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Building on work of Elliott and coworkers, we present three applications of the Cuntz

semigroup:

(i) for many simple C∗-algebras, the Thomsen semigroup is recovered functo-

rially from the Elliott invariant, and this yields a new proof of Elliott’s

classification theorem for simple, unital AI algebras;

(ii) for the algebras in (i), classification of their Hilbert modules is similar to

the von Neumann algebra context;

(iii) for the algebras in (i), approximate unitary equivalence of self-adjoint

operators is characterised in terms of the Elliott invariant.

1 Introduction

The Cuntz semigroup (see [6], [9], [12], [13] for definitions and basic properties) has

recently become quite popular. In this note we extend the main theorem of [3] to

stable C∗-algebras. By combining this result with those of Coward-Elliott-Ivanescu

[5] and Elliott-Ciuperca [4], we obtain the applications of the abstract directly (see
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2 Nathanial P. Brown and Andrew S. Toms

Theorems 4.1 and 4.2 for the Thomsen semigroup result,Theorem 3.4 for Hilbert modules

and Theorem 5.1 for unitary orbits of self-adjoints). For the reader interested primarily

in Elliott’s classification program, we emphasize that most of our results are formulated

in terms of the Elliott invariant—the Cuntz semigroup is a powerful technical tool used

only in proofs. This paper is a natural sequel to [3] and [12], and the latter contain the

requisite definitions, notation, and basic facts employed herein. Finally, we thank the

referee for a number of helpful comments and suggestions.

2 Computation of W(A ⊗ K)

Throughout this paper A will denote a unital simple separable C∗-algebra with tracial

states. Let W(A) denote the Cuntz semigroup of A and let T(A) denote the simplex of

tracial states. Since T(A) �= ∅, A is stably finite. It follows that W(A) can be decomposed

into the disjoint union of V(A) (the Murray-von Neumann semigroup of equivalence

classes of projections) and the set W(A)+ of Cuntz classes of positive elements which

are not equal to the class of a projection. If LAffb(T(A))++ denotes the bounded, lower

semicontinuous, affine, strictly positive functions on T(A), then there is a canonical map

ι : W(A)+ → LAffb(T(A))++

given by

ι(〈x〉)(τ ) = dτ (x),

where dτ (x) := limn→∞ τ ⊗ Trk(x1/n) for an element x ∈ A ⊗ Mk(C). (Here Trk is the non-

normalized trace on Mk(C).) The main theorem of [3] was that ι is an order isomorphism,

whence

W(A) ∼= V(A) 	 LAffb(T(A))++ (2.1)

as partially ordered semigroups for two important classes of C∗-algebras: simple unital

exact finite C∗-algebras which absorb the Jiang-Su algebra Z tensorially, and simple

unital AH algebras with slow dimension growth. (We refer the reader to [12] for the

definition of the order structure on V(A) 	 LAffb(T(A))++. As usual, Z denotes the Jiang-

Su algebra—see [8].) In this section we prove a structure theorem similar to (2.1) for

W(A ⊗ K), with A as above.
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Three Applications of the Cuntz Semigroup 3

Recall that A has strict comparison if x � y whenever dτ (x) < dτ (y) for all

τ ∈ T(A). (� denotes Cuntz’s relation and x ∼ y means x � y and y � x.) When A is

unital simple exact and has strict comparison, the map ι is an isomorphism whenever it

is surjective (cf. [12, Proposition 3.3]).

Lemma 2.1. Let A be a simple unital exact C∗-algebra, and let 〈a〉 ∈ W(A)+ be given.

It follows that for any ε > 0, there exists δ > 0 and a continuous affine function

f : T(A) → R
+ such that

dτ ((a − ε)+) < f (τ ) < dτ ((a − δ)+), ∀τ ∈ T(A). �

Proof. First note that zero must be an accumulation point of the spectrum σ(a) (oth-

erwise, functional calculus would provide a projection with the same Cuntz class as

〈a〉 ∈ W(A)+, which is impossible). Choose points δ < η ∈ (0, ε)∩σ(a) so that each of (δ, η)

and (η, ε) are nonempty. Since A is simple, each trace and hence each lower semicontinu-

ous dimension function is faithful. It follows from a functional calculus argument that

dτ ((a − ε)+) < dτ ((a − η)+) < dτ ((a − δ)+), ∀τ ∈ T(A).

