuntz equivalence class of a. It
moreover has the following properties:

(i) if a � b, then sτ (a) � sτ (b);
(ii) if a and b are mutually orthogonal, then sτ (a + b) = sτ (a) + sτ (b);
(iii) sτ ((a − ε)+) ↗ sτ (a) as ε → 0.

Thus, sτ defines a state on W (A). Such states are called lower semicontinuous dimension
functions, and the set of them is denoted LDF(A). The space QT(A) is a simplex (see [4,
Theorem II.4.4]), and the map from QT(A) to LDF(A) defined by (2.1) is bijective and affine
[4, Theorem II.2.2]. A dimension function on A is a state on K∗

0(A), where it is assumed that
the latter has been equipped with the usual order coming from the Grothendieck map. The
set of dimension functions is denoted DF(A). The set LDF(A) is a (generally proper) face of
DF(A). If A has the property that a � b whenever s(a) < s(b) for every s ∈ LDF(A), then we
say that A has strict comparison of positive elements.



STABILITY IN THE CUNTZ SEMIGROUP 5

3. A stability theorem for W (C(X))

3.1. Strategy

In this section we provide a positive answer to Question 1.1. The proof is long and proceeds
in several steps, so an overview of our strategy is in order. We first generalise the concept of a
trivial vector bundle by introducing trivial positive elements in matrices over a commutative
C∗-algebra, and prove that our question need only be answered in the case that X is a finite
simplicial complex (Proposition 3.7). For a finite simplicial complex X, we prove that any
positive element in Mn(C(X)) can be approximated in norm from below by a particularly
tractable kind of positive element (Theorem 3.9). Such an approximant is then shown to be
dominated (in the sense of Cuntz comparison) by a trivial element whose rank over each point
of X exceeds the rank of the approximant by an amount no greater than some fixed multiple
of the dimension of X (Theorem 3.13). Finally, we prove that any positive element dominates
a trivial element provided that the rank of the given element exceeds the rank of the trivial
element by dim(X) + 1 over every point in X (Theorem 3.14). Combining the last two theorems
yields a positive answer to Question 1.1.

Remark 3.1. We are seeking the constant K of Question 1.1. The reader will notice that
we make little effort to find the smallest possible value of K. This is deliberate. The applications
of Section 4 require only that some K exists, and any effort to find the optimal K introduces
more complexity into an already difficult proof. Of course, it is interesting to ask what the
optimal value of K might be. We suspect that it is the same as it is for projections, namely,
about half the covering dimension of X.

3.2. Notation and background

Let X be a topological space. By an upper (respectively lower) semicontinuous function
f : X → Mn(C)+ we will mean a function such that for every vector ξ ∈ C

n, the real-valued
function

x −→ 〈f(x)ξ | ξ〉

is upper (respectively lower) semicontinuous (cf. [5]). The following result of Bratteli and
Elliott, based on earlier work of Dădărlat, Nagy, Némethi and Pasnicu [9, Proposition 3.2],
will be used extensively in the sequel.

Theorem 3.2 (Bratteli and Elliott [5, Theorem 3.1]). Let X be a compact metrisable
Hausdorff space of dimension d, and let P and Q be maps from X into the projections of Mn

such that P is lower semicontinuous and Q is upper semicontinuous. Suppose that

P (x) � Q(x), for all x ∈ X,

and that, furthermore, there exists a natural number k such that

rank(P (x)) > k + 1
2 (d + 1), for all x ∈ X,

and

rank(Q(x)) < k − 1
2 (d + 1), for all x ∈ X.

Then, there is a continuous map R from X into the rank-k projections of Mn such that

P (x) � R(x) � Q(x), for all x ∈ X.
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For a natural number l ∈ N, let θl denote the trivial vector bundle of complex fibre dimension
l. In a metric space X we will use the notation Br(x) for the open ball of radius r > 0
about x ∈ X. The following well-known theorem is a direct consequence of [17, Chapter 8,
Theorems 1.2 and 1.5].

Theorem 3.3. Let X be a compact metrisable Hausdorff space of dimension d, and let ω
be a complex vector bundle over X. Then, there is a complex vector bundle ω on X of rank
less than or equal to d with the property that ω ⊕ ω is a trivial vector bundle.

Let Γn(X) denote the set of n-multisets (sets of n elements, allowing multiplicity) whose
entries are elements of a metric space X. Equip Γn(X) with the following metric: for A, B ∈ Γn,
let P denote the set of all possible pairings of the elements of A with the elements of B;
for P ∈ P, let Δ(P ) denote the maximum distance between two paired elements in P ; set
dist(A, B) = minP∈P Δ(P ).

3.3. Trivial positive elements

Definition 3.4. Let X be a compact metrisable Hausdorff space, and let a ∈ Mn(C(X)) be
positive with (lower semicontinuous) rank function f : X → Z

+ taking values in {n1, . . . , nk},
where n1 < n2 < . . . < nk.

(i) For each 1 � i � k define sets

Gi,a := {x ∈ X | f(x) > ni},

Fi,a := {x ∈ X | f(x) = ni},

and

Hi,a := {x ∈ X | f(x) � ni}.

Note that Gi,a is open.
(ii) Say that a is trivial if there exist a natural number n, nk mutually orthogonal

projections p1, . . . , pnk
∈ Mn(C(X)), each corresponding to a trivial complex line bundle,

and positive continuous functions gi,a : X → R1Mn(C(X)) with supp(gi,a) = Gi,a such that a
is Cuntz equivalent to ⎛⎝ n1⊕

j=1

g1,apj

⎞⎠⊕ . . . ⊕

⎛⎝ nk⊕
j=nk−1+1

gk,apj

⎞⎠.

(iii) Say that a is well supported if, for each 1 � i � k, there is a projection pi ∈ Mn(C(Fi,a))
such that

lim
r→∞

a(x)1/r = pi(x), for all x ∈ Fi,a,

and pi(x) � pj(x) whenever x ∈ Fi,a ∩ Fj,a and i � j.

Clearly, if a above is a projection, then it is trivial in the sense we have defined if and only
if it corresponds to a trivial vector bundle. When there is no danger of confusion, we will omit
the second subscript for the sets Gi,a, Fi,a and Hi,a.

The following lemma was observed in [19]. The proof is an easy exercise.

Lemma 3.5. Let a, b ∈ Mn be positive. Then, a � b if and only if rank(a) � rank(b).
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An important analogy between trivial positive elements and trivial vector bundles is the fact
that Cuntz comparison for trivial positive elements is encoded by rank functions.

Proposition 3.6. Let X be a compact Hausdorff space, and let a, b ∈ Mn(C(X))+ be
trivial. Then, a � b if and only if rank(a)(x) � rank(b)(x), for all x ∈ X.

Proof. If a � b, then a(x) � b(x) for every x in X. It follows from Lemma 3.5 that

rank(a)(x) � rank(b)(x), for all x ∈ X.

Now suppose that the rank inequality above holds. Let

n1 < n2 < . . . < ns and m1 < m2 < . . . < mt

be the rank values taken by a and b respectively. By assumption there exist projections
p1, . . . , pns

and q1, . . . , qmt
in some Mn(C(X)), each corresponding to a trivial line bundle,

and positive continuous functions

gi,a : X −→ R1Mn(C(X)), for 1 � i � s,

and
gj,b : X −→ R1Mn(C(X)), for 1 � j � t,

with supp(gi,a) = Gi,a and supp(gj,b) = Gj,b such that

a ∼

⎛⎝ n1⊕
j=1

g1,apj

⎞⎠⊕ . . . ⊕

⎛⎝ ns⊕
j=ns−1+1

gs,apj

⎞⎠
and

b ∼

⎛⎝m1⊕
j=1

g1,bqj

⎞⎠⊕ . . . ⊕

⎛⎝ mt⊕
j=mt−1+1

gt,bqj

⎞⎠.

