Three Applications of the Cuntz Semigroup

Nathanial P. Brown ${ }^{1}$ and Andrew S. Toms ${ }^{2}$
${ }^{1}$ Department of Mathematics, Penn State University, State College, PA, 16802, USA and ${ }^{2}$ Department of Mathematics and Statistics, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
Correspondence to be sent to: Nathanial P. Brown, Department of Mathematics, Penn State University, State College, PA, 16802, USA. e-mail: nbrown@math.psu.edu

Building on work of Elliott and coworkers, we present three applications of the Cuntz semigroup:
(i) for many simple C^{*}-algebras, the Thomsen semigroup is recovered functorially from the Elliott invariant, and this yields a new proof of Elliott's classification theorem for simple, unital AI algebras;
(ii) for the algebras in (i), classification of their Hilbert modules is similar to the von Neumann algebra context;
(iii) for the algebras in (i), approximate unitary equivalence of self-adjoint operators is characterised in terms of the Elliott invariant.

1 Introduction

The Cuntz semigroup (see [6], [9], [12], [13] for definitions and basic properties) has recently become quite popular. In this note we extend the main theorem of [3] to stable C*-algebras. By combining this result with those of Coward-Elliott-Ivanescu [5] and Elliott-Ciuperca [4], we obtain the applications of the abstract directly (see

Theorems 4.1 and 4.2 for the Thomsen semigroup result, Theorem 3.4 for Hilbert modules and Theorem 5.1 for unitary orbits of self-adjoints). For the reader interested primarily in Elliott's classification program, we emphasize that most of our results are formulated in terms of the Elliott invariant-the Cuntz semigroup is a powerful technical tool used only in proofs. This paper is a natural sequel to [3] and [12], and the latter contain the requisite definitions, notation, and basic facts employed herein. Finally, we thank the referee for a number of helpful comments and suggestions.

2 Computation of $\mathrm{W}(A \otimes \mathcal{K})$

Throughout this paper A will denote a unital simple separable C^{*}-algebra with tracial states. Let $\mathrm{W}(A)$ denote the Cuntz semigroup of A and let $\mathrm{T}(A)$ denote the simplex of tracial states. Since $\mathrm{T}(A) \neq \emptyset, A$ is stably finite. It follows that $\mathrm{W}(A)$ can be decomposed into the disjoint union of $\mathrm{V}(A)$ (the Murray-von Neumann semigroup of equivalence classes of projections) and the set $\mathrm{W}(A)_{+}$of Cuntz classes of positive elements which are not equal to the class of a projection. If $\operatorname{LAff}_{b}(\mathrm{~T}(A))^{++}$denotes the bounded, lower semicontinuous, affine, strictly positive functions on $\mathrm{T}(A)$, then there is a canonical map

$$
\iota: W(A)_{+} \rightarrow \operatorname{LAff}_{b}(\mathrm{~T}(A))^{++}
$$

given by

$$
\iota(\langle x\rangle)(\tau)=d_{\tau}(x),
$$

where $d_{\tau}(x):=\lim _{n \rightarrow \infty} \tau \otimes \operatorname{Tr}_{k}\left(x^{1 / n}\right)$ for an element $x \in A \otimes M_{k}(\mathbb{C})$. (Here Tr_{k} is the nonnormalized trace on $M_{k}(\mathbb{C})$.) The main theorem of [3] was that ι is an order isomorphism, whence

$$
\begin{equation*}
\mathrm{W}(A) \cong \mathrm{V}(A) \sqcup \operatorname{LAff}_{b}(\mathrm{~T}(A))^{++} \tag{2.1}
\end{equation*}
$$

as partially ordered semigroups for two important classes of C^{*}-algebras: simple unital exact finite C*-algebras which absorb the Jiang-Su algebra z tensorially, and simple unital AH algebras with slow dimension growth. (We refer the reader to [12] for the definition of the order structure on $\mathrm{V}(A) \sqcup \operatorname{LAff}_{b}(\mathrm{~T}(A))^{++}$. As usual, Z denotes the JiangSu algebra-see [8].) In this section we prove a structure theorem similar to (2.1) for $\mathrm{W}(A \otimes \mathcal{K})$, with A as above.

Recall that A has strict comparison if $x \precsim y$ whenever $d_{\tau}(x)<d_{\tau}(y)$ for all $\tau \in \mathrm{T}(A)$. (denotes Cuntz's relation and $x \sim y$ means $x \precsim y$ and $y \precsim x$.) When A is unital simple exact and has strict comparison, the map ι is an isomorphism whenever it is surjective (cf. [12, Proposition 3.3]).

Lemma 2.1. Let A be a simple unital exact C^{*}-algebra, and let $\langle a\rangle \in \mathrm{W}(A)_{+}$be given. It follows that for any $\epsilon>0$, there exists $\delta>0$ and a continuous affine function $f: \mathrm{T}(A) \rightarrow \mathbb{R}^{+}$such that

$$
d_{\tau}\left((a-\epsilon)_{+}\right)<f(\tau)<d_{\tau}\left((a-\delta)_{+}\right), \forall \tau \in \mathrm{T}(A)
$$

Proof. First note that zero must be an accumulation point of the spectrum $\sigma(a)$ (otherwise, functional calculus would provide a projection with the same Cuntz class as $\langle a\rangle \in \mathrm{W}(A)_{+}$, which is impossible). Choose points $\delta<\eta \in(0, \epsilon) \cap \sigma(a)$ so that each of (δ, η) and (η, ϵ) are nonempty. Since A is simple, each trace and hence each lower semicontinuous dimension function is faithful. It follows from a functional calculus argument that

$$
d_{\tau}\left((a-\epsilon)_{+}\right)<d_{\tau}\left((a-\eta)_{+}\right)<d_{\tau}\left((a-\delta)_{+}\right), \forall \tau \in \mathrm{T}(A)
$$

