
  

  

Abstract—A major limiting step in the creation of systems 
biology models is the determination of appropriate parameter 
values that fit available experimental data. Parameter 
identification is hindered by both the experimentally difficulties 
in examining biological systems and the growing size and 
complexity of nonlinear models. In addition, the majority of 
systems biology models are ‘sloppy,’ allowing many parameter 
sets to fit the data. Typically, these sets are only distinguished 
by their quantitative fit, with the goal to minimize the least 
square error between simulation and data. Instead of this 
single-minded focus on error, parameter sets can also be 
distinguished by the model’s relative robustness to parameter 
changes with that set. Robustness of a model in general has 
been explored, but choosing model parameters based on 
relative robustness is fairly new. This choice is reasonable both 
from the biological perspective, in that a system would be more 
resistant to mutations with robust parameters, and from the 
modeling prospective, in that robust parameters could allow 
easier re-fitting of the model to new data. A sparse grid-based 
parameter identification method has been recently developed 
for nonlinear models with large uncertain parameter spaces. 
Sparse grid parameter identification has the added benefit of 
storing information about the entire global parameter space, 
unlike commonly used stochastic methods and most 
deterministic algorithms. This information can be exploited for 
a robustness analysis that requires no additional model 
simulations or manipulation of the model equations. Herein, 
sparse grid-based identification is extended to include a novel 
parameter robustness analysis method that can be applied to 
any type of quantitative model. The ability to distinguish 
between low cost function and robust parameter sets is 
demonstrated with a mitogen-activated protein kinase cascade 
model, which is an exemplar systems biology process. Results 
are compared against information gained from global 
parameter sensitivity analyses and improvements to the 
robustness analysis method are proposed. 

I. INTRODUCTION 
NCREASINGLY, mathematical models are being used to 
provide insight into cellular processes [1]. However, the 

determination of appropriate parameter values presents a 
significant challenge to the creation of models [2]. Systems 
biology models are becoming larger and more complex, 
often requiring tens to hundreds of parameters. Very few of 
these have values that have been experimentally determined, 
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due to the difficulty of measuring such information as 
kinetic rates and binding and diffusion constants [3]. An 
additional difficulty is that the majority of biological models 
are ‘sloppy’: they have parameters with orders of magnitude 
different sensitivities and high parameter correlations [4-6]. 
As a result, many different sets of parameter values are 
capable of replicating experimental data. 

Parameter values are most typically determined through 
search: either locally from an initial guess or globally over 
the possible parameter space using stochastic (such as the 
genetic algorithm) or deterministic (such searches on convex 
functions) methods. All of these methods can suffer from 
local minimum trap, poor convergence rates, and high 
computational cost [7]. The intent of searching is purely to 
find values that allow the model to acceptably fit the 
experimental data; while finding the globally optimum 
parameter set is typically the goal, this is difficult to achieve 
and does not guarantee that the found parameter values 
represent the true values of the biological system. In 
addition, these searches typically examine only a very small 
part of the parameter space. Examination of the entire space 
is typically only performed later, with more exhaustive 
analyses such as global sensitivity analyses like extended 
FAST [8].  

As discussed by Gutenkunst et al, the actual parameter 
values of a model are far less important than the ability to 
replicate behavior [4]. Therefore, the model’s behavior 
should be as independent as possible from the parameter 
values. Physiologically, a robust biological system would be 
more resilient to perturbations and may be less likely to 
depend on certain parameters to maintain their exact values 
in order to achieve the desired cellular behavior. From a 
modeling point of view, fitting robust parameters would 
make the model easier to fit to new data, as required changes 
to parameter values would be less likely to damage the fit to 
the old data sets. In the context of control, the parameters to 
be optimized are the control inputs and it is desirable that the 
inputs be designed such that small errors in implementation 
would not result in large output errors. Therefore, a more 
valuable approach to model fitting would consider not only 
the fit of parameters, but their robustness as well. 

Recently sparse grid interpolation approaches have been 
developed that support deterministic global optimization for 
the minimization of functions with bounded mixed 
derivatives [9].  These methods are currently being refined 
for efficiently solving large dimension problems, more than 
10 uncertain parameters [10]. Sparse grid interpolation 
techniques were originally developed to reduce the 
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computational cost for multivariate integrals [11, 12]. A 
thorough review of sparse grid-based interpolation and 
integration is given in [13]. Sparse grid-based approaches 
represent an opportunity to combine, without additional 
computation, parameter identification and robustness. 

