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A direct proof of Z-stability for approximately homogeneous
C∗-algebras of bounded topological dimension

Marius Dadarlat, N. Christopher Phillips and Andrew S. Toms

Abstract

We prove that a unital simple approximately homogeneous C*-algebra with no dimension growth
absorbs the Jiang–Su algebra tensorially without appealing to the classification theory of these
algebras. Our main result continues to hold under the slightly weaker hypothesis of exponentially
slow dimension growth.

1. Introduction

The property of absorbing the Jiang–Su algebra Z tensorially, Z-stability , briefly, is a powerful
regularity property for separable amenable C*-algebras. It is a necessary condition for the
confirmation of G. A. Elliott’s K-theoretic rigidity conjecture, which predicts that Banach
algebra K-theory and positive traces will form a complete invariant for simple separable
amenable C*-algebras. We refer the reader to [7] for an up-to-date account of Z-stability
as it relates to Elliott’s conjecture.

The necessity of Z-stability for K-theoretic classification suggests a two-step approach to
further positive classification results: first, establish broad classification theorems for Z-stable
C*-algebras; second, prove that natural examples of simple separable amenable C*-algebras are
Z-stable. Winter, in a series of papers, has made significant contributions to the first part of
this program. For instance, he has shown that the C*-algebras associated to minimal uniquely
ergodic diffeomorphisms satisfy Elliott’s conjecture modulo Z-stability. However, there has so
far been no progress on the second part of the program. This is not to say that we do not have
natural examples of Z-stable C*-algebras. It is only that the Z-stability of these examples
is typically a consequence of having proved directly that the said examples satisfy Elliott’s
conjecture.

If we are to have any hope of carrying out the suggested two-step approach to Elliott’s
conjecture, then we must understand why already classified C*-algebras are Z-stable without
appealing to the heavy machinery of classification. The purpose of this article is to give a direct,
read ‘not passing through classification’, proof that unital simple approximately homogeneous
(AH) C*-algebras with no dimension growth are Z-stable. The result that these C*-algebras
satisfy Elliott’s conjecture, due to various combinations of Elliott, Gong, and Li, is one of the
most difficult theorems in the classification theory for separable stably finite C*-algebras, and
is therefore an appropriate starting point for understanding Z-stability. (See [5, 6, 8].)

Finally, we mention that Winter [14] has established Z-stability for a class of simple
C*-algebras that includes the unital simple AH algebras of no dimension growth, using
techniques which differ substantially from ours. Our result, however, allows one to relax the
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no dimension growth condition to a slightly weaker notion of ‘exponentially slow dimension
growth’, and so is not subsumed by Winter’s result.

2. Preliminaries

2.1. Generalities

We use Mn to denote the C*-algebra of n × n matrices with entries in C. Let F and H be
subsets of a metric space X (with metric d) and let ε > 0 be given. We write F ⊆ε H if for
each f ∈ F there is some h ∈ H such that d(f, h) < ε. We write F ≈ε H if there is a bijection
η : F → H such that d(f, η(f)) < ε. The primitive ideal space (or spectrum) of a C*-algebra
A is denoted by Spec(A).

2.2. AH algebras

Let K denote the C*-algebra of compact operators on a separable infinite-dimensional
Hilbert space. We call a C*-algebra homogeneous if it is isomorphic to p(C(X) ⊗K)p for a
compact metric space X and a constant rank projection p ∈ C(X) ⊗K, and call a C*-algebra
semihomogeneous if it is isomorphic to a finite direct sum of homogeneous C*-algebras. A
unital AH C*-algebra (AH algebra) is the limit of an inductive sequence (Ai, φi)∞i=1 in which
each φi : Ai → Ai+1 is unital and each Ai is semi-homogeneous, that is,

Ai =
ni⊕
l=1

pi,l(C(Xi,l) ⊗K)pi,l,

where ni is a natural number, Xi,l is a compact metric space, and pi,l is a constant rank
projection in C(Xi,l) ⊗K. It follows easily from an argument in the proof of [9, Proposition
3.4] that the spaces Xi,l may always be assumed to be connected and have finite covering
dimension. We refer to the sequence (Ai, φi) as an AH sequence.

Now let A be a unital AH algebra. If A is the limit of an AH sequence (Ai, φi) as above for
which

lim inf
i→∞

max
1�l�ni

dim(Xi,l)
rank(pi,l)

= 0,

then we say that A has slow dimension growth; if it is the limit of an AH sequence such that
for some M > 0, we have dim(Xi,l) < M for all i and l, then we say that A has no dimension
growth.

Given an AH sequence (Ai, φi) and j > i, we write φi,j for the composition φj−1 ◦ . . . ◦ φi and
φi,∞ for the canonical map from Ai into the limit algebra A. We define φl,k

i,j : Ai,l → Aj,k and
φk

i,j : Ai → Aj,k to be the obvious restrictions of φi,j . The φl,k
i,j are referred to as partial maps.

It is well known that an AH algebra A = lim−→i→∞(Ai, φi) is simple if and only if for every
i ∈ N and a ∈ Ai \ {0}, there is some j � i such that φi,j(a) generates Aj as an ideal. This last
condition is equivalent to φi,j(a) being nonzero at every x ∈ Xj,1 ∪ . . . ∪ Xj,nj

.

2.3. Maps between homogeneous C*-algebras

Let X and Y be compact metric spaces, and let p ∈ C(X) ⊗K and q ∈ C(Y ) ⊗K be projections
with constant rank. Let

evx : p(C(X) ⊗K)p −→ Mrank(p)

be given by f 
→ f(x); define evy for y ∈ Y similarly. Let

φ : p(C(X) ⊗K)p −→ q(C(Y ) ⊗K)q
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be a unital ∗-homomorphism. Set N = rank(q)/rank(p). It is well known that for any y ∈ Y ,
the map evy ◦ φ has the following form, up to unitary equivalence:

evy ◦ φ =
N⊕

j=1

evxj
,

where the xj are points in X, not necessarily distinct. In other words, the xj form an N -multiset
{{x1, . . . , xN}} (the double brackets indicate that repetition counts), which we denote by
spφ(y). The set of all such multisets may be identified with the quotient of the Cartesian
product XN by the action of the symmetric group SN on coordinates, and so inherits naturally
a metric from X.

Suppose now that φ has finite-dimensional image. Let R ⊂ X be a finite subset. We say for
short that φ has spectrum R if for every y ∈ Y the set of elements of the multiset spφ(y) is
exactly R. This terminology makes sense even if q does not have constant rank, since we can
partition Y into finitely many closed sets on which q does have constant rank. (In the sense of
this terminology, if Y is not connected, then the ‘spectrum’ of φ need not even exist. However,
it captures the concept we actually need.)