The projections pi and qi are Murray–von Neumann equivalent for every 1 � i � ns, as are their
complements inside Mn(C(X)). It follows that there is a unitary U1 in Mn(C(X)) such that
u1q1u1∗ = p1. We can repeat this argument to find a unitary u2 in (1 − p1)Mn(C(X))(1 − p1)
such that u2q2u2∗ = p2. Then U2 = (u2 ⊕ p1)u1 is a unitary in Mn(C(X)) such that U2qiU

∗
2 =

pi for i = 1, 2. Iterating this process we arrive at a unitary U in Mn(C(X)) such that

UqiU
∗ = pi, for 1 � i � ns.

Our rank inequality implies that

supp(gi,a) ⊆ supp(gi,b), for 1 � i � ns,

whence gi,api is in the hereditary subalgebra of Mn(C(X)) generated by gi,bpi. It follows that

a ∼

⎛⎝ n1⊕
j=1

g1,apj

⎞⎠⊕ . . . ⊕

⎛⎝ ns⊕
j=ns−1+1

gs,apj

⎞⎠
is in the hereditary subalgebra of Mn(C(X)) generated by

U

⎡⎣⎛⎝m1⊕
j=1

g1,bqj

⎞⎠⊕ . . . ⊕

⎛⎝ mt⊕
j=mt−1+1

gt,bqj

⎞⎠⎤⎦U∗ ∼ b,

and that a � b, as desired.
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3.4. Reduction to finite simplicial complexes

Proposition 3.7. Suppose that there exists a constant K > 0 such that for any finite
simplicial complex X and positive elements a, b ∈ M∞(C(X)) for which

rank(a)(x) + K dim(X) � rank(b)(x), for all x ∈ X,

one has a � b. Then, this same statement holds (with the same value for K) upon replacing
finite simplicial complexes with arbitrary compact metric spaces.

Proof. Let a, b, and K > 0 be as in the hypotheses of the theorem. Let there be given a
compact metric space Z, and positive elements a, b ∈ M∞(C(Z)) such that

rank(a)(z) + K dim(Z) � rank(b)(z), for all z ∈ Z.

(This implies, in particular, that Z has finite covering dimension, but Theorem 3.15 holds
vacuously if dim(Z) = ∞; there is no loss of generality here.)

A central theorem in the dimension theory of topological spaces asserts that if Z is a compact
metric space of finite covering dimension, then Z is the limit of an inverse system (Yi, πi,j),
where each Yi is a finite simplicial complex of dimension less than or equal to the dimension of
Z (cf. [14, Theorem 1.13.2]). Thus, we have an inductive limit decomposition for M∞(C(Z)):

M∞(C(Z)) = lim
i→∞

(M∞(C(Yi)), φi) ,

where φi : M∞(C(Yi)) → M∞(C(Yi+1)) is induced by πi,i+1 : Yi+1 → Yi.
We claim that for each ε > 0 there exists a δ > 0 such that

rank(a − ε)+(z) + K dim(Z) � rank(b − δ)+(z), for all z ∈ Z.

Notice that if ε1 � ε2, then rank(a − ε1)+ � rank(a − ε2)+. Let ε > 0 be given, and fix z ∈ Z.
Put A = rank(a)(z) and B = rank(b)(z) for convenience. Let η(z) denote the smallest non-zero
eigenvalue of a(z). For the purpose of proving our claim, we view a and b as being contained
in some Mn(C(Z)). The map

σ : Mn(C(Z)) × Z −→ Γn,

which assigns to an ordered pair (d, x) the multiset whose elements are the eigenvalues of d(x),
is continuous in both variables, and so there is a neighbourhood V (z) of z upon which a has
precisely A eigenvalues greater than or equal to min{η(z)/2, ε}. It follows from the functional
calculus that rank(a − ε)+ is less than or equal to A on V (z). Now σ(b, · ) is continuous, and
so there is a neighbourhood U(z) of z upon which b has at least B non-zero eigenvalues. In
fact, more is true: U(z) may be chosen so that there is a continuous choice of B non-zero
eigenvalues of b on U(z) which coincides with the spectrum of b(z) at z. Let δz be half the
smallest eigenvalue occurring in this continuous choice of eigenvalues. Then, rank(b − δz)+ � B
on U(z), and this remains true if δz is replaced by some smaller δ′. Put W (z) = V (z) ∩ U(z).
Then,

rank(a − ε)+(x) � A + K dim(Z) � B � rank(b − δz)+(x), for all x ∈ W (z).

The space Z is compact, so we may find z1, . . . , zk ∈ Z such that

Z = W (z1) ∪ . . . ∪ W (zk).

Put δ = min{δz1 , . . . , δzk
}, and let x ∈ Z be given. Then x ∈ W (zl) for some 1 � l � k, and

applying the preceding inequality we have

rank(a − ε)+(x) + K dim(Z) � rank(b − δzl
)+(x) � rank(b − δ)+(x).

This proves the claim.
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Given η > 0 and a ∈ M∞(C(Z))+ one can always find an element ã satisfying:
(i) ã � a;
(ii) (a − η)+ � ã;
(iii) ã is in the image of φi,∞ for some i ∈ N.

(This follows from Proposition 2.1 and the inductive limit decomposition of M∞(C(Z)).) Let
ε > 0 be given, and find δ > 0 so that

rank(a − ε/2)+(z) + K dim(Z) � rank(b − δ)+(z), for all z ∈ Z.

Find an approximant b̃ for b satisfying (i)–(iii) above with η = δ. Similarly, find an approximant
ã for (a − ε/2)+ with η = ε/2. Then, for all z ∈ Z,

rank(ã)(z) + K dim(Z) � rank(a − ε/2)+(z) + K dim(Z)
� rank(b − δ)+(z)

� rank(b̃)(z).

We may assume that both ã and b̃ are the images under φi,∞ of elements â and b̂ in
M∞(C(Yi)), respectively. These pre-images satisfy

rank(â)(y) + K dim(Z) � rank(b̂)(y), for all y ∈ Im(πi,∞),

where πi,∞ : Z → Yi is the continuous map which induces φi,∞. We cannot apply the hypothesis
of the proposition unless the inequality above holds for all y ∈ Yi, and so we modify the
pre-image b̂. We may, as before, view â and b̂ as lying in some Mn(C(Yi)). Choose a continuous
function f : Yi → [0, 1] supported on the complement of Im(πi,∞). Put

ˆ̂
b = b̂ ⊕ f · 1�K dim(Z)�.

Since ˆ̂
b and b̂ agree on Im(πi,∞), we have φi,∞(ˆ̂b) = b̃. But clearly

rank(â)(y) + K dim(Z) � rank(b̂)(y), for all y ∈ Yi,

whence â � ˆ̂
b by our hypothesis. Cuntz subequivalence is preserved under ∗-homomorphisms,

whence ã � b̃. Now

(a − ε)+ � ã � b̃ � b;

ε was arbitrary, and the proposition follows.

3.5. Well supported approximants

Lemma 3.8. Let X be a finite simplicial complex, V be an open subset of X, and U be
a closed subset of V . Then, there are a refinement of the simplicial structure on X and a
subcomplex Y of this refined structure satisfying:

(i) Y ⊇ V c;
(ii) U ∩ Y = ∅;
(iii) Y is the closure of its interior.

Moreover, Y c and ∂Y = ∂Y c are subcomplexes of this refined structure.

Proof. We first define a precursor Ỹ to Y , whose definition we later refine to obtain Y
proper. By assumption, U ∩ V c = ∅. Since U and V c are compact, there is a δ > 0 such that

dist(U, x) > δ, for all x ∈ V c.

Refine the simplicial structure on X through repeated barycentric subdivision until the
largest diameter of any simplex is less than δ/2. Let Ỹ be the subcomplex consisting of all
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simplices whose intersection with V c is non-empty. The distance from any point in Ỹ to V c is
at most δ/2, and so Ỹ ∩ U = ∅. Every x ∈ V c is contained in some simplex of X, so Ỹ ⊇ V c.