Let µτ be the (regular Borel) measure induced on σ(a) by τ ∈ T(A). The affine map

h : T(A) → R+ given by

h(τ ) := µτ ([ε,∞) ∩ σ(a))

is upper semicontinuous by the Portmanteau Theorem ([1]). From the inclusions

(ε,∞) ∩ σ(a) ⊆ [ε,∞) ∩ σ(a) ⊆ (η,∞) ∩ σ(a)

we have the following inequalities:

dτ ((a − ε)+) ≤ h(τ ) ≤ dτ ((a − η)+) < dτ ((a − δ)+), ∀τ ∈ T(A).

The affine map τ �→ dτ ((a−δ)+) is strictly positive and lower semicontinuous. Since T(A)

is a metrizable compact convex set, this map is the pointwise supremum of a strictly

increasing sequence of continuous affine maps, say (fn)∞n=1. A straightforward argument

using compactness then shows that there is some n0 ∈ N such that

fn(τ ) > h(τ ), ∀τ ∈ T(A), ∀n ≥ n0.

Setting f (τ ) = fn0(τ ) completes the proof. �
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4 Nathanial P. Brown and Andrew S. Toms

Let A be a unital C∗-algebra and a ∈ A ⊗ K be positive. Let {en} ⊂ K be an

increasing sequence of projections with rank(en) = n, and put Pn = 1 ⊗ en ∈ A ⊗ K.

Then,

P1aP1 � P2aP2 � P3aP3 � · · ·

in W(A ⊗ K) and PnaPn → a in norm. Let b = supn〈PnaPn〉 ∈ W(A ⊗ K) (suprema of

increasing sequences in W(A ⊗ K) always exist by [5, Theorem 1]). Then, given ε > 0,

there is some n ∈ N such that

(a − ε)+ � PnaPn � b.

It follows that a � b. Since PnaPn � a for each n, we also have that b � a, which shows

a ∼ b, i.e. 〈a〉 = supn〈PnaPn〉.

Lemma 2.2. Let A be a simple unital exact C∗-algebra, and let a ∈ A ⊗ K be a positive

element such that 〈a〉 ∈ W(A⊗K)+. It follows that there is a sequence (an)∞n=1 of positive

elements in A ⊗ K satisfying the following conditions:

(i) 〈a〉 = supn〈an〉;
(ii) an ∈ A ⊗ Mk(n) for some k(n) ∈ N;

(iii) for each n there is a continuous affine function fn : T(A) → R such that

dτ (an) < f (τ ) < dτ (an+1), ∀τ ∈ T(A). �

Proof. Let Pn be the unit of A ⊗ Mn (as above) and define bn := PnaPn. The sequence

bn satisfies parts (i) and (ii) of the conclusion of the lemma by construction. Note that

bn � bn+1.

Case I. Let us first address the case where infinitely many of the bns are Cuntz equivalent

to a projection. By passing to a subsequence, we may assume that every bn is Cuntz

equivalent to a projection (this does not affect the validity of (i) and (ii)). If infinitely

many of the bns are Cuntz equivalent to a fixed projection p ∈ A ⊗ K, then we have

〈a〉 = sup
n

〈bn〉 = 〈p〉;

this contradicts our assumption that a is not Cuntz equivalent to a projection. Thus, each

Cuntz class 〈bm〉, m ∈ N occurs at most finitely many times in the sequence (〈bn〉)∞n=1.