2.4. Semicontinuous projection-valued maps

Let X be a topological space. By a lower semicontinuous function f : X → (Mn)+ we mean
a function such that for every vector ξ ∈ C

n, the real-valued function x 
→ 〈f(x)ξ, ξ〉 is lower
semicontinuous (see [1, Section 3]). The following result from [3] will be used in the sequel.

Proposition 2.1. Let X be a compact metric space of dimension d, and let P : X →
(Mn)+ be a lower semicontinuous projection-valued map. Suppose that

rank(P (x)) > 1
2 (d + 1) + k

for all x ∈ X. It follows that there is a continuous projection-valued map R : X → Mn of
constant rank equal to k such that

R(x) � P (x)

for all x ∈ X.

Remark 2.2. By [9, Theorem 2.5(a)], if we replace 1
2 (d + 1) with d + 1 in the hypotheses

of Proposition 2.1, then we may assume that the projection-valued map R corresponds to a
trivial complex vector bundle over X.

Lemma 2.3. Let X, Y , p, q, and φ : p(C(X) ⊗K)p → q(C(Y ) ⊗K)q ⊆ Mm(C(Y )) be as in
Subsection 2.3, except with p and q not necessarily of constant rank. Let U be an open subset
of X, and let r ∈ p(C(X) ⊗K)p be a positive element that is equal to a projection at every
x ∈ U . Define a projection-valued map R : Y → Mm as follows: R(y) is the image of r under
the direct sum of those irreducible direct summands of evy ◦ φ that correspond to points in U .
It follows that R is lower semicontinuous.

Proof. We reduce to the case in which p and q have constant rank. For p, we partition Y
into finitely many closed and open subsets X1, . . . , Xl on which p has constant rank. Let ei ∈
p(C(X) ⊗K)p be equal to p on Xi and equal to zero elsewhere. For each i, we then replace q by
φ(ei), obtaining lower semicontinuous functions Ri. It is easily checked that R = R1 + . . . + Rl

is then also lower semicontinuous. For q, we partition Y into finitely many closed and open
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subsets Y1, . . . , Yn on which q has constant rank, and consider the ∗-homomorphisms a 
→
φ(a)|Yj

for j = 1, . . . , n. We find that R is lower semicontinuous on each Yj , and hence on Y .
We now assume that p and q each have constant rank. For any y ∈ Y , let Ey denote the

submultiset of spφ(y) consisting of those points that lie in U . Fix y0 ∈ Y , and let δ denote
the smallest distance between a point in Ey0 and a point in the complement of U . The map
y 
→ spφ(y) is continuous, from where there is an open neighborhood V of y0 such that, for
each y ∈ V , the submultiset Fy of spφ(y) consisting of those points that are at distance at most
δ/2 from some point in Ey0 has the same cardinality as Ey0 , and moreover the map y 
→ Fy is
continuous.

Define a continuous projection-valued map R̃ : V → Mm as follows: R̃(y) is the image of r
under the direct sum of the irreducible direct summands of evy ◦ φ that correspond to the
elements of Fy. We have R̃(y) � R(y) for every y ∈ V , and R̃(y0) = R(y0). Let zn → y0. For all
n sufficiently large we have zn ∈ V , from where, for each ξ ∈ C

rank(q), we have 〈R(zn)ξ, ξ〉 �
〈R̃(zn)ξ, ξ〉. It follows that

lim inf
n→∞

〈R(zn)ξ, ξ〉 � lim
n→∞

〈R̃(zn)ξ, ξ〉 = 〈R̃(y0)ξ, ξ〉 = 〈R(y0)ξ, ξ〉,

and so R is lower semicontinuous.

3. A word on strategy

Before plunging headlong into the technical details of our proof, we attempt to explain why
a unital simple AH algebra with no dimension growth ought to absorb the Jiang–Su algebra
tensorially.

Let p, q � 2 be relatively prime integers. Bearing in mind the isomorphism Mpq
∼= Mp ⊗ Mq,

one defines

Ip,q =
{
f ∈ C([0, 1], Mpq) : f(0) ∈ 1p ⊗ Mq and f(1) ∈ Mp ⊗ 1q

}
.

The algebra Ip,q is referred to as a prime dimension drop algebra, and the Jiang–Su algebra,
denoted by Z, is the unique unital simple inductive limit of prime dimension drop algebras
with the same K-theory and tracial state space as the algebra of complex numbers (see [10]).
In order to prove that a unital C*-algebra absorbs the Jiang–Su algebra tensorially, it suffices
to prove that for each p, q as above, there is an approximately central sequence of unital
∗-homomorphisms γn : Ip,q → A (see [12, Proposition 2.2]).

Let A = lim−→i→∞(Ai, φi) be a unital simple AH algebra with no dimension growth, and assume
for simplicity that each Ai is homogeneous with connected spectrum Xi. Fix a finite subset F
of Ai. It is known that for any ε > 0 there exists j > i such that for every y ∈ Xj , the finite-
dimensional representation evy ◦ φi,j of Ai has the following property: the multiset spφi,j

(y)
can be partitioned into submultisets S1, . . . , Sm such that all of the elements in a fixed St lie
in a ball of radius at most ε, and such that each St has large cardinality relative to dim(Xj).
Suppose that St = {{x1, . . . , xk}}. (The notation is as in Subsection 2.3.) The projections
evx1(1Ai

), . . . , evxk
(1Ai

) (whose sum is denoted by It) are pairwise orthogonal and Murray–von
Neumann equivalent, and so they and the partial isometries implementing the said equivalences
generate a copy of Mk, which almost commutes with the image of F under the map It(evy ◦
φi,j)It. If k is large enough, then there is a unital ∗-homomorphism from Ip,q into Mk, which
almost commutes with the image of F . Repeating this procedure for each of S1, . . . , Sm, we
obtain a unital ∗-homomorphism from Ip,q into the fiber Mrank(1Aj

) of Aj over y ∈ Xj , which
almost commutes with the image of F . By the semiprojectivity of Ip,q, this ∗-homomorphism
can be extended to have codomain equal to the restriction of Aj to a closed neighborhood of
y. Thus, it is straightforward to see the existence of the required maps γn in a ‘local’ sense.
This article handles the passage from local to global. What makes this possible is the fact [4]
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that the homotopy groups of the space of k-dimensional representations of Ip,q vanish in low
dimensions.