Now choose x ∈ Ỹ c, and let Θx be the smallest simplex of the refined simplicial structure on
X containing x. Suppose that Θx is not contained in Ỹ c. Then, Θx contains a point y ∈ Ỹ ◦,
and there is an open set U ⊆ Ỹ ◦ such that y ∈ U . Thus, there is a point y′ ∈ U which is in the
(relative) interior of Θx, and the smallest simplex of X containing y′ is Θx. This implies that
Θx is contained in Ỹ by construction, contradicting x ∈ Θx. We conclude that Θx ⊆ Ỹ c. Now

Ỹ c ⊆
⋃

x∈Ỹ c

Θx ⊆ Ỹ c,

and so the second containment above is in fact equality. We conclude that Ỹ c is a subcomplex
of X. Now Ỹ c is open, whence Ỹ c is the closure of its interior.

Notice that Ỹ c is defined in the same manner as Y : for each point in a given open set, one
finds the smallest simplex containing the said point, and then takes the union of these simplices
over all points in the open set. We may therefore define

Y :=
(

Ỹ c
)c

,

and apply the arguments above to conclude that Y is a subcomplex. Now Y both contains
V and is contained in Ỹ , and so satisfies conclusions (i) and (ii) of the lemma; Y satisfies
conclusion (iii) by construction. Repeating the arguments above one last time, we find that Y c

and hence ∂Y c = ∂Y are subcomplexes.

Theorem 3.9. Let X be a finite simplicial complex, a ∈ Mn(C(X))+, and ε > 0 be given.
Then, there exists a well supported element f ∈ Mn(C(X))+ such that f � a and ‖f − a‖ < ε.
Moreover, f takes the same rank values as a, and the sets Fi corresponding to f (see
Definition 3.4) may be assumed, upon refining the simplicial structure of X, to be subcomplexes
of X.

Proof. Let a ∈ Mn(C(X))+, and let Hi be the set Hi,a of Definition 3.4. Let ε > 0 be given.

Step 1. We will show that there exist open sets Vi ⊇ Hi, for 1 � i � k, and an upper
semicontinuous function g : X → Mn(C)+ satisfying:

(i) g(x) = a(x), for all x ∈ Hi \
(⋃i−1

j=1 Vj

)
;

(ii) g(x) is continuous on Vi \
(⋃i−1

j=1 Vj

)
, for 1 � i � k;

(iii) ‖g(x) − a(x)‖ < ε, for all x ∈ X;
(iv) rank(g)(x) = ni, for all x ∈ Vi \

(⋃i−1
j=1 Vj

)
;

(v) with

Di := Vi \

⎛⎝i−1⋃
j=1

Vj

⎞⎠ ,

there is a continuous projection-valued function pi ∈ Mn(C(Di)) such that

lim
r→∞

g(x)1/r = pi(x), for all x ∈ Vi \

⎛⎝i−1⋃
j=1

Vj

⎞⎠ ,

and pi(x) � pj(x) whenever x ∈ Di ∩ Dj and i � j.
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Moreover, upon refining the simplicial structure of X, we may assume that both Vi and V c
i are

subcomplexes of X.
Let n1 < . . . < nk be the rank values taken by a. The function which assigns to each point

x ∈ ∂H1 the minimum non-zero eigenvalue of a(x) is continuous on a compact set, and so
achieves a minimum, say η1 > 0. For each x ∈ ∂H1, find δx > 0 such that, for every y ∈ Bδx(x),
the eigenvalues of a(y) are all either greater than

Lu
1 := max

{ 2
3η1, η1 − ε

}
,

or less than
Ll

1 := min
{ 1

3η1, ε
}
.

Let Ux be the connected component of Bδx(x) containing x. Put

W1 = H1 ∪
( ⋃

x∈∂H1

Ux

)
.

Then W1 is open. Use Lemma 3.8 to find a subcomplex Y1 of X such that Y1 ⊇ W̃1
c

and
Y1 ∩ H1 = ∅. Put V1 = Y c

1 , and note that V1 so defined is a subcomplex of some (possibly
refined) simplicial structure on X. Define p1(x) to be the support projection of a(x) for x ∈ H1,
and the support projection of the eigenvectors of a(x) corresponding to eigenvalues which are
greater than or equal to Lu

1 for x ∈ V1 \ H1. For each x ∈ V1, put

g(x) = p1(x)a(x).

Claim. The following hold:
(i) g(x) = a(x), for all x ∈ H1;
(ii) g(x) is continuous on V1;
(iii) ‖g(x) − a(x)‖ < ε, for all x ∈ V1;
(iv) rank(g)(x) = n1, for all x ∈ V1;
(v) p1 is a continuous projection-valued function on V1 such that

lim
r→∞

g(x)1/r = pi(x), for all x ∈ V1.

Proof. Part (i) is clear from the definition of g on H1.
For (ii), let xn → x in V1. If x is an interior point of H1, then g(xn) → g(x) since a is

continuous and g = a on H1. Otherwise, x ∈ V1 is an interior point of some Uy, and we
may find N ∈ N such that xn ∈ Uy, for all n � N . It will thus suffice to prove that g(x)
is continuous on Uy, with y ∈ ∂H1. Let σ(a(x)) denote the spectrum of a at the point
x ∈ X. The map s : X → Γn given by s(x) = σ(a(x)) is continuous. Thus, s(xn) → s(x). In
particular, the submultiset of s(xn) corresponding to elements larger than Lu

1 converges to the
similar submultiset of s(x); the eigenvectors of a(xn) corresponding to p1(xn) converge to the
eigenvectors of a(x) corresponding to p(x), and so g(xn) → g(x), as required.

Part (iii) follows from the functional calculus and the definition of g because a(x) − g(x) is
zero if x ∈ H1, and is equal, in the functional calculus, to h(t) = t on the part of the spectrum
of a which is less than Ll

1 � ε and zero otherwise.
Part (iv) is trivial for x ∈ H1, so suppose that x ∈ Uy for some y ∈ ∂H1. The rank of g(x)

is equal to the number of eigenvalues of a(x) which are greater than Lu
1 , and this number is

n1 for a(y). Let M ⊆ Γn consist of those multisets with the property that each element of the
multiset is either greater than Lu

1 or less than Ll
1. Let A ⊆ M consist of those multisets for

which the number of elements greater than Lu
1 is exactly n1, and let B be the complement of

A relative to M . Then, A and B are separated. Since s(z) ⊆ M , for all z ∈ Uy, s(y) ∈ A, and
Uy is connected, we conclude that s(z) ∈ A, for all z ∈ Uy. In particular, the rank of g(x) is
n1, as required.
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Observe that (iv) implies that the function which assigns to a point x ∈ V1 the submultiset
of s(x) consisting of those eigenvalues which are greater than or equal to Lu

1 is continuous on
V1. Note that p1(x) is the spectral projection on this submultiset for each x ∈ V1, and is thus
continuous merely by the existence of the continuous functional calculus. This proves (v), and
hence the claim.

The claim above (now proved) is the base case of an inductive argument. We now describe
the construction of V2, p2, and the definition of g on V2 \ V1. The construction of the subsequent
Vi and pi, and the definition of g on Vi \ (

⋃i−1
j=1 Vj) will be similar: all of the essential difficulties

have already been encountered for i = 2.
Let ∂(H2 \ V1) be the boundary of H2 \ V1 inside V c

1 (we may assume that this boundary is
non-empty by shrinking V1, if necessary). Find, as before, the minimum value η2 > 0 occurring
as a non-zero eigenvalue of a|∂(H2\V1). Define

Lu
2 = max

{ 2
3η2, η2 − ε

}
and Ll

2 = min
{ 1

3η2,
1
3η1, ε

}
.

(Note the dependence of Ll
2 on η1.) Find, for each x ∈ ∂(H2 \ V1), a connected open (rel V c

1 )
set Ux ⊆ V c

1 containing x and with the property that for every y ∈ Ux, the eigenvalues of
a(y) are all either greater than Lu

2 or less than Ll
2. Let Ũx be an open set in X such that

Ux = Ũx ∩ V c
1 . Put

W2 = H2 ∪

⎛⎝ ⋃
x∈∂(H2\V1)

Ũx

⎞⎠ ⊆ X.