Passing to a subsequence again, we may assume that 〈bm〉 �= 〈bn〉 whenever m �= n.
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Three Applications of the Cuntz Semigroup 5

Put an = bn. As noted, (an)∞n=1 satisfies parts (i) and (ii) of the conclusion of

the lemma already. The map τ �→ dτ (an) is continuous since an is Cuntz equivalent

to a projection. The fact that an is Cuntz equivalent to a projection also means that

it is complemented inside an+1, i.e., there is a projection pn in A ⊗ Mk(n+1) such that

〈an〉 + 〈pn〉 = 〈an+1〉 ([12, Proposition 2.2]). Since A is simple, the map τ �→ dτ (pn) is

continuous and strictly positive on T(A). Setting fn(τ ) = dτ (an) + (1/2)dτ (pn) then gives

condition (iii).

Case II. Now we may assume that none of the bns is equivalent to a projection. Given any

ε1 > 0, we may use Lemma 2.1 to find δ1 > 0 and a continuous affine map f1 : T(A) → R
+

such that

dτ ((b1 − ε1)+) < f1(τ ) < dτ ((b1 − δ1)+), ∀τ ∈ T(A).

Assume that we have found sequences ε1, . . . , εn and δ1, . . . , δn of strictly positive toler-

ances satisfying the following conditions:

(a) (bk − εk)+ � (bk − δk)+, k ∈ {1, . . . ,n};
(b) there is a continuous affine map fk : T(A) → R such that

dτ ((bk − εk)+) < fk(τ ) < dτ ((b − δk)+), ∀τ ∈ T(A);

(c) (bk − εk/l)+ � (bl − εl), 1 ≤ k < l and l ∈ {1, . . . ,n};
(d) (bk − δk)+ � (bk+1 − εk+1)+, k ∈ {1, . . . ,n}.

Using the basic properties of Cuntz’s comparison relation, we can find εn+1 satisfying

(c) and (d) above (with n + 1 in place of l and n in place of k, respectively). Applying

Lemma 2.1, we can find δn+1 satisfying (a) and (b) with n + 1 in place of k. Thus, our

sequences ε1, . . . , εn and δ1, . . . , δn can be extended, inductively, to sequences (εi)∞i=1 and

(δi)∞i=1 satisfying (a)–(d), as appropriate.

Set an = (bn − εn)+. Let us verify condition (i) for this choice of an. Since an � a

for each n, we have

sup
n

an � a.

On the other hand, (c) gives (bk − εk/n)+ � an for every 1 ≤ k < n and n ∈ N. It follows

that

sup
n

〈an〉 ≥ 〈(bk − εk/n)+〉, ∀n, k ∈ N.
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6 Nathanial P. Brown and Andrew S. Toms

In particular,

sup
n

〈an〉 ≥ 〈bk〉, ∀k ∈ N,

and so

sup
n

〈an〉 ≥ sup
k

〈bk〉 = 〈a〉.

Condition (ii) is satisfied by construction, while condition (iii) is satisfied by the

functions fn from (b) above. This completes the proof. �

Definition 2.3. For every positive element a ∈ A⊗K,define an affine function ι〈a〉 : T(A) →

R+ ∪ {∞} by

ι〈a〉(τ ) = sup
n

dτ (PnaPn),

for each trace τ ∈ T(A), where Pn are the projections defined before Lemma 2.2.

In analogy with previous notation, we now observe that a �→ ι〈a〉 drops to a well-

defined map (denoted by ι) on W(A⊗K). (Indeed, if a ∈ Mn(A⊗K)+ then we can identify

it with a positive element in (A ⊗ K)+ and hence define ι〈a〉; since ι〈·〉 is independent of

the projections used in its definition, it is not hard to check that our recipe for extending

ι to Mn(A ⊗ K)+ is independent of the identification Mn(K) ∼= K.)

Lemma 2.4. If a, b ∈ (A ⊗ K)+ and 〈a〉 = 〈b〉 ∈ W(A ⊗ K) then ι〈a〉 = ι〈b〉. Moreover, ι〈a〉
is independent of the choice of projections Pn. �

Proof. Assume a ∼ b. For each ε > 0 and n ∈ N there exists a δ > 0 and m ∈ N such that

(PnaPn − 2ε)+ � (a − ε)+ � (b − δ)+ � PmbPm.

