
The Isoperimetric Property and Lévy Processes:
why are finite dimensional distributions useful?

Rodrigo Bañuelos1

Purdue University
Department of Mathematics
banuelos@math.purdue.edu

http://www.math.purdue.edu/∼banuelos

April 28, 2009

1Supported in part by NSF
Rodrigo Bañuelos (Purdue) Isoperimetric Property April 28, 2009 1 / 41

mailto:banuelos@math.purdue.edu


The Classical Isoperimetric Problem

The Greek Philosopher, Proclus, wrote in the fifth century: “The circle (disk),
is the first, the most simple, and the most perfect figure." The “perfect"
symmetry of the disk justifies this statement as does the deep property
discovered by Queen Dido, a Phoenician princess from the city of Tyre,
shortly after her arrival in Africa in 900 B.C.

Dido’s property: Amongst all regions of fixed equal area, the disk has the
smallest perimeter.

“Mathematically":A(D) = Area, L(∂D) = perimeter. Then

A(D) ≤ 1
4π

L2(∂D),
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For disk,
1

4π
=

A(disk)

L2(circle)
=

πr2

(2πr)2

The ratio of the area over the perimeter squared is maximized by
a disk.

A(D)

L2(∂D)
≤ A(disk)

L2(circle)

If D∗ = disk of same area as D

L(∂D∗) ≤ L(∂D)

Equality if and only if D = D∗.

Dual formulation: Amongst all figures of equal perimeter, the
circle encloses the largest area.
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Dido upon arrival in Africa

Dido Purchased land from King Jarvas of Numidia. After some
negotiations an agreement was reached. The Queen could only have as
much land as she could enclose by the hide of an ox.
Dido had her people cut the hide of an ox into thin strips and had them
enclosed a maximal region. In her case this would have been a
semicircle as the city of Carthage was built on the shore.
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Medieval map of Paris
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Medieval map of Cologne
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Other Classical Isoperimetric Properties

Amongst all “drums" of equal area the circular one has the
smallest bass note:

λ1(D∗) ≤ λ1(D) (The Faber-Krahn Theorem)

Amongst all sets of equal area, the Electrostatic Capacity is
minimized by the disc:

Cap(A∗) ≤ Cap(A) (Pólya–Szegö)

Exit times for Brown motion from regions of fixed area are
maximized by the disc.

τD ≤ τD∗

That is,
Px{τD > t} ≤ P0{τD∗ > t}

Integrals of heat kernels, Green functions, . . .
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Rearrangements

For A ⊂ Rd , A∗ =ball centered at the origin and same volume as A. χ∗A = χA∗

f : Rd → R,

f ∗(x) =

∫ ∞
0

χ∗{|f |>t}(x)dt

(Compare this with)

|f (x)| =

∫ ∞
0

χ{|f |>t}(x)dt

Properties:

f ∗(x) = f ∗(y), |x | = |y |, f ∗(x) ≥ f ∗(y), |x | ≤ |y |

{x : f ∗(x) > t} = {x : |f (x)| > t}∗ (same level sets)

⇒ m{x : f ∗(x) > λ} = m{x : |f (x)| > λ}
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The heart of the matter: finite dimensional distributions

Study (as a function of x and D)

Φm(x ,D) = Px{Bt1 ∈ D,Bt2 ∈ D, . . . ,Btm ∈ D}

Bt = Brownian motion (twice the speed) in Rd , D ⊂ Rd open
connected x ∈ D,

0 < t1 < t2 · · · < tm

Same as studying Multiple Integrals:

Φm(x ,D) =

∫
D
· · ·
∫

D

m∏
j=1

ptj−tj−1(xj − xj−1)dx1 . . . dxm,

x0 = x and pt (y) =
1

(4πt)d/2 e−|y |
2/4t
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Theorem (Luttinger 1973)

Let f1, . . . , fm be nonnegative functions in Rd and let f ∗1 , . . . , f
∗
m be their

symmetric decreasing rearrangement. Then for any x0 ∈ D we have∫
Dm

m∏
j=1

fj (xj − xj−1)dx1 · · · dxm ≤
∫
{D∗}m

f ∗1 (x1)
m∏

j=2

f ∗j (xj − xj−1)dx1 · · · dxm.