Refine the simplicial structure on X so that we may find (using Lemma 3.8) a subcomplex Y2
of V c

1 which is disjoint from W c
2 and whose interior (rel V c

1 ) contains H2 \ V1. Put V2 = Y ◦
2 ∪ V1

(interior taken (rel V c
1 )). Thus, V c

2 and V2 are subcomplexes of X. Define p2(x) to be the support
projection of a(x) for x ∈ H2 \ V1. For any y ∈ (Ux \ H2) ∩ V2 and some x ∈ ∂(H2 \ V1), let
p2(x) be the support projection of those eigenvectors of a(y) corresponding to eigenvalues
greater than Lu

2 . Put g(x) = p2(x)a(x), for all x ∈ V2 \ V1.

Claim. The p2 and g(x) so defined have the desired properties, namely:
(i) g(x) = a(x), for all x ∈ H2 \ V1;
(ii) g(x) is continuous on V2 \ V1;
(iii) ‖g(x) − a(x)‖ < ε, for all x ∈ V2;
(iv) rank(g)(x) = n2, for all x ∈ V2 \ V1;
(v) p2 extends to a continuous projection-valued function on D2 := V2 \ V1 such that

lim
r→∞

g(x)1/r = pi(x), for all x ∈ V1,

and p1(x) � p2(x) whenever x ∈ V1 ∩ (V2 \ V1).

Proof. The proofs of all but the last part of (v) are identical to the proofs of the correspond-
ing statements for p1 above. We must show that p1(x) � p2(x) whenever x ∈ V1 ∩ (V2 \ V1).
This follows from the fact that the eigenvalues of (1 − p2(x))a(x)(1 − p2(x)) are all less
than or equal to Ll

2 � Ll
1, and so correspond to eigenvectors in the complement of the range

of p1(x).

The remaining pi, for i < k, may be constructed inductively in a manner similar to the
construction of p2: let ηi be the minimum eigenvalue taken by a on ∂

(
Hi \

(⋃i−1
j=1 Vj

))
(boundary relative to X \

(⋃i−1
j=1 Vj

)
both here and below, and assumed to be non-empty
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by shrinking V1, . . . , Vi−1 if necessary) and put

Lu
i = max

{ 2
3ηi, ηi − ε

}
and Ll

i = min
{ 1

3ηi, L
l
i−1
}
;

find connected open (rel X \
(⋃i−1

j=1 Vj

)
) sets Ux for each x ∈ ∂

(
Hi \

(⋃i−1
j=1 Vj

))
which contain

x, and have the property that every eigenvalue of a(y), for y ∈ Ux, is either greater than Lu
i

or less than Ll
i; find open sets Ũx ⊆ X such that Ux = Ũx ∩ X \

(⋃i−1
j=1 Vj

)
, and define

Wi = Hi ∪

⎛⎜⎝ ⋃
x∈∂(Hi\(

⋃i−1
j=1 Vj))

Ũx

⎞⎟⎠ ⊆ X;

refine the simplicial structure on X and find (using Lemma 3.8) a subcomplex Yi of V c
i−1 which is

disjoint from W c
i and whose interior (rel V c

i−1) contains Hi \ Vi−1; put Vi = Y ◦
i ∪ Vi−1 (interior

taken (rel V c
i−1)) so that V c

i and Vi are subcomplexes of X; define pi(x) to be the support
projection of the eigenvectors of a(x) with non-zero eigenvalues for x ∈ Hi \

(⋃i−1
j=1 Vj

)
, and

the support projection of those eigenvectors of a(x) having eigenvalues greater than or equal
to Lu

i for x ∈ Vi \
(⋃i−1

j=1 Vj

)
; put g = pi(x)a(x), for all x ∈ Vi \

(⋃i−1
j=1 Vj

)
.

The pi and g so defined have the desired properties. As before, all but the last part of
statement (v) follow from the proofs of the corresponding facts for p1 and p2. So suppose that
x ∈ Di ∩ Dj , where j � i. The range of 1 − pi(x) corresponds to the span of eigenvectors of
a(x) with eigenvalues less than or equal to Ll

i � Ll
j . This range is contained in the range of

1 − pj(x), since the latter corresponds to the span of eigenvectors of a(x) with eigenvalues less
than Ll

j . It follows that pj(x) � pi(x), as required.
For i = k, the situation is straightforward. Simply put g(x) = a(x), for all x ∈ V c

k−1.

Step 2. We have V1 ⊆ . . . ⊆ Vk = X. Since the Hi are closed, we may find open sets
U1 ⊆ . . . ⊆ Uk = X such that Hi ⊆ Ui ⊆ Ui ⊆ Vi. Moreover, we may assume, using Lemma 3.8,
that U c

i and Ui are subcomplexes (possibly empty) of X for 1 � i � k. Let us define a
positive upper semicontinuous function f̃ : X → Mn(C(X)) as follows: f̃(x) = pi(x)a(x), for
all x ∈ Ui \

(⋃i−1
j=1 Uj

)
. Then, f̃(x) � g, for all x ∈ X. Moreover, f̃ is well supported by the

pi. To see this, one need only check the coherence condition. Put Ei = Ui \
(⋃i−1

j=1 Uj

)
, and

let x ∈ Ei ∩ Ej , with j � i. The range of 1 − pi(x) corresponds to the span of eigenvectors of
a(x) with eigenvalues less than or equal to Ll

i � Ll
j (since Ui ⊆ Vi). This range is contained

in the range of 1 − pj(x), since the latter corresponds to the span of eigenvectors of a(x) with
eigenvalues less than Ll

j . It follows that pj(x) � pi(x), as required.
We now describe a smoothing process which will transform f̃ into the function f required

by the theorem. For the first step in our process we work inside X \ Uk−2. Find a continuous
function s : X \ Uk−2 → [0, 1] which is zero on Uk−1 \ Uk−2, equal to 1 on X \ Vk−1, and non-
zero off Uk−1 \ Uk−2. Define fk−1 on X \ Uk−2 as follows:

fk−2(x) =

{
f̃(x) if x ∈ Uk−1 \ Uk−2 ∪ (X \ Vk−1),
g(x) ⊕ s(x)(f̃ � g)(x) if x ∈ Vk−1 \ Uk−1.

Thus fk−2 is continuous on X \ Uk−2 and dominates g on X \ Uk−2. It is also subordinate to a.
For the generic step in our process, we work inside X \ Uk−i, with i � 3. Assume that we

have found a continuous function fk−i+1 : X \ Uk−i+1 → Mn(C)+ such that

g(x) � fk−i+1(x), for all x ∈ (X \ Uk−i+1) ∩ Vk−i+1.

(This is the key property required to go from one stage in the smoothing process to the next.)
Find a continuous function s : X \ Uk−i → [0, 1] which is zero on Uk−i+1 \ Uk−i, equal to 1 on
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X \ Vk−i+1, and non-zero off Uk−i+1 \ Uk−i. Define fk−i on X \ Uk−i as follows:

fk−i(x) =

⎧⎪⎨⎪⎩
f̃(x) if x ∈ Uk−i+1 \ Uk−i,

fk−i+1(x) if x ∈ (X \ Vk−i+1),
g(x) ⊕ s(x)(f̃k−i+1 � g)(x) if x ∈ Vk−i+1 \ Uk−i+1.

Then, as before, fk−i is continuous on X \ Uk−i, dominates g, and is subordinate to a.
This smoothing process terminates when i = k − 1, and the resulting continuous function
f : X → Mn(C)+ has the desired properties. (Note that the sets Hi of Definition 3.4
corresponding to f are precisely the Ui. The sets Fi of Definition 3.4 corresponding to f
are thus the Ui ∩ U c

i−1, and so are subcomplexes of the refined simplicial structure on X.)