It follows that for any τ ∈ T(A),

ι〈b〉(τ ) ≥ dτ (PmbPm) ≥ dτ (PnaPn − 2ε)+.

Since n and ε were arbitrary, we conclude that ι〈b〉(τ ) ≥ ι〈a〉(τ ). Similarly, ι〈a〉(τ ) ≥
ι〈b〉(τ ).

For the second assertion, let {en}, {fn} ⊂ K be increasing sequences of projec-

tions with rank(en) = rank(fn) = n, and put Pn = 1 ⊗ en,Qn = 1 ⊗ fn ∈ A ⊗ K. Fix n ∈ N
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Three Applications of the Cuntz Semigroup 7

and ε > 0. Since limk→∞ ‖PnQk−Pn‖ = 0, we can find k such that ‖PnQkaQkPn−PnaPn‖ < ε.

It follows that (PnaPn − ε)+ � QkaQk for all sufficiently large k. In particular, dτ ((PnaPn −

ε)+) ≤ supk dτ (QkaQk) for every ε > 0. Since dτ (PnaPn) = supε dτ ((PnaPn−ε)+), the lemma

follows. �

Proposition 2.5. Let A be a unital simple exact C∗-algebra with strict comparison of

positive elements. If 〈a〉, 〈b〉 ∈ W(A ⊗ K)+, then a ∼ b if and only if ι〈a〉 = ι〈b〉. �

Proof. The forward implication is contained in Lemma 2.4, so suppose that ι〈a〉 =

ι〈b〉. Find, using Lemma 2.2, sequences (an)∞n=1 and (bn)∞n=1 corresponding to a and b,

respectively; let fn and gn denote, respectively, the functions provided by part (iii) of the

conclusion of Lemma 2.2. By a compactness argument, for each n ∈ N there exists m ∈ N

such that for every τ ∈ T(A) we have the following inequalities:

dτ (an) < fn(τ ) < dτ (bm); dτ (bn) < gn(τ ) < dτ (am).

Since A has strict comparison, an � bm and bn � am. It follows that

〈a〉 = sup
n

〈an〉 = sup
m

〈bm〉 = 〈b〉,

as desired. �

Let SAff(T(A)) denote the set of functions on T(A) which are pointwise suprema

of increasing sequences of continuous, affine, and strictly positive functions on T(A).

Define an addition operation on the disjoint union V(A) 	 SAff(T(A)) as follows:

(i) if x, y ∈ V(A), then their sum is the usual sum in V(A);

(ii) if x, y ∈ SAff(T(A)), then x + y is the pointwise sum in SAff(T(A));

(iii) if x ∈ V(A) and y ∈ SAff(T(A)), then their sum is the usual (pointwise) sum

of x̂ and y in SAff(T(A)), where x̂(τ ) = τ (p) for some projection p with

〈p〉 = x, ∀τ ∈ T(A).

Equip V(A) 	 SAff(T(A)) with the partial order ≤ which restricts to the usual partial

orders on V(A) (i.e. Murray-von Neumann) and SAff(T(A)) (i.e. f ≤ g ⇔ f (τ ) ≤ g(τ ) for all

τ ∈ T(A)), and which satisfies the following conditions for x ∈ V(A) and y ∈ SAff(T(A)):

(i) x ≤ y if and only if x̂(τ ) < y(τ ), ∀τ ∈ T(A);

(ii) y ≤ x if and only if y(τ ) ≤ x̂(τ ), ∀τ ∈ T(A).
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8 Nathanial P. Brown and Andrew S. Toms

Theorem 2.6. Let A be a unital simple exact and tracial C∗-algebra with strict compari-

son. Assume that ι : W(A)+ → LAffb(T(A))++ is surjective. It follows that

W(A ⊗ K) ∼= V(A) 	 SAff(T(A)),

as ordered semigroups. �

Proof. Define

φ : W(A ⊗ K) → V(A) 	 SAff(T(A))

by idV(A⊗K) on V(A ⊗ K) and by ι on W(A ⊗ K)+ (that is, x �→ ι〈a〉, where x = 〈a〉). Let us

first prove that φ is a bijection. Since A is stably finite, W(A ⊗ K) = V(A) 	 W(A ⊗ K)+,

hence it suffices to show ι : W(A ⊗ K)+ → SAff(T(A)) is a bijection.