4. Excising point evaluations

Let A be a unital simple AH algebra with slow dimension growth. We say that an AH sequence
(Ai, φi) with limit A realizes slow dimension growth if

lim
i→∞

max
1�l�ni

dim(Xi,l)
rank(pi,l)

= 0

and dim(Xi,l) is finite for all i and l. (The second condition can always be arranged by dropping
terms of the sequence.) Assume that (Ai, φi) is such a sequence. Our aim in this section is to
prove that for each finite subset F of Ai, there is some j > i with the property that the bonding
map φi,j is ‘almost’ a direct sum of a suitably dense family of irreducible representations of Ai

together with a second map φi,j .

Notation 4.1. Let X be a compact metric space and N � 1 an integer. Let U1, . . . , Um be
open subsets of X whose closures are pairwise disjoint. The C*-subalgebra of A = MN (C(X))
consisting of those functions f : X → MN that are constant on each Us is denoted by
A{U1,...,Um}. It is easily verified that A{U1,...,Um} ∼= MN (C(X ′)), where X ′ is the quotient of X
obtained by shrinking each set Us to a distinct point ws for s = 1, . . . , m.

If ρ : A → B is a ∗-homomorphism, then we write L · ρ for a ∗-homomorphism A → ML(B)
that is unitarily equivalent to the direct sum of L copies of ρ.

Lemma 4.2. Let X and Y be compact metric spaces and let

γ : A = MN (C(X)) −→ q(C(Y ) ⊗K)q

be a unital ∗-homomorphism. Let U1, . . . , Um be open subsets of X whose closures are pairwise
disjoint, and let w1, . . . , wm be as in Notation 4.1. Suppose that for all s = 1, . . . , m and all
y ∈ Y ,

card
(
spγ(y) ∩ Us

)
� (K + 2) dim(Y ).

Then the restriction of γ to A{U1,...,Um} decomposes as a direct sum γ ⊕ L · ρ, where L �
Kdim(Y ) and ρ is a ∗-homomorphism with finite-dimensional image and spectrum equal to
{w1, . . . , wm} in the sense of Subsection 2.3.

Proof. We may clearly assume that dim(Y ) �= 0. We may also assume that q ∈ MR(C(Y ))
for some R � 1. Fix a system of matrix units (pcd)N

c,d=1 for MN . For each y ∈ Y , let q
(s)
cd (y)

be the image of pcd under the direct sum of all the irreducible direct summands of evy ◦ γ

that correspond to points in Us. Using Lemma 2.3, we see that q
(s)
11 is a lower semicontinuous

projection-valued map on Y whose rank is at least (K + 2)dim(Y ) at every point.
Apply Proposition 2.1 and Remark 2.2 to find a continuous constant rank subprojection

r
(s)
11 : Y → MR of q

(s)
11 whose rank L is at least Kdim(Y ) and which corresponds to a trivial

vector bundle over Y . Since r
(s)
11 (y) � q(y) for all y ∈ Y , it follows that r

(s)
11 ∈ q(C(Y ) ⊗K)q. Set

r
(s)
cd = q

(s)
c1 r

(s)
11 q

(s)
1d = γ(pc1)r

(s)
11 γ(p1d). It is straightforward to check that

(
r
(s)
cd

)N

c,d=1
is a system

of matrix units in q(C(Y ) ⊗K)q. Let Is denote the unit of the subalgebra of q(C(Y ) ⊗K)q
generated by the r

(s)
cd .
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To complete the proof of the lemma, it will suffice to show that Is commutes with the image
of γ|A{U1,...,Um} and that, up to unitary equivalence,

Is(γ|A{U1,...,Um})Is =
L⊕

t=1

evws
= L · evws

.

Fix y ∈ Y . Observe that the irreducible direct summands of evy ◦ γ, which correspond to
points in Us are, upon restricting γ to A{U1,...,Us}, replaced by irreducible representations of
A{U1,...,Us} corresponding to the point ws ∈ Spec

(
A{U1,...,Us}

)
. In particular, the image of any

a ∈ A{U1,...,Us} under these irreducible representations is contained in the linear span of the
q
(s)
cd (y). An easy exercise using the definition of the r

(s)
cd shows that Isq

(s)
cd = q

(s)
cd Is = r

(s)
cd . Thus

Is commutes with the image of γ|A{U1,...,Um} .
The map Is(γ|A{U1,...,Um})Is factors through the evaluation of A{U1,...,Us} at ws, and has

multiplicity L. To see that this finite-dimensional representation of A{U1,...,Us} decomposes
as the direct sum of L representations of multiplicity one, we observe that r

(s)
11 can be

decomposed into the direct sum of L equivalent rank one projections by virtue of its
triviality. Let ξ be one such projection. We can form matrix units ξcd = q

(s)
c1 ξq

(s)
1d to obtain

an irreducible subrepresentation of Is(γ|A{U1,...,Um})Is of multiplicity one. There are L such
subrepresentations, and they are mutually orthogonal. This completes the proof of the lemma.

Lemma 4.3. Let A be an infinite-dimensional unital simple AH algebra with slow dimension
growth, and let (Aj , φj) be an AH sequence which realizes the slow dimension growth of A.
Suppose that Ai = MN (C(Xi)) for some i and let there be given F ⊆ Ai finite, a tolerance
ε > 0, a natural number K, and distinct points x1, . . . , xm ∈ Xi.

It follows that there are j > i, open neighborhoods Us of xs in Xi for s = 1, . . . ,m, with
pairwise disjoint closures, and a finite set F ′ ⊆ A′

i = (Ai){U1,...,Um} with the following properties
for each k ∈ {1, . . . , nj}.

(i) We have F ′ ≈ε F .
(ii) Using the notation of Subsection 2.2, the map γj,k : A′

i → Aj,k obtained by restricting
φk

i,j to A′
i is, up to unitary equivalence inside its codomain, of the form γ ⊕ L · ρ, where L ∈ N,

ρ is a ∗-homomorphism with finite-dimensional image and spectrum (in the sense of Subsection
2.3) consisting of the points w1, . . . , wm corresponding to the images of the sets U1, . . . , Um in
the quotient space of Xi representing the spectrum of A′

i.
(iii) We have L � K dim(Xj,k).

Proof. A standard approximation argument shows that part (i) of the conclusion of the
lemma is satisfied with an appropriate choice of U1, . . . , Um. We show that this choice suffices
for the other two parts of the conclusion of the lemma. Set γj,k = φk

i,j . For j � i, y ∈ Xj,k,
k ∈ {1, . . . , nj}, and s ∈ {1, . . . , m}, let L(j, k, s)(y) denote the number of irreducible direct
summands that correspond to points in Us of the finite-dimensional representation evy ◦ γj,k

of Ai. Thus L(j, k, s)(y) = card
(
spγj,k

(y) ∩ Us

)
.