3.6. Trivial majorants

Lemma 3.10. Let X be a finite simplicial complex of dimension d, and let Y be a
subcomplex. Let p ∈ Mn(C(Y )) be a projection of (complex) fibre dimension l ∈ N corres-
ponding to a trivial vector bundle, and suppose that l � 
d/2� + 1. Then, there is a projection
q ∈ A := Mn(C(X)) such that

(i) q corresponds to a trivial vector bundle of fibre dimension l;
(ii) q(y) = p(y), for all y ∈ Y .

Proof. The projection p may be viewed as a vector bundle (E, r, Y ). Here E is trivial,
and so admits l mutually orthogonal and everywhere non-zero cross-sections si : Y → E, for
1 � i � l. We will prove that each si can be extended to a continuous map vi defined on all
of X which takes values in C

n \ {0}, and that these extensions can be chosen to be mutually
orthogonal. The projection whose range at a point x ∈ X is span{v1(x), . . . , vl(x)} is then the
projection q that we seek.

We proceed by induction. First consider s1, which may be viewed as a continuous map from
Y to C

n \ {0} ∼= R
2n \ {0}. Theorem 2.2 in [17, Chapter 1] states that if (A, B) is a relative

CW-complex and R is a space which is connected in each dimension for which A has cells, then
every continuous map f : B → R extends to a continuous map g : A → R. Now (X, Y ) is a
relative CW-complex, C

n is (2n − 1)-connected, and 2n − 1 � d, so s1 extends to a continuous
map v1 : X → C

n \ {0}, as desired.
Suppose now that we have found mutually orthogonal and continuous extensions vi of si for

each i < k � l. We wish to extend sk to a continuous map vk on X taking values in E and
pointwise orthogonal to v1, . . . , vk−1. Let Qk−1 ∈ Mn(C(X)) be the projection whose range at
a point x ∈ X is span{v1(x), . . . , vk−1(x)}. To find our extension vk, it will suffice to extend
sk to an everywhere non-zero cross-section inside

Ak−1 := (1A − Qk−1)(Mn(C(X)))(1A − Qk−1) ∼= Mn−k(C(X))

(the last isomorphism follows from the fact that 1A − Qk−1 is trivial). This problem is identical
to the problem of extending s1, except that we are now extending a map from Y into C

n−k \ {0}
rather than into C

n \ {0}. Since n − l � 
d/2� + 1, we have 2(n − k) − 1 � d. Since C
n−k \ {0}

is 2(n − k) − 1-connected, we may use [17, Chapter 1, Theorem 2.2], to find the desired
extension vk.

Lemma 3.11. Let X be a finite simplicial complex of dimension d, and let U1, . . . , Uk be
subcomplexes. Suppose that for each 1 � i � k there is a constant-rank projection-valued map
pi ∈ M∞(C(Ui)) satisfying:

(i) pi(x) � pj(x) whenever x ∈ Ui ∩ Uj and i � j;
(ii) rank(pi) < rank(pj) whenever i < j.
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Then, there exist a partition of {1, 2, . . . , k} into non-empty subsets J1, . . . , Js, subcomplexes
Vl :=

⋃
i∈Jl

Ui, and projections Rl ∈ M∞(C(Vl)), with 1 � l � s, such that:
(i) each Rl corresponds to a trivial constant-rank vector bundle on Vl;
(ii) 3d + 3 � rank(Rl) − rank(pi) < 4d + 3, for all i ∈ Jl;
(iii) rank(Rl) + d � rank(Rl+1), for 1 � l < s;
(iv) pi(x) � Rl(x) for each x ∈ Ui ∩ Vl;
(v) if x ∈ Vl ∩ Vt and l � t, then Rl(x) � Rt(x).

Proof. Put ni = rank(pi). For each n ∈ N, put

Dn = {m ∈ N | (n − 1)d � m < nd}.

Let J̃1, . . . , J̃s be the list of the Dn which have non-empty intersection with {n1, . . . , nk},
ordered so that some (and hence every) element of J̃l is less than every element of J̃l+1. For
1 � j � s, let Jj be the set of indices of the ni appearing in J̃j .

For A ⊆ X put

PA(x) :=
∨

1�i�k

pi(x), for all x ∈ A.

The condition that pi(x) � pj(x) whenever x ∈ Ui ∩ Uj and i � j implies that PA(x) is an
upper semicontinuous projection-valued function for every A ⊆ X.

An application of [5, Theorem 3.1] allows us to find a constant-rank projection-valued map
Qs ∈ M∞(C(Vs)) such that

rank(Qs) − rank(pk) � d

and

pi(x) � Qs(x), for all i ∈ Js and all x ∈ Ui.

It follows that rank(Qs) − rank(ri) < 2d for every i ∈ Js. For every N � d, there is a projection
Qs,N ∈ M∞(C(Vs)) of rank n such that Qs ⊕ Qs,N corresponds to a trivial vector bundle
(cf. Theorem 3.3). Put

Ns = 3d + 3 + rank(rk) − rank(Qs)

and

Rs = Qs ⊕ Qs,Ns .

Now Rs so chosen satisfies conditions (i), (ii), and (iv) in the conclusion of the lemma; conditions
(iii) and (v) are not yet relevant.

Now suppose that we have found, for each m < l � s, constant-rank projections
Rl ∈ M∞(C(Vl)) satisfying conditions (i)–(iv) of the conclusion of the lemma, and satisfying
condition (v) whenever t, l > m. We will construct Rm on Vm so that R1, . . . , Rm satisfy (i)–(iv),
and satisfy (v) when t, l � m. Proceeding inductively then yields the lemma.

Define a projection-valued map

R̃m :
⋃

m�l�s

Vl −→ M∞(C)

by setting R̃m(x) = Rl(x) if l > m is the smallest index such that x ∈ Vl, and setting R̃m(x)
equal to the unit of the (arbitrarily large) matrix algebra which constitutes the target space of
all of our projection-valued maps otherwise. One easily checks that R̃m is lower semicontinuous,
and that

rank(R̃m − PVm)(x) � 3d + 3, for all x ∈ Vm.
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An application of [5, Theorem 3.1] then yields a constant-rank projection-valued map
Qm ∈ M∞(C(Vm)) such that

PVm
(x) � Qm(x) � R̃m(x), for all x ∈ Vm,

and
rank(R̃m − Qm)(x) � 2d + 2, for all x ∈ Vm.

Applying [5, Theorem 3.1] to R̃m and Qm yields a constant-rank projection-valued map
Q′

m ∈ M∞(C(Vm)) such that

Qm(x) � Q′
m(x) � R̃m(x), for all x ∈ Vm,

and
rank(Q′

m − Qm)(x) � d + 1, for all x ∈ Vm.

By [17, Chapter 8, Theorem 1.2], there is a subprojection Qm of Q′
m − Qm with constant

rank at most d such that Tm := Qm ⊕ Qm corresponds to a trivial vector bundle over Vm. By
definition we have

PVm
(x) � Tm(x) � R̃m(x), for all x ∈ Vm.

From the definition of R̃m(x) we have

PVm
(x) � Tm(x) �

∨
m<l�s

Rl(x), for all x ∈ Vm ∩ (Vm+l ∪ . . . ∪ Vs).

Now Rm+1 − Tm is a trivial projection on Vm ∩ Vm+1, and so can be extended to a trivial
projection of the same rank on Vm ∩ (Vm+1 ∪ Vm+2) by Lemma 3.10 (this requires the fact
that the Rj , for m < j � s, satisfy condition (iii) in the conclusion of the lemma). We can
repeat this extension process until Rm+1 − Tm has been extended to a trivial constant-rank
projection T ′

m defined on Vm ∩ (Vm+1 ∪ . . . ∪ Vs) and satisfying

T ′
m(x) �

⎛⎝ ∨
m<l�s

Rl(x)

⎞⎠− Tm(x), for all x ∈ Vm ∩ (Vm+l ∪ . . . ∪ Vs).