Let μ_{τ} be the (regular Borel) measure induced on $\sigma(a)$ by $\tau \in \mathrm{T}(A)$. The affine map $h: \mathrm{T}(A) \rightarrow \mathbb{R}^{+}$given by

$$
h(\tau):=\mu_{\tau}([\epsilon, \infty) \cap \sigma(a))
$$

is upper semicontinuous by the Portmanteau Theorem ([1]). From the inclusions

$$
(\epsilon, \infty) \cap \sigma(a) \subseteq[\epsilon, \infty) \cap \sigma(a) \subseteq(\eta, \infty) \cap \sigma(a)
$$

we have the following inequalities:

$$
d_{\tau}\left((a-\epsilon)_{+}\right) \leq h(\tau) \leq d_{\tau}\left((a-\eta)_{+}\right)<d_{\tau}\left((a-\delta)_{+}\right), \forall \tau \in \mathrm{T}(A)
$$

The affine map $\tau \mapsto d_{\tau}\left((a-\delta)_{+}\right)$is strictly positive and lower semicontinuous. Since $\mathrm{T}(A)$
is a metrizable compact convex set, this map is the pointwise supremum of a strictly increasing sequence of continuous affine maps, say $\left(f_{n}\right)_{n=1}^{\infty}$. A straightforward argument using compactness then shows that there is some $n_{0} \in \mathbb{N}$ such that

$$
f_{n}(\tau)>h(\tau), \forall \tau \in \mathrm{T}(A), \forall n \geq n_{0}
$$

Setting $f(\tau)=f_{n_{0}}(\tau)$ completes the proof.

Let A be a unital C^{*}-algebra and $a \in A \otimes \mathcal{K}$ be positive. Let $\left\{e_{n}\right\} \subset \mathcal{K}$ be an increasing sequence of projections with $\operatorname{rank}\left(e_{n}\right)=n$, and put $P_{n}=1 \otimes e_{n} \in A \otimes \mathcal{K}$. Then,

$$
P_{1} a P_{1} \precsim P_{2} a P_{2} \precsim P_{3} a P_{3} \precsim \cdots
$$

in $\mathrm{W}(A \otimes \mathcal{K})$ and $P_{n} a P_{n} \rightarrow a$ in norm. Let $b=\sup _{n}\left\langle P_{n} a P_{n}\right\rangle \in \mathrm{W}(A \otimes \mathcal{K})$ (suprema of increasing sequences in $\mathrm{W}(A \otimes \mathcal{K})$ always exist by [5 , Theorem 1]). Then, given $\epsilon>0$, there is some $n \in \mathbb{N}$ such that

$$
(a-\epsilon)_{+} \precsim P_{n} a P_{n} \precsim b .
$$

It follows that $a \precsim b$. Since $P_{n} a P_{n} \precsim a$ for each n, we also have that $b \precsim a$, which shows $a \sim b$, i.e. $\langle a\rangle=\sup _{n}\left\langle P_{n} a P_{n}\right\rangle$.

Lemma 2.2. Let A be a simple unital exact C^{*}-algebra, and let $a \in A \otimes \mathcal{K}$ be a positive element such that $\langle a\rangle \in \mathrm{W}(A \otimes \mathcal{K})_{+}$. It follows that there is a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of positive elements in $A \otimes \mathcal{K}$ satisfying the following conditions:
(i) $\langle a\rangle=\sup _{n}\left\langle a_{n}\right\rangle$;
(ii) $a_{n} \in A \otimes \mathrm{M}_{k(n)}$ for some $k(n) \in \mathbb{N}$;
(iii) for each n there is a continuous affine function $f_{n}: \mathrm{T}(A) \rightarrow \mathbb{R}$ such that

$$
d_{\tau}\left(a_{n}\right)<f(\tau)<d_{\tau}\left(a_{n+1}\right), \forall \tau \in \mathrm{T}(A) .
$$

Proof. Let P_{n} be the unit of $A \otimes \mathrm{M}_{n}$ (as above) and define $b_{n}:=P_{n} a P_{n}$. The sequence b_{n} satisfies parts (i) and (ii) of the conclusion of the lemma by construction. Note that $b_{n} \precsim b_{n+1}$.

Case I. Let us first address the case where infinitely many of the b_{n} s are Cuntz equivalent to a projection. By passing to a subsequence, we may assume that every b_{n} is Cuntz equivalent to a projection (this does not affect the validity of (i) and (ii)). If infinitely many of the b_{n} s are Cuntz equivalent to a fixed projection $p \in A \otimes \mathcal{K}$, then we have

$$
\langle a\rangle=\sup _{n}\left\langle b_{n}\right\rangle=\langle p\rangle ;
$$

this contradicts our assumption that a is not Cuntz equivalent to a projection. Thus, each Cuntz class $\left\langle b_{m}\right\rangle, m \in \mathbb{N}$ occurs at most finitely many times in the sequence $\left(\left\langle b_{n}\right\rangle\right)_{n=1}^{\infty}$. Passing to a subsequence again, we may assume that $\left\langle b_{m}\right\rangle \neq\left\langle b_{n}\right\rangle$ whenever $m \neq n$.

Put $a_{n}=b_{n}$. As noted, $\left(a_{n}\right)_{n=1}^{\infty}$ satisfies parts (i) and (ii) of the conclusion of the lemma already. The map $\tau \mapsto d_{\tau}\left(a_{n}\right)$ is continuous since a_{n} is Cuntz equivalent to a projection. The fact that a_{n} is Cuntz equivalent to a projection also means that it is complemented inside a_{n+1}, i.e., there is a projection p_{n} in $A \otimes \mathrm{M}_{k(n+1)}$ such that $\left\langle a_{n}\right\rangle+\left\langle p_{n}\right\rangle=\left\langle a_{n+1}\right\rangle$ ([12, Proposition 2.2]). Since A is simple, the map $\tau \mapsto d_{\tau}\left(p_{n}\right)$ is continuous and strictly positive on $\mathrm{T}(A)$. Setting $f_{n}(\tau)=d_{\tau}\left(a_{n}\right)+(1 / 2) d_{\tau}\left(p_{n}\right)$ then gives condition (iii).