Choose positive scalar-valued functions a1, . . . , am ∈ Ai such that

{x ∈ X : as(x) �= 0} = Us.

By the simplicity of A, there exist j0 > i and M � 1 such that for each j � j0, s ∈ {1, . . . , m},
and k ∈ {1, . . . , nj}, there are elements b1, . . . , bM in Aj,k such that

∑M
t=1 btγj,k(as)b∗t = pj,k.

It follows that for each y ∈ Xj,k, we have

M · N · L(j, k, s)(y) = M · rank(γj,k(as)(y)) � rank(pj,k(y))
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and hence
dim(Xj,k)

L(j, k, s)(y)
� dim(Xj,k)

rank(pj,k)
· M · N.

By the slow dimension growth condition, if j is large enough, then

L(j, k, s)(y) � (K + 2)dim(Xj,k)

for all s and k, and all y ∈ Xj,k. Properties (ii) and (iii) in the conclusion of the present lemma
now follow from an application of Lemma 4.2.

5. Approximate relative commutants

The main result of this section is Proposition 5.7.

Definition 5.1. Let X be a compact metric space. Let ε > 0 and a finite set F ⊆ C(X) be
given. Let R be a finite subset of X. Let B be a unital separable homogeneous C*-algebra (as
in Subsection 2.2) with spectrum Y . Let γ : C(X) → B be a unital ∗-homomorphism. Given an
integer K � 1, a K-large system of compatible local finite-dimensional approximations for γ
with respect to the data ε, F , and R consists of two finite closed covers (Ws)M

s=1 and (Vs)M
s=1 of

Y with Ws ⊆
◦
Vs such that for each s there is a partition of unity of B over Vs into projections

e(s, i) ∈ B|Vs
,

n(s)∑
i=1

e(s, i) = 1B |Vs

with the following properties.
(i) The restrictions of e(s1, i1), . . . , e(sm, im) to any nonempty intersection Vs1 ∩ . . . ∩ Vsm

�=
∅ mutually commute and the rank of the product e(s1, i1) · . . . · e(sm, im) is either 0 or at least
K at all points of Vs1 ∩ . . . ∩ Vsm

.
(ii) For any s there are points x1, . . . , xn(s) in R such that for all f ∈ F , with ‖ · ‖Vs

denoting
the supremum norm of the restriction to Vs, we have∥∥∥∥∥γ(f) −

n(s)∑
i=1

f(xi)e(s, i)

∥∥∥∥∥
Vs

< ε.

This definition has two useful consequences.

Lemma 5.2. Let the notation be as in Definition 5.1, and suppose that a K-large system of
compatible local finite-dimensional approximations as there are given. Let B� be the C*-algebra
consisting of those elements g ∈ B such that, for s = 1, . . . ,M , for i = 1, . . . , n(s), and for every
y ∈ Ws, the projection e(s, i)(y) commutes with g(y). Then if g ∈ B� and ‖g‖ � 1, then we have
‖[g, γ(f)]‖ < 2ε for all f ∈ F .

Proof. Let f ∈ F , let g ∈ B� satisfy ‖g‖ � 1, and let x ∈ X. Choose s such that x ∈ Ws.
Let x1, . . . , xn(s) ∈ R be as in Definition 5.1(ii). Then g(x) commutes with

∑n(s)
i=1 f(xi)e(s, i)

and ∥∥∥∥∥γ(f) −
n(s)∑
i=1

f(xi)e(s, i)

∥∥∥∥∥
Vs

< ε,

so ‖[γ(f)(x), g(x)]‖ < 2ε. Take the supremum over x ∈ X, remembering that X is compact.
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Lemma 5.3. Let the notation be as in Definition 5.1, and suppose that a K-large system
of compatible local finite-dimensional approximations as there are given. The subalgebra B�

of Lemma 5.2 is the section algebra of a continuous field of C*-algebras over Y , which we also
denote by B�, such that for every y ∈ Y , every irreducible representation of the fiber B�(y)
has dimension at least K.

Proof. We note that B� is a C(Y )-subalgebra of the section algebra B of a continuous field,
also called B, over Y . Hence B� is itself the section algebra of a continuous field over Y . For
y ∈ Y , let B(y) be the fiber of B over y, and let πy : B → B(y) be the evaluation map.

Fix y ∈ Y . Let s1, . . . , sm be the indices s such that y ∈ Ws. Then y has a neighborhood V ⊆
Vs1 ∩ . . . ∩ Vsm

such that V ∩ Ws = ∅ for all s /∈ {s1, . . . , sm}. Let S be the set of all elements
a = {(s1, i1), . . . , (sm, im)} with 1 � il � n(sl) for l = 1, . . . ,m, and for which the projection
e(a), defined on Vs1 ∩ . . . ∩ Vsm

by e(a)(z) = e(s1, i1)(z) · . . . · e(sm, im)(z), is nonzero at y.
For a ∈ S, Definition 5.1(i) implies that the rank r(a) of e(a)(y) is always at least K. Also,∑

a∈S e(a)(z) = 1 for all z ∈ Vs1 ∩ . . . ∩ Vsm
.

Let
C =

⊕
a∈S

e(a)(y)B(y)e(a)(y).

We claim that B�(y) = C. Since C ∼=
⊕

a∈S Mr(a), this will prove the lemma. It is clear from the
commutation relations in the definition of B� that B� ⊆ C. For the reverse inclusion, let c ∈ C.
Choose b0 ∈ B such that πy(b0) = c. Choose f ∈ C(Y ) such that f(y) = 1 and supp(f) ⊆ V .
Define

b(z) =
∑
a∈S

f(z)e(a)(z)b0(z)e(a)(z)

for z ∈ Y . Then b ∈ B� and πy(b) = c.

Definition 5.4. Let X be a compact metric space. For δ > 0 we denote by r(X, δ) the
smallest number r with the property that for every finite set G ⊆ X there are open subsets
U1, . . . , Ur of X of diameter less than δ whose union contains G and such that their closures
are mutually disjoint.

Remark 5.5. Using compactness, the finiteness of r(X, δ) in Definition 5.4 is unchanged
if the metric is replaced by an equivalent metric. One can therefore see that r(X, δ) < ∞ by
embedding X homeomorphically in the Hilbert cube and choosing the Us to be rectangles of
the form

X ∩
( ∏

i�N

(ai, bi) ×
∏
i>N

[0, 1]

)
.