Injectivity of ι follows from Proposition 2.5. Surjectivity follows from two facts:

(i) the range of ι contains LAffb(T(A))++ and (ii) W(A ⊗ K) has suprema (cf. [5]). Indeed,

given f ∈ SAff(T(A)) we find continuous affine functions fn ≤ fn+1 ≤ · · · converging

up to f pointwise. Letting an ∈ A ⊗ K be positive elements such that ân = fn, we let

x = supn〈an〉 ∈ W(A ⊗ K) (we have used strict comparison here to ensure {〈an〉} is an

increasing sequence in W(A ⊗ K)). Then it is clear that ι(x) = f .

To complete the proof, we must show that φ is order preserving. Suppose that

x ≤ y, x, y ∈ W(A ⊗ K). There are four cases to consider.

(a) If x, y ∈ V(A ⊗ K), then φ(x) ≤ φ(y) since φ|V(A⊗K) = idV(A⊗K).

(b) If x, y ∈ W(A ⊗ K), then φ(x) ≤ φ(y) since φ|W(A⊗K) = ι and ι is order-

preserving. (The proof of this last fact follows from the proof of the first

implication in Proposition 2.5.)

(c) If x ∈ V(A ⊗ K) and y ∈ W(A ⊗ K)+, then we apply [12, Proposition 2.2] to

find z ∈ W(A ⊗ K) such that x + z = y. It follows that ι(x)(τ ) < ι(y)(τ ),

∀τ ∈ T(A) (note that ι(x)(τ ) < ∞ in this case), whence φ(x) ≤ φ(y).

(d) If x ∈ W(A ⊗ K)+ and y ∈ V(A ⊗ K), then φ(x) ≤ φ(y) since ι is order-

preserving. �

The theorem above holds for all simple unital AH algebras with slow dimension

growth, and for the class of simple unital exact stably finite C∗-algebras which absorb Z

([3, Theorems 5.3 and 5.5], [14, Corollary 4.6], [16, Corollary 4.6]).
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Three Applications of the Cuntz Semigroup 9

3 Classifying Hilbert modules

Let E, F be countably generated Hilbert modules over a separable, unital C∗-algebra A.

By Kasparov’s stabilization theorem, there are projections PE , PF ∈ L(HA) such that E is

isomorphic to PEHA and F is isomorphic to PFHA. (Here HA = �2⊗A is the standard Hilbert

module over A and L(HA) is the set of bounded adjointable operators on HA; see [10] for

more.) Since L(HA) = M(A ⊗ K) (the multiplier algebra of A ⊗ K), we can find strictly

positive elements a ∈ PE(A⊗K)PE and b ∈ PF(A⊗K)PF . According to [5, Theorem 3], if we

further assume A has stable rank one,

E ∼= F if and only if 〈a〉 = 〈b〉 ∈ W(A ⊗ K).

In this section we’ll reformulate this result in terms of the projections PE and PF .

First, an alternate formula for ι〈a〉 ∈ SAff(T(A)) will be handy. Let F ⊂ K denote

the finite-rank operators and A⊗F be the algebraic tensor product of A and F (which we

identify with the “finite-rank” operators on HA).

Lemma 3.1. For every 0 ≤ a ∈ A ⊗ K and τ ∈ T(A) we have

ι〈a〉(τ ) = sup{dτ (b) : 0 ≤ b ∈ A ⊗ F, b � a}. �

Proof. If P = 1 ⊗ e for some finite rank projection e ∈ K, then PaP ∈ A ⊗ F and PaP � a;

hence, the inequality ≤ is immediate.