Note that the rank of T ′
m is at least d. Choose a trivial subprojection T ′′

m of T ′
m with the property

that rank(Tm ⊕ T ′′
m) = rank(Rm+1) − d. Apply Lemma 3.10 to extend T ′′

m to Vm inside the
complement of Tm, and put

Rm(x) = Tm(x) ⊕ T ′′
m(x), for all x ∈ Vm.

The space Rm(x) so defined has the desired properties.

Lemma 3.12. Let X be a finite simplicial complex of dimension d, and let U1, . . . , Uk be
subcomplexes. Suppose that for each 1 � i � k, there exists a constant-rank projection-valued
function Ri ∈ M∞(C(Ui)) satisfying:

(i) Ri corresponds to a trivial vector bundle over Ui;
(ii) rank(R1) � 
d/2� + 1;
(iii) rank(Ri) + 
d/2� + 1 � rank(Ri+1), for 1 � i < k;
(iv) Ri(x) � Rj(x) whenever x ∈ Ui ∩ Uj and i � j.

Finally, suppose that rank(Ri) = ni, with n1 < . . . < nk, and put n0 = 0. Then, there exist
mutually orthogonal rank-one projections p1, . . . , pnk

∈ M∞(C(X)), each corresponding to a
trivial vector bundle on X, such that

R =
∨

1�i�k

Ri =
k⊕

i=1

⎛⎝ ni⊕
j=ni−1+1

χ(Ui ∪ . . . ∪ Uk)pj

⎞⎠ .
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Proof. We proceed by induction on k. Consider the case k = 1. Since we may view R1 as
an upper semicontinuous projection-valued map from X into Mn(C) for n large, and since
(X, U1) is a relative cell complex with cells of dimension at most d � n, we may apply
Lemma 3.10 to extend R1 to a projection R̃1 on X corresponding to a trivial vector bundle.
Write R̃1 = p1 + . . . + pn1 for line bundles p1, . . . , pn1 , each of which corresponds to a trivial
vector bundle. Then,

R1 = χ(U1)R̃1 =
n1⊕

j=1

χ(U1)pj ,

as desired.
Now suppose that the lemma holds for i < k. Conditions (i) and (iii) in the hypotheses of

the lemma, together with Lemma 3.10, allow us to extend R1 to a trivial projection on U1 ∪ U2
subordinate to R1 ∨ R2. Iterating this process, we extend R1 to a trivial projection R̃1 on
U1 ∪ . . . ∪ Uk which is subordinate to R1 ∨ . . . ∨ Rk. Finally, apply Lemma 3.10 once more to
extend R̃1 to a trivial projection on all of X. Write R̃1 = p1 + . . . + pn1 , where each pj is a
projection corresponding to a one-dimensional trivial vector bundle on X. Then, as before,

R1 = χ(U1)R̃1 =
n1⊕

j=1

χ(U1)pj .

By [17, Chapter 8, Theorem 1.5], we find that Ri − R1 is trivial for 1 � i � k. If i > 1,
then Ri − R1 has rank greater than or equal to 
d/2� + 1. It follows that the projections
(R2 − R̃1), (R3 − R̃1), . . . , (Rk − R̃1) over the subcomplexes U2, U3, . . . , Uk, respectively, satisfy
the hypotheses of the lemma. Moreover, these projections may be viewed as maps from
X into the orthogonal complement of R̃1. It follows that there exist rank-one projections
pn1+1, . . . , pnk

∈ M∞(C(X)), each corresponding to a trivial vector bundle and each orthogonal
to R̃1, which satisfy

∨
2�i�k

(Ri − R̃1) =
k⊕

i=2

⎛⎝ ni⊕
j=ni−1+1

χ(Ui ∪ . . . ∪ Uk)pj

⎞⎠.

We have

R =
∨

1�i�k

Ri = R1 ∨

⎛⎝ ∨
2�i�k

(Ri − R̃1)

⎞⎠,

and the lemma follows.

Theorem 3.13. Let X be a finite simplicial complex, and let a ∈ M∞(C(X))+. Then,
a � d for any d ∈ M∞(C(X))+ which is trivial and satisfies

rank(a)(x) + 4 dim(X) + 3 � rank(d)(x), for all x ∈ X.

Proof. We may assume that ‖a‖ � 1. Let n1 < . . . < nk be the rank values taken by a, and
let ε > 0 be given. Form an approximant f to a satisfying the conclusions of Theorem 3.9, where
the sets F1, . . . , Fk corresponding to f (cf. Definition 3.4) are subcomplexes of X satisfying
the conclusion of Lemma 3.8. Let p1, . . . , pk be the supporting projections for f , and notice
that these satisfy the hypotheses of Lemma 3.11. The conclusion of Lemma 3.11 then provides
a family of constant-rank projections Rl ∈ M∞(C(Vl)), where 1 � l � s (each Vl is a union of
consecutive sets Fi). These, in addition to satisfying the hypotheses of Lemma 3.12, have the
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properties that

R(x) :=
∨

1�l�s

Rl(x) �
∨

1�i�k

pi(x) � f(x), for all x ∈ X,

and

rank(R)(x) − rank

⎛⎝ ∨
1�i�k

pi(x)

⎞⎠ � 4 dim(X) + 3.

Set m0 = 0 and ml = rank(Rl). Let q1, . . . , qnk
be the family of mutually orthogonal rank-one

projections, each corresponding to a trivial bundle, which are provided by the conclusion of
Lemma 3.12, that is,

R =
s⊕

l=1

⎛⎝ ml⊕
j=ml−1+1

χ(Vl ∪ . . . ∪ Vs)qj

⎞⎠ .

By construction (see the proof of Theorem 3.9) we have

Hi,a = {x ∈ X | rank(a)(x) � ni} ⊆ (F1 ∪ . . . ∪ Fi)◦.

Put

Fi,a = {x ∈ X | rank(a)(x) = ni}.

Use Lemma 3.8 to find, inductively (and upon refining the simplicial structure of X if
necessary), subcomplexes U1, . . . , Uk of X satisfying

Fi ∪ . . . ∪ Fk ⊆ (Ui ∪ . . . ∪ Uk)◦ ⊆ Ui ∪ . . . ∪ Uk ⊆ Hc
i−1,a, for 1 � i � k.

The set Vl is a union of consecutive Fi; let Jl be the set of indices occurring among these Fi,
and let Ml be the largest element of Jl. Put

Ṽl =
⋃
i∈Jl

Ui.

For each 1 � l � s, choose a continuous function gl : X → [0, 1] which is identically 1 on
Vl ∪ . . . ∪ Vs ⊆ Hc

Ml−1,a, identically zero on HMl−1,a, and non-zero off HMl−1,a. Then,

R̃(x) =
s⊕

l=1

⎛⎝ ml⊕
j=ml−1+1

gl(x)qj

⎞⎠
is a trivial element of M∞(C(X))+ such that R̃(x) � R(x), for all x ∈ X.

We claim that for all x ∈ X, we have

rank(R̃)(x) − rank(a)(x) � 3 dim(X) + 3.

Indeed,

Al := {x ∈ X | rank(R̃)(x) = ml} = Vl ∩ (V1 ∪ . . . ∪ Vl−1)c,

and gj is non-zero on Al if and only if j � l. We have chosen gj to satisfy

gj(x) �= 0 ⇐⇒ x ∈ Hc
Mj−1,a,

so x ∈ Al if and only if

x ∈ Hc
Mj−l,a

∩ HMl,a.
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Thus, for x ∈ Al, rank(a)(x) = ni for some i ∈ Jl. We have

rank(R)(x) − rank

⎛⎝ ∨
1�i�k

pi(x)

⎞⎠ � 4 dim(X) + 3,

whence ml − ni � 4 dim(X) + 3, for all i ∈ Jl. This proves the claim.
If d is trivial and satisfies the hypotheses of the theorem, then

rank(d)(x) − rank(R̃)(x) � 0, for all x ∈ X.