If F ⊆ pMN (C(X))p ⊆ MN (C(X)) is a subset, we denote by ωX(F, δ) the δ-oscillation of the
family F :

ωX(F, δ) = sup
({

‖f(x) − f(x′)‖MN
: d(x, x′) < δ

})
.

We omit X from the notation when no confusion can arise.

Proposition 5.6. Let X be a compact metric space and let γ : C(X) → B be a unital
∗-homomorphism to a separable homogeneous C*-algebra B (as in Subsection 2.2) with
spectrum of dimension d. Let δ > 0 and suppose that γ admits a direct sum decomposition
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of the form γ = φ ⊕ L · ρ, where ρ is a ∗-homomorphism with finite-dimensional image that
has spectrum R (in the sense of Subsection 2.3) which is δ-dense in X, and L �

(
(r(X, δ) +

1)d+1 − 1
)
K. If F ⊆ C(X) is a finite set, then γ admits a K-large system of compatible local

finite-dimensional approximations with respect to the data ε = 2ω(F, 3δ), F , and R.

Proof. Suppose that γ, φ, ρ, and L are as in the statement. The cover (Vs)M
s=1 and

the corresponding partitions of unity are constructed as follows. Set r = r(X, δ). By the
compactness of Y there is a finite open cover V = {V1, . . . , VM} of the spectrum Y of B such that
for each s there is a family U(s,1), . . . , U(s,r) of open subsets of X of diameter less than δ (some
possibly empty), whose union contains spφ(y) for all y ∈ Vs, and such that U(s,i) ∩ U(s,j) = ∅

for i �= j. By [11, Proposition 1.6] and since dim(Y ) = d, after replacing V by a refinement,
we may assume that {V1, . . . , VM} can be colored with d + 1 colors such that sets of the same
color have disjoint closures. In other words we can write {V1, . . . , VM} as a disjoint union
V1 ∪ . . . ∪ Vd+1 such that if Vs, Vt ∈ Vi for some 1 � i � d + 1, and s �= t, then Vs ∩ Vt = ∅.
For each s, we further replace Vs by {y ∈ Y : dist(y, Vs) � α} for a suitable α > 0. The sets Vs

are now closed, but if α is sufficiently small, then all the other properties of our cover remain
valid. In addition, there are now closed sets Ws ⊆

◦
Vs such that (Ws)M

s=1 is a cover of Y . These
sets Vs and Ws will be the ones called for in Definition 5.1.

We need to work with the coloring map s 
→ s : {1, . . . , M} → {1, . . . , d + 1}, where s is
defined by the condition that Vs has color s, that is, Vs is an element of the family Vs. For
a = {(s1, i1), . . . , (sm, im)} with s1, . . . , sm ∈ {1, . . . , M} distinct and 1 � i1, . . . , im � r, set

Ua = U(s1,i1) ∩ . . . ∩ U(sm,im).

Let S be the set of all a as above such that

Vs1 ∩ . . . ∩ Vsm
�= ∅ and Ua �= ∅.

(Note that necessarily m � d + 1, since distinct sets Vs of the same color are disjoint.) For
a = {(s1, i1), . . . , (sm, im)} as above, extend the notation s 
→ s by setting

a = {(s1, i1), . . . , (sm, im)}.
Consider also the set Ŝ consisting of all sets of the form {(s1, i1), . . . , (sm, im)}, where
m � d + 1, s1, . . . , sm are mutually distinct elements (colors) in the set {1, . . . , d + 1}, and
1 � i1, . . . , im � r. Then Ŝ ⊇ {a : a ∈ S}, but in general the containment is proper. Note that

card
(
Ŝ

)
= (d + 1)r +

(
(d + 1)d

2

)
r2 + . . . + rd+1 = (1 + r)d+1 − 1.

Set L0 =
(
(1 + r)d+1 − 1

)
K. Replacing φ by φ ⊕ (L − L0) · ρ, we may assume that L = L0.

Let q = ρ(1). Then we can factor L · ρ as a composite

C(X) σ−→ qBq ⊗ L(�2(Ŝ)) ⊗ MK
μ−→ B,

in which σ is the unital ∗-homomorphism given by

σ(f) = ρ(f) ⊗ 1 ⊗ 1K

for f ∈ C(X), and μ is an isomorphism of qBq ⊗ L(�2(Ŝ)) ⊗ MK with (1 − φ(1))B(1 − φ(1)).
In particular, μ(1) = 1 − φ(1).

By assumption, there are a positive integer c, mutually orthogonal nonzero projections
q1, . . . , qc such that q1 + . . . + qc = q, and x1, . . . , xc ∈ X, such that ρ : C(X) → qBq has the
form

ρ(f) =
c∑

k=1

f(xk)qk
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for all f ∈ C(X), and such that for any x ∈ X there is k with d(x, xk) < δ. Therefore there is
a map κ : S → {1, . . . , c} with the property that

dist(xκ(a), Ua) < δ. (1)

For each fixed s we are going to define a partition of 1B |Vs
. For i = 1, . . . , r, let h(s,i) be

an element of C(X) such that h(s,i)(x) = 1 for all x ∈ U(s,i) and such that h(s,i)(x) = 0 on⋃
j �=i U(s,j). Define projections p(s, i) on Vs by p(s, i) = φ

(
h(s,i)

)
|Vs

for i = 1, . . . , r. For each
(s, i) let S(s, i) be the subset of those elements a ∈ S with the property that (s, i) ∈ a. Let
T = {1, . . . , c} × Ŝ and set

T (s, i) = {(κ(a), a) : a ∈ S(s, i)} = {(κ(a), a) : (s, i) ∈ a} ⊆ T.

Let ξ(s, r + 1), . . . , ξ(s, n(s)) be an enumeration of the complement of
⋃r

i=1 T (s, i) in T . If
this complement is nonempty, then n(s) > r; otherwise set n(s) = r. Set T (s, i) = {ξ(s, i)} for
i = r + 1, . . . , n(s) and we observe that for each s the family (T (s, i))n(s)

i=1 forms a partition of T .
Indeed, for 1 � i �= j � r, we have T (s, i) ∩ T (s, j) = ∅ since if a = {(s1, i1), . . . , (sm, im)} ∈ S,
then Vs1 ∩ . . . ∩ Vsm

�= ∅, and therefore the colors s1, . . . , sr are mutually distinct.
After this preparation, and recalling that q1, . . . , qc are the spectral projections of ρ, for each

(s, i) ∈ T we define a projection

q(s, i) =
∑

(k,b)∈T (s,i)

μ
(
qk ⊗ χ{b} ⊗ 1K

)
∈ (1 − φ(1))B(1 − φ(1)).