D∗=ball center at zero and and same volume as D

Theorem (Brascamp–Lieb–Lutinger–1975, 1977)

Qj : Rd → [0,∞) and 1 ≤ j ≤ r . ajk , 1 ≤ j ≤ r ,1 ≤ k ≤ m real numbers.∫
(Rd )m

r∏
j=1

Qj
( m∑

k=1

ajk zk
)
dz1 · · · dzm ≤

∫
(Rd )m

r∏
j=1

Q∗j
( m∑

k=1

ajk zk
)
dz1 · · · dzm

Roots lie in inequalities of Hardy–Littlewood–Pólya–Riesz∫
Rd

∫
Rd

F1(x1)H(x2 − x1)F2(x2)dx1dx2 ≤ ∗
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But why finite dimensional distributions?

Question
What is the smallest Dirichelt eigenvalue λ1,α for the rotationally invariant
stable processes of order 0 < α < 2 for the interval (−1,1)?

Note: I learned this from Davar Khoshnevisan about 8 years ago.
Has been investigated by

Investigated by: M.Kac-H. Pollar (1950). H. Widom (1961), J. Taylor
(1967), B. Fristedt (1974), J. Bertoin (1996), Khosnevisan–Z. Shi (1998).

I don’t know the answer and, to be perfectly honest, don’t care.

In the process of investigating this “simple" question we "discovered" that
little is known about the "fine" spectral theoretic properties of stables.

More Exciting: The techniques give new Theorem for the Laplacian
(BM).
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Eigenvalues and eigenfunctions enter into path properties of BM

Theorem (Chungs’s LIL. Set B∗t = sup0≤s≤t |Bs|)

lim inf
t→∞

(
log log t

t

)1/2

B∗t =
π

2
, a.s. (1)

But, is π
2 really just our good-old-friend π

2 or is it something else?

(1) comes from Borel–Cantelli arguments and the “small balls"
probability estimate.

P0 {B∗1 < ε} ≈ e−
π2

4ε2 , ε→ 0

P0 {B∗1 < ε} = P0

{
1
ε

B∗t < 1
}

= P0

{
B∗1
ε2
< 1

}
= P0

{
τ(−1,1) >

1
ε2

}

τ(−1,1) = inf{t > 0 : Bt 6∈ (−1,1)} = first exit time from the interval
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In fact,

P0
{
τ(−1,1) > t

}
≈ e−λ1tϕ1(0)

∫ 1

1
ϕ1(y) dy , t →∞,

where λ1 is the smallest eigenvalue for one half of the Laplacian in the
interval (−1,−1) with Dirichlet boundary conditions and ϕ1 is the
corresponding eigenfunction. That is, π2/4 and the “ sin ” function.

For any 0 < α < 2, let Xα
t be the rotationally invariant stable process of order

α. A similar statement holds for the “small ball" probabilities and there is

Theorem (J. Taylor 1967)

lim inf
t→∞

(
log log t

t

)1/α

X ∗t = (λ1,α)1/α
, a.s. (2)

For several other occurrences of the eigenvalue in “sample path behavior,"
see Erkan Nane: “Higher order PDE’s and iterated Processes" and “Iterated
Brownian motion in bounded domains in Rn "
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Lévy Processes

Constructed by Paul Lévy in the 30’s (shortly after Wiener constructed
Brownian motion). Other names: de Finetti, Kolmogorov, Khintchine, Itô.

Rich stochastic processes, generalizing several basic processes in
probability: Brownian motion, Poisson processes, stable processes,
subordinators, . . .

Regular enough for interesting analysis and applications. Their paths
consist of continuous pieces intermingled with jump discontinuities at
random times. Probabilistic and analytic properties studied by many.

Many Developments in Recent Years:

Applied: Queueing Theory, Math Finance, Control Theory, Porous
Media . . .