Case II. Now we may assume that none of the $b_{n} s$ is equivalent to a projection. Given any $\epsilon_{1}>0$, we may use Lemma 2.1 to find $\delta_{1}>0$ and a continuous affine map $f_{1}: \mathrm{T}(A) \rightarrow \mathbb{R}^{+}$ such that

$$
d_{\tau}\left(\left(b_{1}-\epsilon_{1}\right)_{+}\right)<f_{1}(\tau)<d_{\tau}\left(\left(b_{1}-\delta_{1}\right)_{+}\right), \forall \tau \in \mathrm{T}(A)
$$

Assume that we have found sequences $\epsilon_{1}, \ldots, \epsilon_{n}$ and $\delta_{1}, \ldots, \delta_{n}$ of strictly positive tolerances satisfying the following conditions:
(a) $\left(b_{k}-\epsilon_{k}\right)_{+} \precsim\left(b_{k}-\delta_{k}\right)_{+}, k \in\{1, \ldots, n\} ;$
(b) there is a continuous affine map $f_{k}: \mathrm{T}(A) \rightarrow \mathbb{R}$ such that

$$
d_{\tau}\left(\left(b_{k}-\epsilon_{k}\right)_{+}\right)<f_{k}(\tau)<d_{\tau}\left(\left(b-\delta_{k}\right)_{+}\right), \forall \tau \in \mathrm{T}(A) ;
$$

(c) $\left(b_{k}-\epsilon_{k} / l\right)_{+} \precsim\left(b_{l}-\epsilon_{l}\right), 1 \leq k<l$ and $l \in\{1, \ldots, n\}$;
(d) $\left(b_{k}-\delta_{k}\right)_{+} \precsim\left(b_{k+1}-\epsilon_{k+1}\right)_{+}, k \in\{1, \ldots, n\}$.

Using the basic properties of Cuntz's comparison relation, we can find ϵ_{n+1} satisfying (c) and (d) above (with $n+1$ in place of l and n in place of k, respectively). Applying Lemma 2.1, we can find δ_{n+1} satisfying (a) and (b) with $n+1$ in place of k. Thus, our sequences $\epsilon_{1}, \ldots, \epsilon_{n}$ and $\delta_{1}, \ldots, \delta_{n}$ can be extended, inductively, to sequences $\left(\epsilon_{i}\right)_{i=1}^{\infty}$ and $\left(\delta_{i}\right)_{i=1}^{\infty}$ satisfying (a)-(d), as appropriate.

Set $a_{n}=\left(b_{n}-\epsilon_{n}\right)_{+}$. Let us verify condition (i) for this choice of a_{n}. Since $a_{n} \precsim a$ for each n, we have

$$
\sup _{n} a_{n} \precsim a .
$$

On the other hand, (c) gives $\left(b_{k}-\epsilon_{k} / n\right)_{+} \precsim a_{n}$ for every $1 \leq k<n$ and $n \in \mathbb{N}$. It follows that

$$
\sup _{n}\left\langle a_{n}\right\rangle \geq\left\langle\left(b_{k}-\epsilon_{k} / n\right)_{+}\right\rangle, \forall n, k \in \mathbb{N} .
$$

In particular,

$$
\sup _{n}\left\langle a_{n}\right\rangle \geq\left\langle b_{k}\right\rangle, \forall k \in \mathbb{N},
$$

and so

$$
\sup _{n}\left\langle a_{n}\right\rangle \geq \sup _{k}\left\langle b_{k}\right\rangle=\langle a\rangle .
$$

Condition (ii) is satisfied by construction, while condition (iii) is satisfied by the functions f_{n} from (b) above. This completes the proof.

Definition 2.3. For every positive element $a \in A \otimes \mathcal{K}$, define an affine function $\iota\langle a\rangle: \mathrm{T}(A) \rightarrow$ $\mathbb{R}^{+} \cup\{\infty\}$ by

$$
\iota\langle a\rangle(\tau)=\sup _{n} d_{\tau}\left(P_{n} a P_{n}\right),
$$

for each trace $\tau \in \mathrm{T}(A)$, where P_{n} are the projections defined before Lemma 2.2.
In analogy with previous notation, we now observe that $a \mapsto \iota\langle a\rangle$ drops to a welldefined map (denoted by ι) on $\mathrm{W}(A \otimes \mathcal{K})$. (Indeed, if $a \in M_{n}(A \otimes \mathcal{K})_{+}$then we can identify it with a positive element in $(A \otimes \mathcal{K})_{+}$and hence define $\iota\langle a\rangle$; since $\iota\langle\cdot\rangle$ is independent of the projections used in its definition, it is not hard to check that our recipe for extending ι to $M_{n}(A \otimes \mathcal{K})_{+}$is independent of the identification $M_{n}(\mathcal{K}) \cong \mathcal{K}$.)

Lemma 2.4. If $a, b \in(A \otimes \mathcal{K})_{+}$and $\langle a\rangle=\langle b\rangle \in \mathrm{W}(A \otimes \mathcal{K})$ then $\iota\langle a\rangle=\iota\langle b\rangle$. Moreover, $\iota\langle a\rangle$ is independent of the choice of projections P_{n}.

Proof. Assume $a \sim b$. For each $\epsilon>0$ and $n \in \mathbb{N}$ there exists a $\delta>0$ and $m \in \mathbb{N}$ such that

$$
\left(P_{n} a P_{n}-2 \epsilon\right)_{+} \precsim(a-\epsilon)_{+} \precsim(b-\delta)_{+} \precsim P_{m} b P_{m} .
$$

It follows that for any $\tau \in \mathrm{T}(A)$,

$$
\iota\langle b\rangle(\tau) \geq d_{\tau}\left(P_{m} b P_{m}\right) \geq d_{\tau}\left(P_{n} a P_{n}-2 \epsilon\right)_{+} .
$$

Since n and ϵ were arbitrary, we conclude that $\iota\langle b\rangle(\tau) \geq \iota\langle a\rangle(\tau)$. Similarly, $\iota\langle a\rangle(\tau) \geq$ $\iota\langle b\rangle(\tau)$.