It follows from Proposition 3.6 that
f � R̃ � d.

Thus, for every ε > 0, there exists v ∈ M∞(C(X)) such that

‖vdv∗ − f‖ < ε.

It follows that
‖vdv∗ − a‖ � ε + ‖vdv∗ − f‖ < 2ε;

ε was arbitrary, and the theorem follows.

3.7. Trivial minorants

Theorem 3.14. Let X be a compact metric space, and a ∈ M∞(C(X))+. Then, d � a
whenever d is trivial and satisfies

rank(d)(x) � max{rank(a)(x) − dim(X) − 1, 0}, for all x ∈ X.

Proof. The hypotheses of the theorem imply that d = 0 if dim(X) = ∞, in which case the
theorem holds.

Suppose that dim(X) < ∞. We proceed by induction on k. Suppose that a takes rank values
n1 < . . . < nk, and, with n0 = 0, put

Gi = {x ∈ X | rank(a)(x) > ni−1}.

Suppose that k = 1. If n1 � dim(X) + 1, then there is nothing to prove, so assume that
n1 > dim(X) + 1. By [17, Chapter 8, Theorem 1.5], a (which, since it only takes one rank
value, is Cuntz equivalent to a projection) is Cuntz equivalent to θn1−dim(X)+1 ⊕ p for some
projection p ∈ M∞(C(X)). The projection θn1−dim(X)+1 is trivial, and so dominates any trivial
d satisfying the hypotheses of the theorem by Proposition 3.6.

Now suppose that we have proved the theorem when a takes i < k rank values. We treat two
cases: n1 � dim(X) + 1 and n1 > dim(X) + 1.

Suppose first that n1 � dim(X) + 1. Then, any trivial d satisfying the hypotheses of the
theorem necessarily satisfies

rank(d)(x) = 0, for all x ∈ Gc
2.

Put εn = 1/2n. Since ‖d(x)‖ is uniformly continuous on G2, there exists a sequence (δn) of
non-negative reals such that ‖d(x) − d(y)‖ < εn/3 whenever dist(x, y) < δn. For each n ∈ N,
let Vn ⊆ G2 be the closed set which is the complement of the set of points in G2 whose
distance from G2 \ G2 is strictly less than δn, and let Un be the closed set consisting of those
points in G2 whose distance from G2 \ G2 is less than or equal to δn/2. Choose a function
fn : G2 → [0, 1] which is identically zero on Un and identically 1 on Vn. Notice that ‖d(x)‖ < ε,
for all x ∈ G2 \ Vn. Upon restriction to U c

n, a takes at most k − 1 rank values. Since a|Uc
n

and d|Uc
n

satisfy the hypotheses of the theorem a fortiori, there is an element wn ∈ M∞(C(U c
n))
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such that ∥∥wn(a|Uc
n
)w∗

n − d|Uc
n

∥∥ < εn.

Put gn = fn · wn, and note that since fn is zero off U c
n, we may view gn as an element of

M∞(C(G2)). Now,

‖gn(x)a(x)g∗
n(x) − d(x)‖ < εn, for all x ∈ Vn,

and, for every x ∈ V c
n ,

‖gn(x)a(x)g∗
n(x) − d(x)‖ � ‖fn(x)wn(x)a(x)w∗

n(x)fn(x)‖ + ‖d(x)‖
� ‖fn(x)2(wn(x)a(x)w∗

n(x) − d(x))‖ + 2‖d(x)‖
� 3‖d(x)‖ < εn

(the second-to-last inequality uses the fact that fn(x) = 0, for all x ∈ Un). Thus,

gnag∗
n

n→∞−−−−→ d,

and d � a, as desired.
Now suppose that n1 > dim(X) + 1. We will reduce to the case n1 � dim(X) + 1, proving

the theorem. By [9, Proposition 3.2], there is a projection p on X such that

rank(p) � 
dim(X)/2� + (n1 − dim(X) − 1)

and p � a. An application of [17, Chapter 8, Theorem 1.2] yields a trivial subprojection
θm of p, where m = n1 − dim(X) − 1. By [20, Proposition 2.2], there is a positive element
b ∈ M∞(C(X)) such that a ∼ b ⊕ θm. Let p1, . . . , pm be the first m trivial rank-one projections
supporting d (cf. Definition 3.4). Then, p1 ⊕ . . . ⊕ pm ∼ θm (where ∼ is in fact true Murray–von
Neumann equivalence), and

d′ := (1 − (p1 ⊕ . . . ⊕ pm))d(1 − (p1 ⊕ . . . ⊕ pm))

and
d′′ := (p1 ⊕ . . . ⊕ pm)d(p1 ⊕ . . . ⊕ pm)

are trivial. Moreover, d′ and b (substituted for d and a, respectively) satisfy the hypotheses of
the theorem, b takes k rank values, and the lowest rank value taken by b is less than or equal
to dim(X) + 1. We may thus apply our proof above to conclude that d′ � b. Since d′′ � θm, we
have

d = d′ ⊕ d′′ � b ⊕ θm ∼ a,

as desired.

3.8. The main theorem

Theorem 3.15. Let X be a compact metric space of covering dimension d ∈ N. Let
a, b ∈ Mn(C(X)) be positive, and suppose that

rank(a)(x) + 9d � rank(b)(x), for all x ∈ X.

Then, a � b.

Proof. Combining Theorems 3.13 and 3.14 yields the theorem with 9d replaced by 5d + 4.
But if d = 0, then

rank(a)(x) � rank(b)(x), for all x ∈ X,

implies that a � b by [19, Theorem 3.3]. If d � 1, then 5d + 4 � 9d.
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Theorem 3.15 applies equally well to locally compact second countable Hausdorff spaces
whose one-point compactifications have finite covering dimension. We fully expect that it will
generalise to recursive subhomogeneous C∗-algebras.

4. Applications to AH algebras

4.1. The dimension-rank ratio vs. the radius of comparison

Recall the terminology concerning AH algebras from Section 1. A unital AH algebra A has
flat dimension growth [23, Definition 1.2] if it admits a decomposition for which

lim sup
i→∞

max
1�l�mi

{
dim(Xi,l)
rank(pi,l)

}
< ∞. (4.1)

The study of unital AH algebras with flat dimension growth was suggested by Blackadar [1] in
1991, but there were no non-trivial examples of such algebras — algebras with flat dimension
growth but not slow dimension growth — until the pioneering work of Villadsen in 1997 [28].
We initiated the study of such algebras in earnest in [23]. Our key tool was the dimension-rank
ratio of a unital AH algebra A (write drr(A)), an isomorphism invariant which is defined to be
the infimum of the set of non-negative reals c such that A has a decomposition satisfying

lim sup
i→∞

max
1�l�mi

{
dim(Xi,l)
rank(pi,l)

}
� c. (4.2)

This invariant may be thought of as a measure of the ratio of the topological dimension of
A to its matricial size, despite the fact that both quantities may be infinite. Its effectiveness
in studying AH algebras of flat dimension growth leads one naturally to consider whether it
has an analogue defined for all unital and stably finite C∗-algebras. In [23] we introduced the
following candidate.

Definition 4.1 [23, Definition 6.1]. Say that A has r-comparison if whenever one has
positive elements a, b ∈ M∞(A) such that

s(〈a〉) + r < s(〈b〉), for all s ∈ LDF(A),

then 〈a〉 � 〈b〉 in W (A). Define the radius of comparison of A, denoted rc(A), to be

inf{r ∈ R
+ | (W (A), 〈1A〉) has r-comparison}

if it exists, and ∞ otherwise.

Theorem 3.15 confirms the radius of comparison as the proper abstraction of the dimension-
rank ratio for semi-homogeneous algebras.