For the other direction, fix b ∈ A ⊗ F such that b � a, and fix ε > 0. Choose δ > 0

such that dτ (b) − ε ≤ dτ ((b − δ)+) and find x ∈ A⊗K such that ‖x∗ax − b‖ < δ. By density,

we may assume x ∈ A ⊗ Mn(C) for some large n ∈ N. It follows that (b − δ)+ � x∗ax. Now,

let Pn = 1 ⊗ en, for some increasing finite-rank projections en, such Pnx = x = xPn for all

n. We have that (b − δ)+ � x∗ax = x∗(PnaPn)x. Hence,

dτ (b) − ε ≤ dτ ((b − δ)+) ≤ dτ (PnaPn),

and, by Lemma 2.4, this completes the proof of the lemma. �

Definition 3.2. For any projection Q ∈ M(A ⊗ K) and tracial state τ ∈ T(A) we define

Q̂(τ ) = sup{τ ⊗ Tr(b) : 0 ≤ b ∈ A ⊗ F, b ≤ Q},

where Tr is the (unbounded) trace on F.
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10 Nathanial P. Brown and Andrew S. Toms

Lemma 3.3. Assume A is unital with stable rank one. For any projection Q ∈ M(A ⊗ K),

strictly positive element a ∈ Q(A ⊗ K)Q and τ ∈ T(A), we have

Q̂(τ ) = ι〈a〉(τ ). �

Proof. Since {b : b ∈ A ⊗ F, b ≤ P} ⊂ {b : b ∈ A ⊗ F, b � a} (cf. [9, Propostion 2.7(ii)]), and

τ ⊗ Tr(b) ≤ limn τ ⊗ Tr(b1/n) = dτ (b), the previous lemma implies that Q̂(τ ) ≤ ι〈a〉(τ ).

For the opposite inequality, fix b ∈ A ⊗ F such that b � a, and ε > 0. Choose

δ > 0 such that dτ (b) − ε ≤ dτ ((b − δ)+). Since A has stable rank one, so does (A ⊗ K)̃ (the

unitzation of A ⊗ K). Hence, by [13, Proposition 2.4], we can find a unitary u ∈ (A ⊗ K)̃

such that u∗(b − δ)+u ≤ Q. Since u∗(b − δ)+u ∈ A⊗F, the following inequalities complete

the proof:

dτ (b) − ε ≤ dτ ((b − δ)+) = dτ (u∗(b − δ)+u) = lim
n

τ ⊗ Tr([u∗(b − δ)+u]1/n) ≤ Q̂(τ ).

�

Recall that if M ⊂ B(L2(M)) is a II1-factor in standard form, then isomorphism

classes of modules over M (i.e. normal representations M ⊂ B(H)) are completely

determined by the traces of the corresponding projections in M ′⊗B(H). Our next theorem

is analogous to this classical result.

Theorem 3.4. Let A be a unital simple exact C∗-algebra with strict comparison and sta-

ble rank one. Given two countably generated Hilbert modules E, F over A, the following

are equivalent:

(i) E is isomorphic to F ;

(ii) PE is Murray-von Neumann equivalent to PF ;

(iii) Either 〈PE〉 = 〈PF〉 ∈ V(A) (in the case PE , PF ∈ A ⊗ K), or P̂E = P̂F .

In particular, if neither E nor F is a finitely generated projective module, then E ∼= F if

and only if P̂E = P̂F . �

Proof. In the case that both PE , PF ∈ A ⊗ K, the equivalence of the three conditions is a

well-known exercise; when neither PE nor PF belong to A⊗K, the first two conditions are

easily seen to be equivalent. Hence, we assume neither PE nor PF belong to A⊗K and will

show the first and third statements to be equivalent.