For the second assertion, let $\left\{e_{n}\right\},\left\{f_{n}\right\} \subset \mathcal{K}$ be increasing sequences of projections with $\operatorname{rank}\left(e_{n}\right)=\operatorname{rank}\left(f_{n}\right)=n$, and put $P_{n}=1 \otimes e_{n}, Q_{n}=1 \otimes f_{n} \in A \otimes \mathcal{K}$. Fix $n \in \mathbb{N}$
and $\epsilon>0$. Since $\lim _{k \rightarrow \infty}\left\|P_{n} Q_{k}-P_{n}\right\|=0$, we can find k such that $\left\|P_{n} Q_{k} a Q_{k} P_{n}-P_{n} a P_{n}\right\|<\epsilon$. It follows that $\left(P_{n} a P_{n}-\epsilon\right)_{+} \precsim Q_{k} a Q_{k}$ for all sufficiently large k. In particular, $d_{\tau}\left(\left(P_{n} a P_{n}-\right.\right.$ $\left.\epsilon)_{+}\right) \leq \sup _{k} d_{\tau}\left(Q_{k} a Q_{k}\right)$ for every $\epsilon>0$. Since $d_{\tau}\left(P_{n} a P_{n}\right)=\sup _{\epsilon} d_{\tau}\left(\left(P_{n} a P_{n}-\epsilon\right)_{+}\right)$, the lemma follows.

Proposition 2.5. Let A be a unital simple exact C^{*}-algebra with strict comparison of positive elements. If $\langle a\rangle,\langle b\rangle \in \mathrm{W}(A \otimes \mathcal{K})_{+}$, then $a \sim b$ if and only if $\iota\langle a\rangle=\iota\langle b\rangle$.

Proof. The forward implication is contained in Lemma 2.4, so suppose that $\iota\langle a\rangle=$ $\iota\langle b\rangle$. Find, using Lemma 2.2, sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ corresponding to a and b, respectively; let f_{n} and g_{n} denote, respectively, the functions provided by part (iii) of the conclusion of Lemma 2.2. By a compactness argument, for each $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that for every $\tau \in \mathrm{T}(A)$ we have the following inequalities:

$$
d_{\tau}\left(a_{n}\right)<f_{n}(\tau)<d_{\tau}\left(b_{m}\right) ; d_{\tau}\left(b_{n}\right)<g_{n}(\tau)<d_{\tau}\left(a_{m}\right)
$$

Since A has strict comparison, $a_{n} \precsim b_{m}$ and $b_{n} \precsim a_{m}$. It follows that

$$
\langle a\rangle=\sup _{n}\left\langle a_{n}\right\rangle=\sup _{m}\left\langle b_{m}\right\rangle=\langle b\rangle,
$$

as desired.
Let $\operatorname{SAff}(\mathrm{T}(A))$ denote the set of functions on $\mathrm{T}(A)$ which are pointwise suprema of increasing sequences of continuous, affine, and strictly positive functions on $\mathrm{T}(A)$. Define an addition operation on the disjoint union $\mathrm{V}(A) \sqcup \operatorname{SAff}(\mathrm{T}(A))$ as follows:
(i) if $x, y \in V(A)$, then their sum is the usual sum in $V(A)$;
(ii) if $x, y \in \operatorname{SAff}(\mathrm{~T}(A))$, then $x+y$ is the pointwise sum in $\operatorname{SAff}(\mathrm{T}(A))$;
(iii) if $x \in V(A)$ and $y \in \operatorname{SAff}(\mathrm{~T}(A))$, then their sum is the usual (pointwise) sum of \hat{x} and y in $\operatorname{SAff}(\mathrm{T}(A))$, where $\hat{x}(\tau)=\tau(p)$ for some projection p with $\langle p\rangle=x, \forall \tau \in \mathrm{~T}(A)$.

Equip $\mathrm{V}(A) \sqcup \operatorname{SAff}(\mathrm{T}(A))$ with the partial order \leq which restricts to the usual partial orders on $V(A)$ (i.e. Murray-von Neumann) and $\operatorname{SAff}(\mathrm{T}(A))$ (i.e. $f \leq g \Leftrightarrow f(\tau) \leq g(\tau)$ for all $\tau \in \mathrm{T}(A)$), and which satisfies the following conditions for $x \in V(A)$ and $y \in \operatorname{SAff}(\mathrm{~T}(A))$:
(i) $x \leq y$ if and only if $\widehat{x}(\tau)<y(\tau), \forall \tau \in \mathrm{T}(A)$;
(ii) $y \leq x$ if and only if $y(\tau) \leq \hat{X}(\tau), \forall \tau \in \mathrm{T}(A)$.

Theorem 2.6. Let A be a unital simple exact and tracial C*-algebra with strict comparison. Assume that $\iota: W(A)_{+} \rightarrow \operatorname{LAff}_{b}(\mathrm{~T}(A))^{++}$is surjective. It follows that

$$
\mathrm{W}(A \otimes \mathcal{K}) \cong \mathrm{V}(A) \sqcup \operatorname{SAff}(\mathrm{T}(A)),
$$

as ordered semigroups.

Proof. Define

$$
\phi: \mathrm{W}(A \otimes \mathcal{K}) \rightarrow \mathrm{V}(A) \sqcup \operatorname{SAff}(\mathrm{T}(A))
$$

by $\operatorname{id}_{\mathrm{V}(A \otimes \mathcal{K})}$ on $\mathrm{V}(A \otimes \mathcal{K})$ and by ι on $\mathrm{W}(A \otimes \mathcal{K})_{+}$(that is, $x \mapsto \iota\langle a\rangle$, where $x=\langle a\rangle$). Let us first prove that ϕ is a bijection. Since A is stably finite, $\mathrm{W}(A \otimes \mathcal{K})=\mathrm{V}(A) \sqcup \mathrm{W}(A \otimes \mathcal{K})_{+}$, hence it suffices to show $\iota: \mathrm{W}(A \otimes \mathcal{K})_{+} \rightarrow \operatorname{SAff}(\mathrm{T}(A))$ is a bijection.