We also define a family of projections
(
e(s, i)

)n(s)

i=1
on Vs by

e(s, i) =

{
p(s, i) + q(s, i)|Vs

if 1 � i � r,

q(s, i)|Vs
if r < i � n(s).

Then we have
n(s)∑
i=1

e(s, i) = 1B |Vs

is a partition of unity on Vs. Indeed
∑r

i=1 p(s, i) =
∑r

i=1 φ(h(s,i)) = φ(1)|Vs
and

∑n(s)
i=1 q(s, i) =

μ(1) = 1 − φ(1) since (T (s, i))n(s)
i=1 is a partition of T . Note that if U(s,i) = ∅, then S(s, i) =

T (s, i) = ∅ and p(s, i) = q(s, i) = 0.
It remains to verify the properties (i) and (ii) of Definition 5.1.
We begin with condition (i). For convenience, define p(s, i) = 0 whenever i > r. Thus,

e(s, i) = p(s, i) + q(s, i) for all s and i. Also,

q(s, i) � μ(1) and p(s, i) � φ(1)|Vs
= (1 − μ(1))|Vs

(2)

for all s and i. Fix s1, . . . , sm such that Vs1 ∩ . . . ∩ Vsm
�= ∅. By construction, the projections

e(s1, i1), . . . , e(sm, im) commute on Vs1 ∩ . . . ∩ Vsm
. It follows from equation (2) that

e(s1, i1) · . . . · e(sm, im) = p(s1, i1) · . . . · p(sm, im) + q(s1, i1) · . . . · q(sm, im).

We now claim that, first, q(s1, i1) · . . . · q(sm, im) is either zero or has rank at least K,
and, second, if p(s1, i1) · . . . · p(sm, im) �= 0, then q(s1, i1) · . . . · q(sm, im) �= 0. Condition (i) of
Definition 5.1 will follow immediately.

For the first part of the claim, suppose that q(s1, i1) · . . . · q(sm, im) �= 0. Then there are k
and b such that (k, b) ∈ T (s1, i1) ∩ . . . ∩ T (sm, im). Therefore

q(s1, i1) · . . . · q(sm, im) � μ(qk ⊗ χ{b} ⊗ 1K),

and the right-hand side has rank at least K. For the second part of the claim, sup-
pose that p(s1, i1) · . . . · p(sm, im) �= 0. Then, in particular, U(s1,i1) ∩ . . . ∩ U(sm,im) �= ∅. Thus
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a = {(s1, i1), . . . , (sm, im)} ∈ S. Set k = κ(a) and b = a. Then for l = 1, . . . ,m, we have

q(sl, il) � μ(qk ⊗ χ{b} ⊗ 1K),

hence q(s1, i1) · . . . · q(sm, im) �= 0.
Let us now verify condition (ii) of Definition 5.1 for a fixed s. The number κ({(s, i)}),

which we write hence forth as κ(s, i), was defined whenever {(s, i)} ∈ S. It is convenient to
extend this notation as follows. If 1 � i � r but {(s, i)} /∈ S (this happens if U(s,i) = ∅), then
set κ(s, i) = 1. If i > r, then we let κ(s, i) denote the first coordinate of ξ(s, i), which is in
{1, . . . , c}. We are going to show that if f ∈ F , then∥∥∥∥∥γ(f) −

n(s)∑
i=1

f(xκ(s,i))e(s, i)

∥∥∥∥∥
Vs

� ε

2
. (3)

Define φ′
s(f)(y) =

∑r
i=1 f(xκ(s,i))p(s, i)(y) for y ∈ Vs and

σ′
s(f) =

r∑
i=1

f(xκ(s,i))q(s, i) +
n(s)∑

i=r+1

f(xκ(s,i))e(s, i).

For y ∈ Vs, recall that φ(f)(y) depends only on the restriction of f to
⋃r

i=1 U(s,i). Since
dist

(
xκ(s,i), U(s,i)

)
< δ for 1 � i � r and U(s,i) �= ∅ (and q(s, i) = 0 when U(s,i) = ∅), and since

|f(x) − f(x′)| � ε/2 if d(x, x′) < 3δ and f ∈ F , it follows that

‖φ(f) − φ′
s(f)‖Vs

� ε/2

for all f ∈ F . Since T is partitioned into the sets T (s, i) for i = 1, . . . , r and {ξ(s, i)} for
i = r + 1, . . . , n(s), we can write

μ ◦ σ(f) =
r∑

i=1

∑
(k,b)∈T (s,i)

f(xk)μ
(
qk ⊗ χ{b} ⊗ 1K

)
+

n(s)∑
i=r+1

f(xκ(s,i))e(s, i). (4)

Note that if (k, b) ∈ T (s, i) for 1 � i � r, then (k, b) = (κ(a), a) for some a ∈ S(s, i). On the
other hand if a ∈ S(s, i), then we see that d(xκ(a), xκ(s,i)) < 3δ using the inequality (1),
the inclusion Ua ⊆ U(s,i), and the fact that U(s,i) has diameter less than δ. Since q(s, i) =∑

(k,b)∈T (s,i) μ
(
qk ⊗ χ{b} ⊗ 1K

)
, equation (4) leads to

‖μ ◦ σ(f) − σ′
s(f)‖ � ε/2

for all f ∈ F . We set γ′
s = φ′

s ⊕ σ′
s. Thus γ′

s(f) =
∑n(s)

i=1 f(xκ(s,i))e(s, i). Recalling that
γ = φ ⊕ μ ◦ σ, we then obtain

‖γ(f) − γ′
s(f)‖Vs

� ε/2

for all f ∈ F . This completes the proof of the inequality (3).

Proposition 5.7. Given relatively prime positive integers p1 and p2, there is an integer
� � 1 with the following property. Let X be a compact metric space and let γ : MN (C(X)) → B
be a unital ∗-homomorphism to a separable homogeneous C*-algebra B (as in Subsection 2.2)
with spectrum of dimension d < ∞. Let δ > 0 and suppose that γ decomposes as a direct
sum γ = φ ⊕ Ld+2 · ρ, where ρ is a ∗-homomorphism with finite-dimensional image that has
spectrum R in the sense of Subsection 2.3, which is δ-dense in X and such that L � r(X, δ) +
1 + �. Let F ⊆ MN (C(X)) be finite. Then there is a unital ∗-homomorphism η : Ip1,p2 → B
such that ‖[η(g), γ(f)]‖ � 4N2ω(F, 3δ) for all g ∈ Ip1,p2 with ‖g‖ � 1 and for all f ∈ F .