Let a (resp. b) be a strictly positive element in PE(A⊗K)PE (resp. PF(A⊗K)PF). If

E ∼= F then 〈a〉 = 〈b〉 ∈ W(A ⊗ K) (by [5, Theorem 3]), and hence the previous lemma

implies that P̂E = P̂F . Conversely, if we know P̂E = P̂F then (by the previous lemma)
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ι〈a〉 = ι〈b〉, so Proposition 2.5 ensures that 〈a〉 = 〈b〉 ∈ W(A ⊗ K). Then [5, Theorem 3]

implies E ∼= F. �

Remark 3.5. The theorem above is, in a certain sense, best possible: we really need strict

comparison. More precisely, the hypotheses are satisfied by simple AH algebras with

slow dimension growth (and Z-stable algebras—cf. [2,Theorem 1], [14,Corollary 4.6], [16,

Corollary 4.6]), but the result cannot be extended to all AH algebras. Indeed, the reader

will find in [17] a pair of positive elements in a simple unital AH algebra of stable rank

one such that the corresponding Hilbert modules, say E and F, are not isomorphic but do

satisfy P̂E = P̂F .

It is also worth remarking that the result above gives a complete parametrization

of isomorphism classes of countably generated Hilbert modules over A in terms of K0 and

traces.

4 From Elliott to Thomsen and the classification of simple AI algebras

Theorem 4.1. Let A be a unital simple C∗-algebra of stable rank one for which W(A ⊗
K) ∼= V(A) 	 SAff(T(A)). Then, the Thomsen semigroup of A (cf. [15]) can be functorially

recovered from the Elliott invariant of A. �

This theorem follows immediately from [4,Theorems 4 and 10]. The result applies

to any algebra satisfying the hypotheses of Theorem 2.6—in particular, by [3, Theorems

5.3 and 5.5], A could be a simple unital AH algebra with slow dimension growth, or a

simple unital exact and Z-stable C∗-algebra. The assumption of simplicity in the theorem

is actually redundant. The assumption on the structure of W(A⊗K) guarantees that every

trace on A is faithful, whence A is simple.

Theorem 4.2 (Elliott, [7]). Let A and B be simple unital inductive limits of algebras of the

form F ⊗C[0, 1], where F is finite dimensional. Then A ∼= B if and only if Ell(A) ∼= Ell(B). �

Proof. If Ell(A) ∼= Ell(B) then W(A ⊗ K) ∼= W(B ⊗ K), by Theorem 2.6 and [3, Theorem 5.3]

(since AI algebras have no dimension growth). From [4, Theorem 4] it follows that the

Thomsen semigroups of A and B are isomorphic too. Hence, by [15, Theorem 1.5], A ∼= B.

�

This theorem is the best possible in the sense that the Elliott invariant is not

complete for non-simple AI algebras (cf. [15, pg. 48]). The Cuntz semigroup, however, is a

complete invariant in the non-simple case, as shown in [4, Theorem 11].
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12 Nathanial P. Brown and Andrew S. Toms

5 Unitary orbits of self-adjoints in simple, unital, exact C∗-algebras

Let a ∈ A be self-adjoint with spectrum σ(a). Let φa : C(σ(a)) → A be the canonical

homomorphism induced by sending the generator z of C(σ(a)) to a ∈ A, and denote by

Ell(a) the following pair of induced maps:

K∗(φa) : K∗(C(σ(a))) → K∗(A); φ�
a : T(A) → T(C(σ(a))).

As in Theorem 4.1, the hypotheses of the next result guarantee the simplicity of A.

Theorem 5.1. Let A be a simple unital exact C∗-algebra with strict comparison and

stable rank one. Let a, b ∈ A be self-adjoint. It follows that a and b are approximately

unitarily equivalent if and only if σ(a) = σ(b) and Ell(a) = Ell(b). �

Proof. The “only if” statement is routine, so assume σ(a) = σ(b) and Ell(a) = Ell(b).

First, we handle the case that σ(a) = σ(b) ⊂ (0,∞), i.e., that both a and b are

positive and invertible. Let X = σ(a) = σ(b) and Wa : W(C(X)) → W(A ⊗ K) (resp.

Wb : W(C(X)) → W(A ⊗ K)) denote the Cuntz-semigroup map induced by the canonical

homomorphism C(X) → A ⊗ K sending z �→ a ⊗ e1,1 (resp. z �→ b ⊗ e1,1). We claim that

Wa = Wb.