Pure: Investigations on the “fine" potential and spectral theoretic
properties for subclasses of Lévy processes
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Definition
A Lévy Process is a stochastic process X = (Xt ), t ≥ 0 with

X has independent and stationary increments

X0 = 0 (with probability 1)

X is stochastically continuous: For all ε > 0,

lim
t→s

P{|Xt − Xs| > ε} = 0

Note: Not the same as a.s. continuous paths. However, it gives
“cadlag" paths: Right continuous with left limits.
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Stationary increments: 0 < s < t <∞, A ∈ Rd Borel

P{Xt − Xs ∈ A} = P{Xt−s ∈ A}

Independent increments: For any given sequence of ordered times

0 < t1 < t2 < · · · < tm <∞,

the random variables

Xt1 − X0, Xt2 − Xt1 , . . . ,Xtm − Xtm−1

are independent.

The characteristic function of Xt is

ϕt (ξ) = E
(
eiξ·Xt

)
=

∫
Rd

eiξ·xpt (dx) = (2π)d/2p̂t (ξ)

where pt is the distribution of Xt . Notation (same with measures)

f̂ (ξ) =
1

(2π)d/2

∫
Rd

eix·ξf (x)dx , f (x =
1

(2π)d/2

∫
Rd

e−ix·ξf (ξ)dξ
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Theorem (The Lévy–Khintchine Formula)

The characteristic function has the form ϕt (ξ) = etρ(ξ), where

ρ(ξ) = ib · ξ − 1
2
ξ · Aξ +

∫
Rd

(
eiξ·x − 1− iξ · x1{|x|<1}(x)

)
ν(dx)

for some b ∈ Rd , a non–negative definite symmetric n × n matrix A and a
Borel measure ν on Rd with ν{0} = 0 and∫

Rd
min

(
|x |2,1

)
ν(dx) <∞

ρ(ξ) is called the symbol of the process or the characteristic exponent. The
triple (b,A, ν) is called the characteristics of the process.

Converse also true. Given such a triple we can construct a Lévy
process.
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Examples

1. Standard Brownian motion: With (0, I,0), I the identity matrix,

Xt = Bt , Standard Brownian motion

2. Gaussian Processes, “General Brownian motion":
(0,A,0), Xt is “generalized" Brownian motion, mean zero, covariance

E(X j
sX i

t ) = aij min(s, t)

Xt has the normal distribution (assume here that det(A) > 0)

1
(2πt)d/2

√
det(A)

exp
(
− 1

2t
x · A−1x

)
3. “Brownian motion" plus drift: With (b,A,0) get Brownian motion with a
drift:

Xt = bt + Bt
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Examples

4. Poisson Process: The Poisson Process Xt = Nλ(t) of intensity λ > 0 is a
Lévy process with (0,0, λδ1) where δ1 is the Dirac delta at 1.

P{Nλ(t) = m} =
e−λt (λt)m

m!
, m = 0,2, . . .

Nλ(t) has continuous paths except for jumps of size 1 at the random times

τm = inf{t > 0 : Nλ(t) = m}

5. Compound Poisson Process obtained by summing iid random variables
up to a Poisson Process.

6. Relativistic Brownian motion According to quantum mechanics, a
particle of mass m moving with momentum p has kinetic energy

E(p) =
√

m2c4 + c2|p|2 −mc2

where c is speed of light. Then ρ(p) = −E(p) is the symbol of a Lévy
process, called “relativistic Brownian motion."
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Examples

7. The zeta process: Consider the Riemann zeta function

ζ(z) =
∞∑

n=1

1
nz =

∏
p∈P

1
1− p−z , z = x + iy ∈ C

Khintchine: For every fix x > 1,

ρx (y) = log
(
ζ(x + iy)

ζ(y)

)
is the symbol of a Lévy process–in fact, limits of Poissons.
Biane–Pitman-Yor: “Probability laws related to the Jacobi theta and Riemann
Zeta functions and Brownian excursions, Bull. Amer math. Soc., 2001.

M Yor: A note about Selberg’s integrals with relation with the beta–gamma
algebra, 2006.

Rodrigo Bañuelos (Purdue) Isoperimetric Property April 28, 2009 20 / 41



Examples

8. The rotationally invariant stable processes: These are self–similar
processes, denoted by Xα

t , in Rd with symbol

ρ(ξ) = −|ξ|α, 0 < α ≤ 2.