Proof. In the first part of the proof, we consider the case N = 1. By [4, Theorem 6.2] there
is � depending only on p1 and p2 such that whenever D is a separable recursive subhomogeneous
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algebra of topological dimension d and minimum matrix size at least �(d + 1), then there is a
unital ∗-homomorphism η : Ip1,p2 → D.

Given δ > 0, set r = r(X, δ), and suppose that γ is as in the statement with L � r + 1 + �.
Set K = �(d + 1). Then we have

Ld+2 � (d + 2)(r + 1)d+1� �
(
(r + 1)d+1 − 1

)
K.

By Proposition 5.6, γ admits a K-large system of compatible local finite-dimensional approxi-
mations with respect to the data 2ω(F, 3δ), F , and R. Let B� be the corresponding commutant
C*-algebra as in Lemma 5.2. Lemma 5.3 implies that B� is the section algebra of a unital
separable continuous field with fibers finite-dimensional C*-algebras whose direct summands
all have matrix size at least K. It follows from [2, Theorem 4.6] that there is a recursive
subhomogeneous algebra D of topological dimension d and minimum matrix size at least
K = �(d + 1) such that D ⊆ B�. By the choice of � using [4, Theorem 6.2] there is a unital
∗-homomorphism η : Ip1,p2 → D. By Lemma 5.2 we conclude that ‖[η(g), γ(f)]‖ � 4ω(F, 3δ)
for all g ∈ Ip1,p2 with ‖g‖ � 1 and for all f ∈ F .

Consider now the general case with γ : MN (C(X)) → B. Let � be as above and let δ > 0. Let
F0 be the set of matrix entries of elements of F . Then F0 is finite and ω(F0, 3δ) � ω(F, 3δ).
Let D be the commutant of γ(MN ) in B. Then D is a homogeneous C*-algebra with spectrum
Y and we can identify γ with

idN ⊗ γ0 : MN ⊗ C(X) −→ MN ⊗ D

for some unital ∗-homomorphism γ0 : C(X) → D. Moreover γ0 can be written as a direct
sum γ0 = φ0 ⊕ Ld+2 · ρ0, where ρ0 is a ∗-homomorphism with finite-dimensional image and
spectrum R. By the first part of the proof there is a unital ∗-homomorphism η0 : Ip1,p2 → D
such that ‖[η0(g), γ0(f)]‖ � 4ω(F0, 3δ) for all g ∈ Ip1,p2 with ‖g‖ � 1 and for all f ∈ F0. Set
η = 1N ⊗ η0. Now let g ∈ Ip1,p2 with ‖g‖ � 1 and let f ∈ F . Write f = (fjk)N

j,k=1 with fjk ∈ F0.
Then γ(f) =

(
γ0(fjk)

)N

j,k=1
and

‖[η(g), γ(f)]‖ =
∥∥(

[η0(g), γ0(fjk)]
)N

j,k=1

∥∥ �
N∑

j,k=1

‖[η0(g), γ0(fjk)]‖

� N2 · 4ω(F0, 3δ) � 4N2ω(F, 3δ).

This completes the proof.

Let (X, d) be a compact metric space and let V1, . . . , Vm be disjoint closed subsets of X.
Let (X ′, d′) be the compact metric space obtained by shrinking each Vs to a point ws. Let
π : X → X ′ be the quotient map. The induced metric d′ on X ′ is given by

d′(π(x), π(y)) = inf({d(x1, y1) + . . . + d(xn, yn)}),
where the infimum is taken over all finite sequences x1, . . . , xn and y1, . . . , yn with π(x) =
π(x1), π(y) = π(yn), and π(yi) = π(xi+1) for i = 1, . . . , n − 1.

Lemma 5.8. Let A = lim−→i→∞(Ai, φi), where each Ai is semihomogeneous (as in Subsection
2.2) and assume that there is d � 0 such that dim(Spec(Ai)) � d for every i ∈ N. Assume
further that A1 = MN (C(X)). For any finite subset F ⊆ A1, any ε > 0, and any relatively
prime integers p1, p2 � 2, there are j > 1 and a unital ∗-homomorphism η : Ip1,p2 → Aj such
that ‖[η(g), φ1,j(f)]‖ � ε for all f ∈ F and g ∈ Ip1,p2 with ‖g‖ � 1.

Proof. Given F and ε, set ε0 = ε/(18N2), and choose and fix δ > 0 small enough so that
ωX(F, 4δ) < ε0. Let {x1, . . . , xm} be a δ-dense subset of X and let U1, . . . , Um be open sets in
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X with disjoint closures and such that xs ∈ Us for s = 1, . . . , m. We may assume that these
sets are sufficiently small that there is a finite subset F ′ of MN (C(X)) such that each f ∈ F ′

is constant on each Us and F ′ ≈ε0 F . Moreover, by replacing the sets Us by even smaller sets,
we may arrange that if (X ′, d′) denotes the metric space obtained by shrinking each Us to
a point ws, and π : X → X ′ denotes the quotient map, then d(x, y) < 4δ whenever x, y ∈ X
satisfy d′(π(x), π(y)) < 3δ. Therefore

ωX′(F ′, 3δ) � ωX(F ′, 4δ) � ωX(F, 4δ) + 2ε0 < 3ε0.

Let � be given by Proposition 5.7. Set L = r(X ′, δ) + 1 + �. Apply Lemma 4.3 with
K = Ld+2, and use the notation of Subsection 2.2. We find j > 1 such that for each
k there are ∗-homomorphisms γ, ρ : MN (C(X ′)) → Aj,k such that ρ has finite-dimensional
image and spectrum (in the sense of Subsection 2.3) the set {w1, . . . , wm}, and such that
the map γ : MN (C(X ′)) → Aj,k obtained by restricting φk

1,j to MN (C(X ′)) decomposes as
γ ⊕ Ld+2 · ρ.

It suffices to construct for each k separately a unital ∗-homomorphism η : Ip1,p2 → Aj,k such
that

∥∥[
η(g), φk

1,j(f)
]∥∥ � ε for all f ∈ F and g ∈ Ip1,p2 with ‖g‖ � 1. The set {w1, . . . , wm} is δ-

dense in X ′. Applying Proposition 5.7 we obtain a unital ∗-homomorphism η : Ip1,p2 → Aj ⊆ A
such that g ∈ Ip1,p2 with ‖g‖ � 1 and for all f ′ ∈ F ′, we have∥∥[

η(g), φk
1,j(f

′)
]∥∥ � 4N2ωX′(F ′, 3δ) < 12N2ε0 = 2ε/3.

