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1 Four inequalities

Let Ω ⊂ R2 be an arbitrary simply connected domain in the plane. We define RΩ =
supz∈Ω dΩ(z) (the inradius of the domain) where dΩ(z) is the distance from z to the bound-
ary of Ω. Let σΩ(z) be the density of the hyperbolic metric in Ω and let σΩ = infz∈Ω σΩ(z).
Finally, denote by λ1 the lowest eigenvalue for the Dirichlet Laplacian in Ω and denote by
τΩ the first exit time of Brownian motion from Ω. The following four inequalities hold.

1. There exists a positive constant C1, independent of the domain, such that for all
functions u ∈ C∞0 (Ω)

(1.1)
∫

Ω

|u|2

d2
Ω

≤ C1

∫
Ω
|∇u|2.

This inequality is known as the “Hardy” inequality in the literature. It holds for
domains which are more general than simply connected but does not hold for all
domains, see [2]. The survey paper [11] contains a detailed account of this inequality
as of around 1998. For some recent work, please see [1], [12], [13], [15], [17], [19]
and references therein. In the setting of simply connected domains the inequality can
be easily reduced to that of the unit disc or half–space with the aid of the Koebe
1
4 -theorem. In fact, the Koebe 1

4 -theorem proof gives the inequality with C1 = 16,
(see [2]).

2. There exists a positive constant C2, independent of the domain, such that

(1.2)
C2

R2
Ω

≤ λ1 ≤
j2
0

R2
Ω

.

The right hand side inequality is trivial by domain monotonicity of the eigenvalue–
the larger the domain the smaller the eigenvalue. The constant j0 is the smallest
positive zero of the first Bessel function J0. Of course, the right hand side inequality
is sharp. The left hand side inequality follows from the variational characterization of
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the eigenvalue and the Hardy inequality (1.1). As above, the left hand side inequality
holds for more general domains than just simply connected domains but not all.
(Adding points to a domain has no affect on the eigenvalue but it can have a drastic
affect on the inradius.) This inequality also has a long and interesting history, see [3]
and [4].

3. There exists a positive constant C3, independent of the domain, such that

(1.3)
1
2
R2

Ω ≤ sup
z∈Ω

Ez (τΩ) ≤ C3R
2
Ω.

Here we use Ez to denote the expectation with respect to the Brownian motion starting
at the point z ∈ Ω. Again, the lower bound is trivial by domain monotonicity (the
larger the domain the larger the lifetime). A necessary and sufficient condition (which
includes all simply connected domains in R2) for a domain in Rd to have (1.3) is given
in [8]. Again, since Brownian motion does not “see” points in two dimensions, the
right hand side inequality cannot hold for all domains.

4. There exist a positive constant C4, independent of the domain, such that

(1.4)
C4

RΩ
≤ σΩ ≤

1
RΩ

.

As above, the upper bound is obtained by domain monotonicity and the existence of
the constant C4 follows at once from the Koebe 1

4 -theorem since σΩ(z) = 1
|F ′(0)| , where

F is the conformal mapping from the unit disc onto the domain Ω with F (0) = z.

Problem 1 Identify the extremal constants C1, C2, C3, C4 in the above inequalities and the
geometry of the “extremal” domains (whenever they exist).

2 Convex domains

In the case of convex domains, all constants are known:

1. C1(convex) = 4 which is the constant for the half space (or oven the one dimensional
half-line). For a proof of this, see Davies [11]. There are also other sharper general-
izations such as the one given in [1]. (Please also consult references given in [1] for
more on these kind of extensions.) These results hold for convex domains in Rd.

2. C2(convex) = π2/4 and the extremal domain is an infinite strip. The same constant
works also for any convex domain in Rd. There are several proofs of this result
including the original one given by J. Hersh in [14]. (See also [1] for a proof based on
the Hardy inequality and other references.)
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3. C3(convex) = 1 (see R. Sperb in [18]). Again, the extremal is given by an infinite
strip (which reduces the problem to an interval). Here again, there is a more general
inequality which asserts that for any convex domain in Rd of inradius RΩ,

(2.1) Pz{τΩ > t} ≤ P0{τ(−RΩ,RΩ) > t},

where τ(−RΩ,RΩ) is the exit time from the interval (−RΩ, RΩ) on the real line. (For
this, see [6] and [7].) The inequality (2.1) together with the well-known classical
characterization of the the eigenvalue as

−λ1 = lim
t→∞

1
t

logPz{τΩ > t}

gives a different proof that C2(convex) = π2/4. Again, the same results holds in all
dimensions where the extremal domain is the infinite slab.

4. C4(convex) = π/4. This result was proved by Szegö in 1923 (see [3] for exact refer-
ence). Again, the extremal domain is the infinite strip.

3 Arbitrary simply connected domains

The following estimates for the optimal constants C1, C2, C3, C4 are known.

4 ≤ C1 ≤ 16(3.1)
0.6194 < C2 < 2.095(3.2)
1.584 < C3 < 3.228(3.3)

0.57088 < C4 < 0.6563937(3.4)

For the estimates for C2 and C3, and some history on these constants, we refer the reader
to [3] and [9]. The paper [3] also contains some examples of simply connected domains
which we conjecture are very close to the extremals for these four problems. The problem
of determining the best constant C4 (known as the Schlicht Bloch-Landau constant) has
a long history in function theory. For the above estimates on C4 we refer the reader to
[16] and [10] and [9]. (The reference [10] contains many references to the literature on the
Schlicht Bloch-Landau constant.) The upper estimate for C3 follow from the lower estimate
on C4 and inequality (3.5) below. From the upper estimate on C3 we get a lower estimate
on C2 using (3.6). The lower estimate for C3 and upper estimate on C2 follow from the
example in [3], (see Theorems 2 and 3) and the calculations in [9]. For an approach using
a Hardy-type inequality with σΩ replacing the distance function, see [5].

Theorem 3.1 ([3]) For any simply connected domain Ω ⊂ R2, we have

(3.5)
1

2σ2
Ω

≤ sup
z∈Ω

Ez (τΩ) ≤ 7ζ(3)
8σ2

Ω

and

(3.6)
2

supz∈ΩEz (τΩ)
≤ λΩ ≤

7ζ(3)j2
0

8 supz∈ΩEz (τΩ)
,

where 7ζ(3)/8 =
∑∞

n=0(2n+ 1)−3.
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