That is,
ϕt (ξ) = E

(
eiξ·Xαt

)
= e−t|ξ|α

α = 2 is Brownian motion. α = 1 is the Cauchy processes.

α = 3/2 is called the Haltsmark distribution used to model gravitational
fields of stars. (See V.M. Zolotarev (1986) “One dimensional Stable
Distributions".)

Transition probabilities:

Px{Xα
t ∈ A} =

∫
A

pαt (x − y)dy , any Borel A ⊂ Rd

pαt (x) =
1

(2π)d

∫
Rd

e−iξ·xe−t|ξ|αdξ
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p2
t (x) =

1
(4πt)d/2 e−

|x|2
4t , α = 2, Brownian motion

p1
t (x) =

Cd t

(|x |2 + t2)
d+1

2
, α = 1, Cauchy Process

For any a > 0, the two processes

{η(at) ; t ≥ 0} and {a1/αηt ; t ≥ 0},

have the same finite dimensional distributions (self-similarity).

In the same way, the transition probabilities scale similarly to those for
BM:

pαt (x) = t−d/αpα1 (t−1/αx)
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Lévy semigroup

For the Lévy process {X (t); t ≥ 0}, define

Tt f (x) = E [f (X (t))|X0 = x ] = E0[f (X (t) + x)], f ∈ S(Rd ).

This is a Feller semigroup (takes C0(Rd ) into itself). Setting

pt (A) = P0 {Xt ∈ A} (the distribution of Xt )

we see that (by Fourier inversion formula)

Tt f (x) =

∫
Rd

f (x + y)pt (dy) = pt ∗ f (x) =
1

(2π)d

∫
Rd

e−ix·ξetρ(ξ) f̂ (ξ)dξ

with generator

Af (x) =
∂Tt f (x)

∂t

∣∣∣
t=0

= lim
t→0

1
t

(
Ex [f (X (t)]− f (x)

)
=

1
(2π)d

∫
Rd

e−ix·ξρ(ξ)f̂ (ξ)dξ = a pseudo diff operator, in general
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From the Lévy–Khintchine formula (and properties of the Foruier transform),

Af (x) =
∑
i=1

bi∂i f (x) +
1
2

∑
i,j

ai,j∂i∂j f (x)

+

∫ [
f (x + y)− f (x)− y · ∇f (x)χ{|y|<1}

]
ν(dy)

Examples:

Standard Brownian motion:

Af (x) =
1
2

∆f (x)

Poisson Process of intensity λ:

Af (x) = λ
[
f (x + 1)− f (x)

]
Rotationally Invariant Stable Processes of order 0 < α < 2, Fractional
Diffusions:

Af (x) = −(−∆)α/2f (x)

= Aα,d
∫

f (y)− f (x)

|x − y |d+α
dy
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Stable processes in D ⊂ Rd

Xt = Xα
t is rotationally invariant stable with symbol

ρ(ξ) = −|ξ|α, 0 < α ≤ 2.

Let D be a bounded connected subset of Rd . The first exit time of Xα
t from D

is

τD = inf{t > 0 : Xα
t /∈ D}

Heat Semigroup in D is the self-adjoint operator

T D
t f (x) = Ex

[
f (Xα

t ); τD > t
]
, f ∈ L2(D)

=

∫
D

pD,α
t (x , y)f (y)dy ,

pD,α
t (x , y) = pαt (x − y)− Ex (τD < t ; pαt−τD

(Xα
τD
, y)).