Injectivity of ι follows from Proposition 2.5. Surjectivity follows from two facts: (i) the range of ι contains $\operatorname{LAff}_{b}(\mathrm{~T}(A))^{++}$and (ii) $\mathrm{W}(A \otimes \mathcal{K})$ has suprema (cf. [5]). Indeed, given $f \in \operatorname{SAff}(\mathrm{~T}(A))$ we find continuous affine functions $f_{n} \leq f_{n+1} \leq \cdots$ converging up to f pointwise. Letting $a_{n} \in A \otimes \mathcal{K}$ be positive elements such that $\hat{a}_{n}=f_{n}$, we let $x=\sup _{n}\left\langle a_{n}\right\rangle \in \mathrm{W}(A \otimes \mathcal{K})$ (we have used strict comparison here to ensure $\left\{\left\langle a_{n}\right\rangle\right\}$ is an increasing sequence in $\mathrm{W}(A \otimes \mathcal{K}))$. Then it is clear that $\iota(x)=f$.

To complete the proof, we must show that ϕ is order preserving. Suppose that $x \leq y, x, y \in \mathrm{~W}(A \otimes \mathcal{K})$. There are four cases to consider.
(a) If $x, y \in \mathrm{~V}(A \otimes \mathcal{K})$, then $\phi(x) \leq \phi(y)$ since $\left.\phi\right|_{V(A \otimes \mathcal{K})}=\mathbf{i d}_{V(A \otimes \mathcal{K})}$.
(b) If $x, y \in \mathrm{~W}(A \otimes \mathcal{K})$, then $\phi(x) \leq \phi(y)$ since $\left.\phi\right|_{\mathrm{W}(A \otimes \mathcal{K})}=\iota$ and ι is orderpreserving. (The proof of this last fact follows from the proof of the first implication in Proposition 2.5.)
(c) If $x \in \mathrm{~V}(A \otimes \mathcal{K})$ and $y \in \mathrm{~W}(A \otimes \mathcal{K})_{+}$, then we apply [12, Proposition 2.2] to find $z \in \mathrm{~W}(A \otimes \mathcal{K})$ such that $x+z=y$. It follows that $\iota(x)(\tau)<\iota(y)(\tau)$, $\forall \tau \in \mathrm{T}(A)$ (note that $\iota(x)(\tau)<\infty$ in this case), whence $\phi(x) \leq \phi(y)$.
(d) If $x \in \mathrm{~W}(A \otimes \mathcal{K})_{+}$and $y \in \mathrm{~V}(A \otimes \mathcal{K})$, then $\phi(x) \leq \phi(y)$ since ι is orderpreserving.

The theorem above holds for all simple unital AH algebras with slow dimension growth, and for the class of simple unital exact stably finite C^{*}-algebras which absorb Z ([3, Theorems 5.3 and 5.5], [14, Corollary 4.6], [16, Corollary 4.6]).

3 Classifying Hilbert modules

Let E, F be countably generated Hilbert modules over a separable, unital C*-algebra A. By Kasparov's stabilization theorem, there are projections $P_{E}, P_{F} \in L\left(H_{A}\right)$ such that E is isomorphic to $P_{E} H_{A}$ and F is isomorphic to $P_{F} H_{A}$. (Here $H_{A}=\ell^{2} \otimes A$ is the standard Hilbert module over A and $L\left(H_{A}\right)$ is the set of bounded adjointable operators on H_{A}; see [10] for more.) Since $L\left(H_{A}\right)=M(A \otimes \mathcal{K})$ (the multiplier algebra of $\left.A \otimes \mathcal{K}\right)$, we can find strictly positive elements $a \in P_{E}(A \otimes \mathcal{K}) P_{E}$ and $b \in P_{F}(A \otimes \mathcal{K}) P_{F}$. According to [5, Theorem 3], if we further assume A has stable rank one,

$$
E \cong F \text { if and only if }\langle a\rangle=\langle b\rangle \in \mathrm{W}(A \otimes \mathcal{K})
$$

In this section we'll reformulate this result in terms of the projections P_{E} and P_{F}.
First, an alternate formula for $\iota\langle a\rangle \in \operatorname{SAff}(\mathrm{T}(A))$ will be handy. Let $\mathcal{F} \subset \mathcal{K}$ denote the finite-rank operators and $A \otimes \mathcal{F}$ be the algebraic tensor product of A and \mathcal{F} (which we identify with the "finite-rank" operators on H_{A}).

Lemma 3.1. For every $0 \leq a \in A \otimes \mathcal{K}$ and $\tau \in \mathrm{T}(A)$ we have

$$
\iota\langle a\rangle(\tau)=\sup \left\{d_{\tau}(b): 0 \leq b \in A \otimes \mathcal{F}, b \precsim a\right\} .
$$

Proof. If $P=1 \otimes e$ for some finite rank projection $e \in \mathcal{K}$, then $P a P \in A \otimes \mathcal{F}$ and $P a P \precsim a$; hence, the inequality \leq is immediate.

For the other direction, fix $b \in A \otimes \mathcal{F}$ such that $b \precsim a$, and fix $\epsilon>0$. Choose $\delta>0$ such that $d_{\tau}(b)-\epsilon \leq d_{\tau}\left((b-\delta)_{+}\right)$and find $x \in A \otimes \mathcal{K}$ such that $\left\|x^{*} a x-b\right\|<\delta$. By density, we may assume $x \in A \otimes M_{n}(\mathbb{C})$ for some large $n \in \mathbb{N}$. It follows that $(b-\delta)_{+} \precsim x^{*} a x$. Now, let $P_{n}=1 \otimes e_{n}$, for some increasing finite-rank projections e_{n}, such $P_{n} x=x=x P_{n}$ for all n. We have that $(b-\delta)_{+} \precsim x^{*} a x=x^{*}\left(P_{n} a P_{n}\right) x$. Hence,

$$
d_{\tau}(b)-\epsilon \leq d_{\tau}\left((b-\delta)_{+}\right) \leq d_{\tau}\left(P_{n} a P_{n}\right)
$$

and, by Lemma 2.4, this completes the proof of the lemma.
Definition 3.2. For any projection $Q \in M(A \otimes \mathcal{K})$ and tracial state $\tau \in \mathrm{T}(A)$ we define

$$
\widehat{Q}(\tau)=\sup \{\tau \otimes \operatorname{Tr}(b): 0 \leq b \in A \otimes \mathcal{F}, b \leq Q\}
$$

where Tr is the (unbounded) trace on \mathcal{F}.