Since F ′ ≈ε0 F and ε0 � ε/6, we conclude that this η satisfies the conclusion of the
lemma.

6. The main result

Recall that Z denotes the Jiang–Su algebra.

Theorem 6.1. If A is an infinite-dimensional unital simple AH algebra with no dimension
growth (as in Subsection 2.2), then A ∼= A ⊗Z.

Proof. To prove Z-stability for A, by [12, Proposition 2.2] it suffices to prove that for each
pair of relatively prime positive integers p1, p2 � 2 there is an approximately central sequence
of unital ∗-homomorphisms γn : Ip1,p2 → A. In other words, for every ε > 0, finite subset F
of A, integers p1, p2 as above, and finite generating set G for Ip1,p2 consisting of elements of
norm at most one, it will suffice to find a unital ∗-homomorphism η : Ip1,p2 → A such that
‖[η(g), f ]‖ � ε for all g ∈ G and f ∈ F .

By assumption, A = lim−→i→∞(Ai, φi), where each Ai is semihomogeneous. There is moreover
a d � 0 such that dim(Spec(Ai)) � d for every i ∈ N. Since

⋃
i φi,∞(Ai) is dense in A, we may

assume that F is the image of a finite subset of some Ai; relabeling, we simply assume that
F ⊆ A1. Let us observe that A1 is of the form p0MN (C(X))p0 with X not necessarily connected
and for some projection p0 such that p0(x) �= 0 for all x ∈ X.

To prove the theorem, it will suffice to find j > 1 and a unital ∗-homomorphism η : Ip1,p2 →
Aj such that ‖[η(g), φ1,j(f)]‖ � ε for every g ∈ G and f ∈ F . We may assume that ‖f‖ � 1 for
all f ∈ F . Since Ip1,p2 is semiprojective (see [10]), there is ε0 > 0 smaller than ε/3 such that for
any unital linear map μ : Ip1,p2 → B, which satisfies ‖μ(gh) − μ(g)μ(h)‖ � ε0 for all g, h ∈ G,
there is a unital ∗-homomorphism η : Ip1,p2 → B with ‖η(g) − μ(g)‖ � ε/3 for all g ∈ G. Set
F0 = F ∪ {p0} ⊆ MN (C(X)).
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Set γ = φ1,2 : p0MN (C(X))p0 = A1 → A2. We are going to show that there are m and a
commutative diagram

p0MN (C(X))p0
γ

A2

MN (C(X))
γ0

qMm(A2)q ,

where γ0 is a unital ∗-homomorphism and the vertical arrows are inclusions of full corners. Set
D = MN (C(X)). Choose m so large that there is a partial isometry w ∈ Mm(D) such that

w∗w = diag(1D − p0, 0, . . . , 0) and ww∗ � diag(0, p0, . . . , p0).

Set p = diag(p0, p0, . . . , p0) ∈ Mm(D). Then v = diag(p0, 0, . . . , 0) + w ∈ Mm(D) is a partial
isometry such that

v∗v = diag(1D, 0, . . . , 0) and vv∗ � p.

Define ι : D → pMm(D)p = Mm(p0Dp0) by ι(a) = vav∗. Then idm ⊗ γ : Mm(p0Dp0) →
Mm(A2) has the property that (idm ⊗ γ) ◦ ι : D → Mm(A2) satisfies

(idm ⊗ γ) ◦ ι(p0ap0) = diag(γ(p0ap0), 0, . . . , 0).

We set q = (idm ⊗ γ) ◦ ι(1D) and define γ0 = (idm ⊗ γ) ◦ ι : D → qMm(A2)q.
For j � 2 set qj = (idm ⊗ φ2,j)(q). Then define ψ1 = γ0 and ψj = (idm ⊗ φj)|qjMm(Aj)qj

for
j � 2. We apply Lemma 5.8 to the AH sequence

MN (C(X))
ψ1−→ qMm(A2)q

ψ2−→ q3Mm(A3)q3
ψ3−→ q4Mm(A4)q4 −→ · · · .

We obtain j � 2 and a unital ∗-homomorphism η0 : Ip1,p2 → qjMm(Aj)qj such that (using
the obvious analog of the notation of Subsection 2.2) we have ‖[η0(g), ψ1,j(f)]‖ � ε0 for
all g ∈ G and f ∈ F ∪ {p}. Set e = ψ1,j(p) = 1Aj

and observe that the map eη0(·)e is ε0-
multiplicative on G. Therefore, by the choice of ε0 using the semiprojectivity of Ip1,p2 , there is
a unital ∗-homomorphism η : Ip1,p2 → eMm(Aj)e = Aj such that ‖η(g) − eη0(g)e‖ � ε/3 for all
g ∈ G. Since ε0 < ε/3, since F is normalized, and since for f ∈ F we have φ1,j(f) = ψ1,j(f) =
eψ1,j(f)e, it follows that

‖[η(g), φ1,j(f)]‖ � ‖[η(g) − eη0(g)e, φ1,j(f)]‖ + ‖[eη0(g)e, ψ1,j(f)]‖ � 2ε/3 + ε0 � ε

for all g ∈ G and f ∈ F .

Remark 6.2. The no dimension growth hypothesis of Theorem 6.1 can be weakened
somewhat. We say that a unital simple AH algebra A has exponentially slow dimension growth
if for any constant L > 1 there is an AH sequence (Ai, φi) with limit A satisfying

lim inf
j→∞

max
1�t�nj

Ldim(Xj,k)

rank(1Aj,t
)

= 0.

If one replaces the slow dimension growth hypothesis of Lemma 4.3 with the stronger condition
of exponentially slow dimension growth, then one can replace the quantity K dim(Xj,k) in
conclusion (3) with K(L′)dim(Xj,k)+2 for any constant L′ > 1. (In the proof, one replaces the
numerators equal to dim(Xj,k) with (L′)dim(Xj,k)+2.) One can then use exponentially slow
dimension growth instead of slow dimension growth in Lemma 5.8; the latter hypothesis is
only required for an application of Lemma 4.3. The proof of Theorem 6.1 then goes through
as written, with the weakened assumption of exponentially slow dimension growth for A.

There are examples of unital simple AH algebras that have exponentially slow dimension
growth but for which it is not known how to prove bounded dimension growth without the
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classification theory of AH algebras: the proof of [13, Proposition 5.2] shows that the so-called
Villadsen algebras of the first type have exponentially slow dimension growth whenever they
have slow dimension growth.
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