Rodrigo Bañuelos (Purdue) Isoperimetric Property April 28, 2009 25 / 41



pD,α
t (x , y) is called the Heat Kernel for the stable process in D.

pD,α
t (x , y) ≤ pαt (x − y) ≤ pα1 (0)t−d/α =

(
1

(2π)d

∫
Rd

e−|ξ|
α

dξ
)

t−d/α

= t−d/α ωd

(2π)dα

∫ ∞
0

e−ss( n
α−1)ds

= t−d/α ωd Γ(d/α)

(2π)dα

The general theory of heat semigroups gives an orthonormal basis of
eigenfunctions

{ϕm,α}∞m=1 on L2(D)

with eigenvalues {λm,α} satisfying

0 < λ1,α < λ2,α ≤ λ3,α ≤ · · · → ∞

That is,

T D
t ϕm,α(x) = e−λm,αtϕm,α(x), x ∈ D.
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pD,α
t (x , y) =

∞∑
m=1

e−λm,αtϕm,α(x)ϕm,α(y)

= e−λ1,αtϕ1,α(x)ϕ1,α(y) +
∞∑

m=2

e−λm,αtϕm,α(x)ϕm,α(y)

Theorem (“Intrinsic Ultracontractivity")

e−(λ2,α−λ1,α)t ≤ sup
x,y∈D

∣∣∣∣∣eλ1,αtpD,α
t (x , y)

ϕ1,α(x)ϕ1,α(y)
− 1

∣∣∣∣∣ ≤ C(D, α)e−(λ2,α−λ1,α)t , t ≥ 1.
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Apply the semigroup to the function f (x) = 1, x ∈ D

T D
t f (x) = Ex [1D(Xα

t ); τD > t ] =

∫
D

pD,α
t (x , y)dy

So that

Px{τD > t} =
∞∑

m=1

e−tλm,αϕm,α(x)

∫
D
ϕm,α(y)dy

= e−tλ1,αϕ1,α(x)

∫
D
ϕ1,α(y)dy +

∞∑
m=2

e−tλm,αϕm,α(x)

∫
D
ϕm,α(y)dy

Theorem (By the Intrinsic Ultracontractivity)

lim
t→∞

etλ1,αPx{τD > t} = ϕ1,α(x)

∫
D
ϕ1,α(y)dy (3)

and
lim

t→∞

1
t

log Px{τD > t} = −λ1,α, (4)

uniformly for x ∈ D.
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Conclusion: Finite dimensional distributions

If I want to study the eigenfunction ϕ1,α and λ1,α and how these are affected
by the geometry of the domain D, I should (better, must, . . . ) study the
distribution of the exit time τD of the process. That is, study

Px{τD > t}

as a function of D, x ∈ D, t > 0.

But this is the same as studying finite dimensional distributions:

Px{τD > t} = Px{Xα
s ∈ D; ∀s,0 < s ≤ t}

= lim
m→∞

Px{Xα
jt/m ∈ D, j = 1,2, . . . ,m}

= lim
m→∞

∫
D
· · ·
∫

D
pαt/m(x − x1) · · · pαt/m(xm − xm−1)dx1 . . . dxm

pαt (x) =
1

(2π)d

∫
Rd

e−iξ·xe−t|ξ|αdξ = radial function
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Same for Heat Kernel
In the same way (integrating against a delta function at y )

pD,α
t (x , y) = lim

m→∞

∫
D
· · ·
∫

D
pαt/m(x − x1) · · · pαt/m(y − xm−1)dx1 . . . dxm−1,

Alternatively, for Brownian motion, if 0 = t0 < t1 < . . . < tm < t , then the
conditional finite-dimensional distribution

Pz0{Bt1 ∈ dx1, . . . ,Btm ∈ dxm |Bt = y},

is given by
p2

t−tm (zn, y)

p2
t (z0, y)

m∏
i=1

p2
ti−ti−1

(zi , zi−1),
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Theorem (Isoperimetric for F.D.D.)

Φm(x ,D) ≤ Φm(0,D∗)

Corollary (Exit times, eigenvalues, capacity, heat kernels,. . . )

Px{ταD > t} ≤ P0{ταD∗ > t}

λ1,α(D∗) ≤ λ1,α(D) (The Faber-Krahn Theorem)

Capα(D) ≥ Capα(D∗),

(α-capacity version of a theorem of Pólya–Szegö. Proved by Watanabe 1984,
conjectured by Mattila 1990, Proved by Betsakos 2003, P. Méndez 2006)

Corollary (Isoperimetric Inequality for “partition function")

Zα
t (D) =

∞∑
m=1

e−tλm,α(D) =

∫
D

pα,Dt (x , x)dx

≤
∫

D∗
pα,D

∗

t (x , x)dx ≤
∞∑

m=1

e−tλm,α(D∗) = Zα
t (D∗)
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Classical Isoperimetric Inequality

Amongst all regions of equal volume the ball minimizes surface area. It
follows from "trace inequality" and

Theorem (M. Kac, “Can one hear the shape of a drum?")