So, let h ∈ Mn(C(X)) be positive and ha ∈ Mn(A) (resp. hb ∈ Mn(A)) denote the

image of h under the canonical inclusion Mn(C(X)) ⊂ Mn(A) sending C(X) → C∗(a) (resp.

C(X) → C∗(b)). If h ∼ p for some projection in matrices over C(X), then ha ∼ pa and hb ∼ pb

(where pa and pb are the respective images of p under the maps induced by a and b). Since

Ell(a) = Ell(b), [pa] = [pb] ∈ V(A) and thus 〈pa〉 = 〈pb〉 ∈ W(A ⊗ K)—i.e. Wa(h) = Wb(h).

If h is not equivalent to a projection in matrices over C(X), then neither ha nor hb

are equivalent to projections (in matrices over A); indeed, since A has stable rank one,

[11, Proposition 3.12] implies that if ha was equivalent to a projection then zero would

not be an accumulation point of σ(ha) = σ(h), hence h would have to be equivalent to a

projection as well, contrary to our assumption. In other words, 〈ha〉, 〈hb〉 ∈ W(A⊗K)+ and

hence Proposition 2.5 implies that it suffices to show dτ (ha) = dτ (hb) for every τ ∈ T(A).

However, if µ is a measure on σ(h) then dµ(h) = µ(σ(h) \ {0}). Since Ell(a) = Ell(b), the

maps on tracial spaces agree—i.e. for each τ ∈ T(A) the measures induced by restriction

agree on σ(ha) = σ(hb)—and hence dτ (ha) = dτ (hb) for every τ ∈ T(A), as desired.

Knowing that Wa = Wb, it now follows from [4] that a ⊗ e1,1 is approximately

unitarily equivalent to b⊗e1,1 in the unitization of A⊗K. So, let vn ∈ (A⊗K)+ be unitaries

such that vn(a ⊗ e1,1)v∗
n → b ⊗ e1,1. Since a is invertible, for every ε > 0 there exists a
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polynomial p such that ‖p(a) − 1‖ < ε; since σ(a) = σ(b), ‖p(b) − 1‖ < ε as well. Hence,

for large n, ‖vn(1 ⊗ e1,1)v∗
n − 1 ⊗ e1,1‖ < Cε for some constant C depending only on σ(a).

If ε is sufficiently small, this implies that (1 ⊗ e1,1)vn(1 ⊗ e1,1) is almost a unitary in A—

hence can be perturbed to an honest unitary un. A routine exercise now confirms that a

is approximately unitarily equivalent to b (in A).

For the case of general self-adjoints a, b ∈ A, we deduce the theorem from a

simple trick. Namely, fix some constant c such that a+ c1 is positive and invertible. Then

b + c1 is also positive and invertible. By the case handled above, a + c1 and b + c1 are

approximately unitarily equivalent, hence the same is true of a and b. �

The theorem above holds for all simple unital AH algebras with slow dimension

growth, and for the class of simple unital exact stably finite Z-stable C∗-algebras (see [2,

Theorem 1], [14, Corollary 4.6], [16, Corollary 4.6]).

Another version of Theorem 5.1 holds for simple unital exact and stably finite

C∗-algebras (without the strict comparison or stable rank assumptions):

Theorem 5.2. Let a and b be self-adjoint elements of a simple unital exact and stably

finite C∗-algebra A. Then a and b are approximately unitarily equivalent in A ⊗ Z—i.e.

there exist unitaries un ∈ A ⊗ Z such that ‖un(a ⊗ 1)u∗
n − b ⊗ 1‖ → 0 —if and only if

σ(a) = σ(b) and Ell(a) = Ell(b). �

The proof of this result is a tiny perturbation of the proof of Theorem 5.1. The result is

also, in some sense the best possible: in [17] a pair of positive elements in a simple unital

AH algebra were constructed which have identical Elliott data but which are not Cuntz

equivalent (hence not unitarily equivalent). For the interested reader, the elements in

question are f (τ ∗(ξ) × τ ∗(ξ)) and f θ1 ⊕ f θ1, constructed in Section 3 of [17].
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