Lemma 3.3. Assume A is unital with stable rank one. For any projection $Q \in M(A \otimes \mathcal{K})$, strictly positive element $a \in Q(A \otimes \mathcal{K}) Q$ and $\tau \in \mathrm{T}(A)$, we have

$$
\widehat{Q}(\tau)=\iota\langle a\rangle(\tau) .
$$

Proof. Since $\{b: b \in A \otimes \mathcal{F}, b \leq P\} \subset\{b: b \in A \otimes \mathcal{F}, b \precsim a\}$ (cf. [9, Propostion 2.7(ii)]), and $\tau \otimes \operatorname{Tr}(b) \leq \lim _{n} \tau \otimes \operatorname{Tr}\left(b^{1 / n}\right)=d_{\tau}(b)$, the previous lemma implies that $\hat{Q}(\tau) \leq \iota\langle a\rangle(\tau)$.

For the opposite inequality, fix $b \in A \otimes \mathcal{F}$ such that $b \precsim a$, and $\epsilon>0$. Choose $\delta>0$ such that $d_{\tau}(b)-\epsilon \leq d_{\tau}\left((b-\delta)_{+}\right)$. Since A has stable rank one, so does $(A \otimes \mathcal{K})$ (the unitzation of $A \otimes \mathcal{K})$. Hence, by [13, Proposition 2.4], we can find a unitary $u \in(A \otimes \mathcal{K})$ such that $u^{*}(b-\delta)_{+} u \leq Q$. Since $u^{*}(b-\delta)_{+} u \in A \otimes \mathcal{F}$, the following inequalities complete the proof:

$$
d_{\tau}(b)-\epsilon \leq d_{\tau}\left((b-\delta)_{+}\right)=d_{\tau}\left(u^{*}(b-\delta)_{+} u\right)=\lim _{n} \tau \otimes \operatorname{Tr}\left(\left[u^{*}(b-\delta)_{+} u\right]^{1 / n}\right) \leq \hat{Q}(\tau) .
$$

Recall that if $M \subset B\left(L^{2}(M)\right)$ is a II_{1}-factor in standard form, then isomorphism classes of modules over M (i.e. normal representations $M \subset B(H)$) are completely determined by the traces of the corresponding projections in $M^{\prime} \bar{\otimes} B(H)$. Our next theorem is analogous to this classical result.

Theorem 3.4. Let A be a unital simple exact C^{*}-algebra with strict comparison and stable rank one. Given two countably generated Hilbert modules E, F over A, the following are equivalent:
(i) E is isomorphic to F;
(ii) P_{E} is Murray-von Neumann equivalent to P_{F};
(iii) Either $\left\langle P_{E}\right\rangle=\left\langle P_{F}\right\rangle \in \mathrm{V}(A)$ (in the case $P_{E}, P_{F} \in A \otimes \mathcal{K}$), or $\hat{P}_{E}=\widehat{P}_{F}$.

In particular, if neither E nor F is a finitely generated projective module, then $E \cong F$ if and only if $\hat{P}_{E}=\hat{P}_{F}$.

Proof. In the case that both $P_{E}, P_{F} \in A \otimes \mathcal{K}$, the equivalence of the three conditions is a well-known exercise; when neither P_{E} nor P_{F} belong to $A \otimes \mathcal{K}$, the first two conditions are easily seen to be equivalent. Hence, we assume neither P_{E} nor P_{F} belong to $A \otimes \mathcal{K}$ and will show the first and third statements to be equivalent.

Let a (resp. b) be a strictly positive element in $P_{E}(A \otimes \mathcal{K}) P_{E}\left(\right.$ resp. $\left.P_{F}(A \otimes \mathcal{K}) P_{F}\right)$. If $E \cong F$ then $\langle a\rangle=\langle b\rangle \in \mathrm{W}(A \otimes \mathcal{K})$ (by [5, Theorem 3]), and hence the previous lemma implies that $\widehat{P}_{E}=\hat{P}_{F}$. Conversely, if we know $\hat{P}_{E}=\hat{P}_{F}$ then (by the previous lemma)
$\iota\langle a\rangle=\iota\langle b\rangle$, so Proposition 2.5 ensures that $\langle a\rangle=\langle b\rangle \in \mathrm{W}(A \otimes \mathcal{K})$. Then [5, Theorem 3] implies $E \cong F$.

Remark 3.5. The theorem above is, in a certain sense, best possible: we really need strict comparison. More precisely, the hypotheses are satisfied by simple AH algebras with slow dimension growth (and Z-stable algebras-cf. [2, Theorem 1], [14, Corollary 4.6], [16, Corollary 4.6]), but the result cannot be extended to all AH algebras. Indeed, the reader will find in [17] a pair of positive elements in a simple unital AH algebra of stable rank one such that the corresponding Hilbert modules, say E and F, are not isomorphic but do satisfy $\hat{P}_{E}=\hat{P}_{F}$.

It is also worth remarking that the result above gives a complete parametrization of isomorphism classes of countably generated Hilbert modules over A in terms of K_{0} and traces.

4 From Elliott to Thomsen and the classification of simple AI algebras

Theorem 4.1. Let A be a unital simple C^{*}-algebra of stable rank one for which $\mathrm{W}(A \otimes$ $\mathcal{K}) \cong \mathrm{V}(A) \sqcup \operatorname{SAff}(\mathrm{T}(A))$. Then, the Thomsen semigroup of A (cf. [15]) can be functorially recovered from the Elliott invariant of A.