With α = 2, |∂D|=surface area of boundary of D,

Z 2
t (D) ∼ Cd t−d/2vol(D)− C′d t−(d−1)/2|∂D|+ o(t−(d−1)/2), t → 0

The first term is trivial from

P2,D
t (x , y) =

1
(4πt)d/2 e

−|x−y|2
4t Px{τD > t |Bt = y}

= free motion times Brownian bridge in D
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A detour into Weyl’s asymptotics

lim
t→0

tγ
∫ ∞

0
e−tλdµ(λ) = A⇒ lim

a→∞
a−γµ[0,a) =

A
Γ(γ + 1)

Theorem (Weyl’s Formula, α = 2. ND(λ) = #{j ≥ 1 : λj ≤ λ})

ND(λ) ∼ Cdvol(D)λd/2, λ→∞

More difficult (and no probabilistic treatment exists):

ND(λ) ∼ Cdvol(D)λd/2 − C′d |∂D|λ(d−1)/2 + o(λ(d−1)/2)

Theorem (R.B., T. Kulczycki B. Suideja (2009), 0 < α ≤ 2)

∫
D

pα,Dt (x , x)dx ∼ Cd,αt−d/αvol(D)− C′d t−(d−1)/α|∂D|+ o(t−(d−1)/α)

as t → 0. This gives Weyl’s version for all 0 < α ≤ 2.
The $$ Question: Is there an α–version of the more general Weyl?
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A detour into Weyl’s asymptotics

lim
t→0

tγ
∫ ∞

0
e−tλdµ(λ) = A⇒ lim

a→∞
a−γµ[0,a) =
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Other “extremal problems"–fixing other parameters besides volume

Question

Amongst all convex domains D ⊂ Rd of inradius 1, which one has the largest
exit time for Brownian motion? Also, lowest eigenvalue? Answer:The infinite
strip:

S = Rd−1 × (−1,1)

Theorem (For D convex with inradius 1.)

Φm(x ,D) ≤ Φm(0,S), x ∈ D

R.B. Méndez-Latala (2001), d = 2 and (2003), d ≥ 3. (Convexity is essential
here!)

Corollary (For D convex with inradius 1 and 0 < α ≤ 2.)

Px{τD > t} ≤ P0{τS > t} = P0{τ(−1,1) > t}
λ1,α(−1,1) ≤ λ1,α(D)
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Definition

F : Rd → R is said to be log-concave if

log F (βx + (1− β)y) ≥ β log F (x) + (1− β) log F (y), x , y ∈ Rd

or
F (βx + (1− β)y) ≥ F (x)βF (y)1−β

Example

F (x) = 1
(4π)d/2 e−|x|

2/4 and F (x) = χD(x), D ⊂ Rd is convex, are log–concave.

Theorem (Prékopa (1971))

Convolutions of log-concave functions are log-concave.

Corollary (D ⊂ Rd convex)

For Brownian motion, the function Φm(x ,D) is log-concave.
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Theorem (Lévy Isipoeimetric inequalities–R.B. P. Méndez, 2008)

Recall the Lévy–Khintchine ϕt (ξ) = etρ(ξ),

ρ(ξ) = ib · ξ − 1
2
ξ · Aξ +

∫
Rd

(
eiξ·x − 1− iξ · x1{|x|<1}(x)

)
ν(dx)

Suppose ν is continuous with respect to the Lebesgue measure with density
ϕ. Let X ∗t be the Lévy process with characteristic triple (0,A∗, ϕ∗) where
A∗ = (det A)1/d Id . Let f1, . . . , fm, m ≥ 1, be nonnegative functions. Then for
all z ∈ Rd ,

Ez

[
m∏

i=1

fi (Xti )

]
≤ E0

[
m∏

i=1

f ∗i (X ∗ti )

]
,

for all 0 ≤ t1 ≤ . . . ≤ tm.