Theorem 4.2. There exist constants K1, K2 > 0 such that for any semi-homogeneous
C∗-algebra

A =
n⊕

i=1

pi(C(Xi) ⊗ K)pi

with each Xi a connected finite-dimensional CW-complex, one has the following inequalities:

drr(A) � K1 rc(A)

and
rc(A) � K2 drr(A).
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Proof. Suppose first that n = 1. The first inequality is [23, Theorem 6.6]. For the second
inequality, use [23, Theorem 2.2] to conclude that drr(A) = dim(X)/ rank(p); the inequality
now follows from the definition of the radius of comparison and Theorem 3.15. To prove the
theorem for general n use the following facts:

drr(A ⊕ B) = max{drr(A), drr(B)}
and

rc(A ⊕ B) = max{rc(A), rc(B)}
for any unital AH algebras A and B (see [23, Proposition 2.2(ii)] and [23, Proposition 6.2(ii)],
respectively).

We will address the relationship between the dimension-rank ratio and the radius of
comparison for general AH algebras in a separate paper.

4.2. Strict comparison of positive elements

The next lemma is due to M. Rørdam. We are grateful for his permission to use it here.

Lemma 4.3 (Rørdam, private communication). Let A be a C∗-algebra and {Ai}i∈I a
collection of C∗-subalgebras whose union is dense. Then, for every a ∈ M∞(A)+ and ε > 0
there exist i ∈ I and ã ∈ M∞(Ai) such that

(a − ε)+ � ã � (a − ε/2)+ � a

in M∞(A).

Proof. First find a positive element b in some M∞(Ai), with i ∈ I, such that

‖b − (a − ε/2)+‖ < ε/4.

Put ã := (b − ε/4)+. The conclusion follows from Proposition 2.1 and the estimate ‖a − ã‖ < ε.

Lemma 4.4. Let A be the limit of an inductive system (Ai, φi)i∈N of C∗-algebras, where φi

is injective for each i ∈ N. Let a, b ∈ M∞(Ai) be positive elements such that φi∞(a) � φi∞(b)
in M∞(A). Then, for every ε > 0 there is a j > i such that

(φij(a) − ε)+ � φij(b)

inside M∞(Aj).

Proof. By working in a matrix algebra over A, we may assume that a, b ∈ A. Since the φi

are injective, we simply identify a and b with their forward images in Aj , for j � i, and in A
itself. We have a � b in M∞(A), so there is a sequence (vn) in M∞(A) such that

vnbv∗
n

n→∞−−−−→ a.

This sequence may be chosen to lie in the dense local C∗-algebra
⋃∞

i=1 Ai. Indeed, for any
wn ∈ A we have

‖wnbwn ∗ −vnbv∗
n‖ = ‖(wn − vn + vn)b(wn − vn + vn)∗ − vnbv∗

n‖
= ‖(wn − vn)b(wn − vn)∗ + (wn − vn)bvn ∗ +vnb(wn − vn)∗‖
� ‖(wn − vn)‖(‖b(wn − vn)∗‖ + ‖bv∗

n‖ + ‖bvn‖),
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so choosing wn ∈
⋃∞

i=1 Ai sufficiently close to vn yields

wnbw∗
n

n→∞−−−−→ a.

Let ε > 0 be given. Find i, n ∈ N such that

‖wnbw∗
n − a‖ < ε

and a, b, wn ∈ M∞Ai. It then follows from Proposition 2.1 that (a − ε)+ � b inside M∞(Ai),
as desired.

Theorem 4.5. Let (Ai, φi) be an inductive sequence of unital, exact, and stably finite
C∗-algebras with simple limit A. Suppose further that each φi is injective and that

lim inf
i→∞

rc(Ai) = 0.

Then, rc(A) = 0. In particular, A has strict comparison of positive elements.

Proof. We will prove that W (A) is almost unperforated, that is, that whenever one
has 〈a〉, 〈b〉 ∈ W (A) such that (n + 1)〈a〉 � n〈b〉, then 〈a〉 � 〈b〉. It then follows from [21,
Corollary 4.6] that A has strict comparison of positive elements.

Let a, b ∈ M∞(A) be positive, and suppose that (n + 1)a � nb for some n ∈ N. Let ε > 0 be
given, and find δ > 0 such that

((n + 1)a − ε/2)+ = (n + 1)(a − ε/2)+ � n(b − δ)+ = (nb − δ)+.

Use Lemma 4.3 to find some i ∈ N and ã, b̃ ∈ M∞(Ai)+ such that

(a − 3ε/4)+ � ã � (a − ε/2)+ and (b − δ)+ � b̃ � b. (4.3)

It follows that
(n + 1)(a − ε)+ � (n + 1)(ã − ε/4)+ � nb̃ � nb.

By Lemma 4.4 we may, by increasing i if necessary, assume that

(n + 1)(ã − ε/4)+ � nb̃ (4.4)

inside M∞(Ai). Since A is simple, we may assume that the images of both (ã − ε/4)+ and b̃
under any τ ∈ T(Ai) are non-zero. It follows that

s((ã − ε/4)+) �= 0 and s(b̃) �= 0, for all s ∈ LDF(Ai).

Equation (4.4) shows that for any τ ∈ T(Ai),

sτ (b̃) − sτ ((ã − ε/4)+) � (1/n)sτ (b̃).

The map τ → sτ (b̃) is strictly positive and lower semicontinuous on the compact space T(Ai).
It therefore achieves a minimum value c > 0, and

sτ ((ã − ε/4)+) + c/2 < sτ (b̃), for all τ ∈ T(Ai).

Increasing i if necessary, we may assume that rc(Ai) < c/2, whence

(ã − ε/4)+ � b̃ � b (4.5)

by the definition of rc( · ). From (4.3) we have the inequality

(a − 3ε/4)+ � ã,

whence
(a − ε)+ � (ã − ε/4)+ (4.6)
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by the functional calculus. Combining (4.5) and (4.6) we have

(a − ε)+ � b.

Since ε was arbitrary, the theorem follows from Proposition 2.1.

Corollary 4.6. Let A be a simple unital AH algebra with slow dimension growth. Then,
W (A) is almost unperforated. In particular, A has strict comparison of positive elements.

Proof. As in equation (1.1) we have A = limi→∞(Ai, φi), where

Ai =
ni⊕
l=1

pi,l(C(Xi,l) ⊗ K)pi,l.

Now A has slow dimension growth, so we may assume that the φi are injective (this is the
main result of [12]) and that

max
1�l�ni

{
dim(Xi,1)
rank(pi,1)

, . . . ,
dim(Xi,ni)
rank(pi,ni)

}
i→∞−−−→ 0.

This last condition, by [23, Theorem 2.3], implies that drr(Ai) → 0 as i → ∞. Then
Proposition 4.2 shows that rc(Ai) → 0 as i → ∞, and we have collected the hypotheses of
Theorem 4.5.

Combining Corollary 4.6 with earlier work of Rørdam we recover the characterisation of real
rank zero for simple unital AH algebras of slow dimension growth obtained in [3].

Corollary 4.7 (Blackadar, Dădărlat and Rørdam, [3]). Let A be a simple unital AH
algebra with slow dimension growth. Then, the following are equivalent:

(i) A has real rank zero;
(ii) the projections in A separate tracial states;
(iii) the image of K0(A) is uniformly dense in the space of continuous affine functions on the

tracial state space T(A).

Proof. The algebra A has stable rank 1 by the results of [3], and a weakly unperforated
Cuntz semigroup by Corollary 4.6. Apply [21, Theorem 7.2].

Finally, we note that several theorems on Z-stable C∗-algebras recently proved by Brown,
Perera, and the author can be extended to AH algebras with slow dimension growth.

Corollary 4.8. Let A be an element of SDG. The following statements hold:
(i) W (A) is recovered functorially from the Elliott invariant of A;
(ii) LDF(A) is weak-∗ dense in DF(A);
(iii) DF(A) is a Choquet simplex.

Proof. Since A has strict comparison of positive elements, we may appeal to [6, Theorem 5.4
and Corollary 6.9].

We refer the reader to [20, Section 4] for an explicit description of the functor which
reconstructs W (A) from the Elliott invariant of A in (i) above.
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