This theorem follows immediately from [4, Theorems 4 and 10]. The result applies to any algebra satisfying the hypotheses of Theorem 2.6-in particular, by [3, Theorems 5.3 and 5.5], A could be a simple unital AH algebra with slow dimension growth, or a simple unital exact and Z-stable C*-algebra. The assumption of simplicity in the theorem is actually redundant. The assumption on the structure of $\mathrm{W}(A \otimes \mathcal{K})$ guarantees that every trace on A is faithful, whence A is simple.

Theorem 4.2 (Elliott, [7]). Let A and B be simple unital inductive limits of algebras of the form $F \otimes C[0,1]$, where F is finite dimensional. Then $A \cong B$ if and only if $\operatorname{Ell}(A) \cong \operatorname{Ell}(B)$.

Proof. If $\operatorname{Ell}(A) \cong \operatorname{Ell}(B)$ then $\mathrm{W}(A \otimes \mathcal{K}) \cong \mathrm{W}(B \otimes \mathcal{K})$, by Theorem 2.6 and [3, Theorem 5.3] (since AI algebras have no dimension growth). From [4, Theorem 4] it follows that the Thomsen semigroups of A and B are isomorphic too. Hence, by [15, Theorem 1.5], $A \cong B$.

This theorem is the best possible in the sense that the Elliott invariant is not complete for non-simple AI algebras (cf. [15, pg. 48]). The Cuntz semigroup, however, is a complete invariant in the non-simple case, as shown in [4, Theorem 11].

5 Unitary orbits of self-adjoints in simple, unital, exact C*-algebras

Let $a \in A$ be self-adjoint with spectrum $\sigma(a)$. Let $\phi_{a}: \mathrm{C}(\sigma(a)) \rightarrow A$ be the canonical homomorphism induced by sending the generator z of $\mathrm{C}(\sigma(a))$ to $a \in A$, and denote by $\operatorname{Ell}(a)$ the following pair of induced maps:

$$
\mathrm{K}_{*}\left(\phi_{a}\right): \mathrm{K}_{*}(C(\sigma(a))) \rightarrow \mathrm{K}_{*}(A) ; \phi_{a}^{\sharp}: \mathrm{T}(A) \rightarrow \mathrm{T}(C(\sigma(a)))
$$

As in Theorem 4.1, the hypotheses of the next result guarantee the simplicity of A.
Theorem 5.1. Let A be a simple unital exact C^{*}-algebra with strict comparison and stable rank one. Let $a, b \in A$ be self-adjoint. It follows that a and b are approximately unitarily equivalent if and only if $\sigma(a)=\sigma(b)$ and $\operatorname{Ell}(a)=\operatorname{Ell}(b)$.

Proof. The "only if" statement is routine, so assume $\sigma(a)=\sigma(b)$ and $\operatorname{Ell}(a)=\operatorname{Ell}(b)$.
First, we handle the case that $\sigma(a)=\sigma(b) \subset(0, \infty)$, i.e., that both a and b are positive and invertible. Let $X=\sigma(a)=\sigma(b)$ and $\mathrm{W}_{a}: \mathrm{W}(C(X)) \rightarrow \mathrm{W}(A \otimes \mathcal{K})$ (resp. $\left.\mathrm{W}_{b}: \mathrm{W}(C(X)) \rightarrow \mathrm{W}(A \otimes \mathcal{K})\right)$ denote the Cuntz-semigroup map induced by the canonical homomorphism $C(X) \rightarrow A \otimes \mathcal{K}$ sending $z \mapsto a \otimes e_{1,1}$ (resp. $z \mapsto b \otimes e_{1,1}$). We claim that $\mathrm{W}_{a}=\mathrm{W}_{b}$.

So, let $h \in M_{n}(C(X))$ be positive and $h_{a} \in M_{n}(A)$ (resp. $\left.h_{b} \in M_{n}(A)\right)$ denote the image of h under the canonical inclusion $M_{n}(C(X)) \subset M_{n}(A)$ sending $C(X) \rightarrow C^{*}(a)$ (resp. $\left.C(X) \rightarrow C^{*}(b)\right)$. If $h \sim p$ for some projection in matrices over $C(X)$, then $h_{a} \sim p_{a}$ and $h_{b} \sim p_{b}$ (where p_{a} and p_{b} are the respective images of p under the maps induced by a and b). Since $\operatorname{Ell}(a)=\operatorname{Ell}(b),\left[p_{a}\right]=\left[p_{b}\right] \in \mathrm{V}(A)$ and thus $\left\langle p_{a}\right\rangle=\left\langle p_{b}\right\rangle \in \mathrm{W}(A \otimes \mathcal{K})$-i.e. $\mathrm{W}_{a}(h)=\mathrm{W}_{b}(h)$.

If h is not equivalent to a projection in matrices over $C(X)$, then neither h_{a} nor h_{b} are equivalent to projections (in matrices over A); indeed, since A has stable rank one, [11, Proposition 3.12] implies that if h_{a} was equivalent to a projection then zero would not be an accumulation point of $\sigma\left(h_{a}\right)=\sigma(h)$, hence h would have to be equivalent to a projection as well, contrary to our assumption. In other words, $\left\langle h_{a}\right\rangle,\left\langle h_{b}\right\rangle \in \mathrm{W}(A \otimes \mathcal{K})_{+}$and hence Proposition 2.5 implies that it suffices to show $d_{\tau}\left(h_{a}\right)=d_{\tau}\left(h_{b}\right)$ for every $\tau \in \mathrm{T}(A)$. However, if μ is a measure on $\sigma(h)$ then $d_{\mu}(h)=\mu(\sigma(h) \backslash\{0\})$. Since $\operatorname{Ell}(a)=\operatorname{Ell}(b)$, the maps on tracial spaces agree-i.e. for each $\tau \in \mathrm{T}(A)$ the measures induced by restriction agree on $\sigma\left(h_{a}\right)=\sigma\left(h_{b}\right)$ —and hence $d_{\tau}\left(h_{a}\right)=d_{\tau}\left(h_{b}\right)$ for every $\tau \in \mathrm{T}(A)$, as desired.