With fi (x) = χD(x), this is about finite dimensional distributions:

Pz{Xt1 ∈ D, . . .Xtm ∈ D} ≤ P0{X ∗t1 ∈ D∗, . . .X ∗tm ∈ D∗}
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"Hot–spots" conjecture of Jeff Rauch (University of Michigan)–1973

The maximum (and the minimum) of the “first" non-constant Neumann
eigenfunction for bounded convex domains are attained on the
boundary and only on the boundary of the domain.

Many partial results: R.B.-K.Burdzy (1999), D.Jerison-N.Darishavilli
(2000), M. Pascu (2001), R. Bass–K. Burdzy (2000), R.B.-M. Pang (2003),
R.B. M.Pang-Pascu (2004), R.Atar K.Burdzy (2005)

Counterexample: K. Burdzy-W. Werner (2000), K. Burdzy (2005)

Believed to be true for any simply connected domain, conjectured to be
true for any convex domain.

Unknown even for an arbitrary triangle in the plane!
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“Hot–spots" Conjecture for conditioned Brownian motion

Conjecture: The maximum and minimum for the first nonconstant
eigenfunction for the semigroup of Brownian motion conditioned to remain
forever in a convex domain are attained on the boundary and only on the
boundary of the domain.

That is, the function ϕ2/ϕ1 attains its maximum and minimum on the
boundary and only on the boundary of D.

Theorem (R.B. Médez-Hernández, 2006)

The conditional "Hot Spots" conjecture is true for symmetric domains in the
plane as those shown above. The maximum (and minimum) of the function

Ψ(z) =
ϕ2(z)

ϕ1(z)

is attained on the boundary and only on the boundary of D.

Proof: Via finite dimensional distributions!
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Theorem

Let D be a bounded domain in R2 which is symmetric and convex with
respect to both axes.

(i) If z1 = (x , y1) ∈ D+, z2 = (x , y2) ∈ D+ and y1 < y2, then

Pz1{τD+ > t}
Pz1{τD > t}

<
Pz2{τD+ > t}
Pz2{τD > t}

,

for any t > 0. In particular, the function

Ψ(z, t) =
Pz{τD+ > t}
Pz{τD > t}

,

for each t > 0 arbitrarily fixed, cannot have a maximum at an interior
point of D+.

(ii) If z1 = (x1, y) ∈ D+ and z2 = (x2, y) ∈ D+ with |x2| ≤ |x1|, then

Pz1{τD+ > t}
Pz1{τD > t}

≤ Pz2{τD+ > t}
Pz2{τD > t}

,

for any t > 0.
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Corollary

D ⊂ R2 as in Theorem ϕ2 be such that its nodal line is the intersection of the
x-axis with the domain. Without LOG, ϕ2 > 0 in D+ and ϕ2 < 0 in D−. Set
Ψ = ϕ2/ϕ1.

(i) If z1 = (x , y1) ∈ D+ and z2 = (x , y2) ∈ D+ with y1 < y2, then

Ψ(z1) < Ψ(z2).

(ii) If z1 = (x , y1) ∈ D− and z2 = (x , y2) ∈ D− with y2 < y1, then

Ψ(z1) < Ψ(z2).

In particular, Ψ cannot attain a maximum nor a minimum in the interior of
D.

(iii) If z1 = (x1, y) ∈ D+ and z2 = (x2, y) ∈ D+ with |x2| < |x1|, then

Ψ(z1) ≤ Ψ(z2). (5)
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Corollary (Exact analogue of D. Jerison and N. Nadirashvili (2000) for
classical “hot–spots")

Suppose D ⊂ R2 is a bounded domain with piecewise smooth boundary
which is symmetric and convex with respect to both coordinate axes and that
ϕ2 is as in Theorem 1.2. Then strict inequality holds in (5) unless D is a
rectangle. The maximum and minimum of Ψ on D are achieved at the points
where the y-axis meets ∂D and, except for the rectangle, at no other points.

  

Nodal line either:   a)    

b)
or
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