Knowing that $\mathrm{W}_{a}=\mathrm{W}_{b}$, it now follows from [4] that $a \otimes e_{1,1}$ is approximately unitarily equivalent to $b \otimes e_{1,1}$ in the unitization of $A \otimes \mathcal{K}$. So, let $v_{n} \in(A \otimes \mathcal{K})^{+}$be unitaries such that $v_{n}\left(a \otimes e_{1,1}\right) v_{n}^{*} \rightarrow b \otimes e_{1,1}$. Since a is invertible, for every $\varepsilon>0$ there exists a
polynomial p such that $\|p(a)-1\|<\varepsilon$; since $\sigma(a)=\sigma(b),\|p(b)-1\|<\varepsilon$ as well. Hence, for large $n,\left\|v_{n}\left(1 \otimes e_{1,1}\right) v_{n}^{*}-1 \otimes e_{1,1}\right\|<C \varepsilon$ for some constant C depending only on $\sigma(a)$. If ε is sufficiently small, this implies that $\left(1 \otimes e_{1,1}\right) v_{n}\left(1 \otimes e_{1,1}\right)$ is almost a unitary in A hence can be perturbed to an honest unitary u_{n}. A routine exercise now confirms that a is approximately unitarily equivalent to b (in A).

For the case of general self-adjoints $a, b \in A$, we deduce the theorem from a simple trick. Namely, fix some constant c such that $a+c 1$ is positive and invertible. Then $b+c 1$ is also positive and invertible. By the case handled above, $a+c 1$ and $b+c 1$ are approximately unitarily equivalent, hence the same is true of a and b.

The theorem above holds for all simple unital AH algebras with slow dimension growth, and for the class of simple unital exact stably finite z-stable C*-algebras (see [2, Theorem 1], [14, Corollary 4.6], [16, Corollary 4.6]).

Another version of Theorem 5.1 holds for simple unital exact and stably finite C^{*}-algebras (without the strict comparison or stable rank assumptions):

Theorem 5.2. Let a and b be self-adjoint elements of a simple unital exact and stably finite C^{*}-algebra A. Then a and b are approximately unitarily equivalent in $A \otimes Z$-i.e. there exist unitaries $u_{n} \in A \otimes Z$ such that $\left\|u_{n}(a \otimes 1) u_{n}^{*}-b \otimes 1\right\| \rightarrow 0$-if and only if $\sigma(a)=\sigma(b)$ and $\operatorname{Ell}(a)=\operatorname{Ell}(b)$.

The proof of this result is a tiny perturbation of the proof of Theorem 5.1. The result is also, in some sense the best possible: in [17] a pair of positive elements in a simple unital AH algebra were constructed which have identical Elliott data but which are not Cuntz equivalent (hence not unitarily equivalent). For the interested reader, the elements in question are $f\left(\tau^{*}(\xi) \times \tau^{*}(\xi)\right)$ and $f \theta_{1} \oplus f \theta_{1}$, constructed in Section 3 of [17].

Acknowledgments

N.B. was partially supported by DMS-0554870; A.T. was partially supported by NSERC.

References

[1] Billingsley, P. Convergence of Probability Measures. New York: John Wiley and Sons, 1968.
[2] Blackadar, B., M. Dadarlat, and M. Rørdam. "The Real Rank of Inductive Limit C*-Algebras." Mathematica Scandinavica 69 (1991): 211-216.
[3] Brown, N. P., F. Perera, and A. S. Toms. "The Cuntz Semigroup, the Elliott Conjecture, and Dimension Functions On C*-Algebras." Journal Fur Die Reine Und Angewandte Mathematik (2006): forthcoming; arXiv math.OA/0609182.
[4] Ciuperca, A., and G. A. Elliott. "A Remark On Invariants for C_{r}-Algebras of Stable Rank One." (2007): Preprint.
[5] Coward, K. T., G. A. Elliott, and C. Ivanescu. "The Cuntz Semigroup as An Invariant for $\mathrm{C}_{r^{-}}$ Algebras." (2006): arXiv 0705.0341.
[6] Cuntz, J. "Dimension Functions On Simple C*-Algebras." Mathematische Annalen 233 (1978): 145-153.
[7] Elliott, G. A. "A Classification of Certain Simple C ${ }_{r}$-Algebras." Pp. 373-385 in Quantum and Non-Commutative Analysis (Kyoto, 1992) Math Phys Stud 16. Dordrecht: Kluwer Academic Publishers, 1993.
[8] Jiang, X., and H. Su. "On a Simple Unital Projectionless C*-Algebra." American Journal of Mathematics 121 (1999): 359-413.
[9] Kirchberg, E., and M. Rørdam. "Non-Simple Purely Infinite C*-Algebras." American Journal of Mathematics 122 (2000): 637-666.
[10] Lance, E. C. "Hilbert C_{r}-Modules. A Toolkit for Operator Algebraists." London Mathematical Society Lecture Note Series 210. Cambridge: Cambridge University Press, 1995.
[11] Perera, F. "The Structure of Positive Elements for C*-Algebras with Real Rank Zero." International Journal of Mathematics 8 (1997): 383-405.
[12] Perera, F., and A. S. Toms. "Recasting the Elliott Conjecture." Mathematische Annalen 338 (2007): 669-702.
[13] Rørdam, M. "On the Structure of Simple C*-Algebras Tensored with a UHF-Algebra. II." Journal of Functional Analysis 107 (1992): 255-269.
[14] Rørdam, M. "The Stable and the Real Rank of Z-absorbing C*-Algebras." International Journal of Mathematics 15 (2004): 1065-1084.
[15] Thomsen, K. "Inductive Limits of Interval Algebras: Unitary Orbits of Positive Elements." Mathematische Annalen 293 (1992): 47-63.
[16] Toms, A. S. "Stability in the Cuntz Semigroup of a Commutative C*-Algebra." Proceedings of the London Mathematical Society (2006): forthcoming; arXiv math.OA/0607099.
[17] Toms, A. S. "On the Classification Problem for Nuclear C*-Algebras." Annals of Mathematics (2) (2005): forthcoming; arXiv math.OA/0509103.