This paper is organized in two main parts. In the first part, 
adaptive sparse grid-based optimization, the example model 
used to illustrate this work, and parameter identification with 
adaptive sparse grids, versus a global, stochastic 
optimization method are described. In the second part, the 
ideas of the robustness of parameter sets and the methods of 
determining relative robustness are introduced and 
demonstrated with examples using both three and 18 
unknown model parameters. 

II. BACKGROUND 

A. Adaptive sparse grid-based optimization 
Sparse grid interpolation builds a grid of support nodes in 

a patterned manner in the parameter space and evaluates the 
model at each point. An error-controlled interpolated 
function is created by combining basis functions at the 
support nodes to approximate the cost function evaluated 
over the entire parameter space. It has been shown that the 
error of the interpolating function strongly depends upon the 
degree of the bounded mixed derivative (smoothness) and is 
a weak function of the dimension of the problem, 

  
O N

!k log N( )
k+1( ) d !1( )( ) , where N is the number of function 

evaluations performed on the sparse grid at the support 
nodes, k is the interpolation depth, and d is the dimension of 
the parameter space [11].  Hence these methods are 
considered nearly optimal (up to a logarithmic factor) [11] 
and are significantly better than those of quasi-Monte Carlo 
algorithms, 

  
O N

!1 log N( )
d( ) [14]. A uniform sparse grid 

cannot avoid a logarithmic dependence of the error on 
dimension; however, adaptive sparse grids sample most 
along the dimension of greatest importance as ascertained by 
the ability of samples in that direction to decrease the 
estimated interpolation error (Fig. 1) [14].  This “problem-
adjusted refinement” [15] most effectively reduces the 
computational costs for the optimization on models whose 
roughness is confined to a subset of the dimensions of the 
uncertain space and it does no worse than the uniform sparse 
grid methods. 

The search for acceptable parameter values is performed 
on the interpolated function. Typically, a search along a  

 
Fig. 1. Examples of two-dimensional adaptive Chebyshev sparse grids, with 
increasing degree of adaptivity from left to right, generated with the Sparse 
Grid toolbox [16]. This figure demonstrates that the parameter along the x-
axis is more important to decreasing interpolation error than the parameter 
along the y-axis. 

A.  B.  C.  
Fig. 2. Comparison of meshes created by actual cost function evaluations 
and from an interpolated cost function for a two-parameter search of a 
MAPK model [17]. A. This mapping of the cost function was created from 
a 100x100 evenly spaced grid of parameter sets, for a total of 10000 model 
evaluations. A local search on the best mapping point returned the actual 
parameter values, with an additional 18 model evaluations. B. The 53 
adaptive sparse support nodes used to create the interpolated function, 
generated by the Sparse Grid Toolbox [16]. C. An evenly spaced 100x100 
grid of parameter sets was created and evaluated by the interpolated 
function, creating an identical mapping to A that only required the 53 model 
evaluations used to create the support nodes.  A local search from the best 
support node took an additional 66 model evaluations to return the actual 
parameter values. 
 
polynomial-based interpolation function is significantly 
faster than a search involving repeated numerical 
integrations of a model, see Fig 2. 

B. The Mitogen-Activated Protein Kinase cascade 
The mitogen-activated protein kinase (MAPK) cascade is 

a serine/threonine phosphorylation cascade that is highly 
conserved in eukaryotic cells and has been considered an 
exemplar system for systems biology studies [18, 19]. The 
cascade transduces signals from the cell surface to the 
nucleus and therefore plays a key role in regulating cellular 
behavior. Therefore, it was determined that the MAPK 
cascade is a good example for demonstrating the adaptive 
sparse grid optimization algorithm. 

For this work, it was important to use a model that could 
exactly replicate an example data set so that model structure 
errors could be neglected. The most straightforward 
approach is to take a published model and create a mock 
data set by simulating the model. The Wolkenhauer et al 
model [17] was chosen because the equations were 
available, the states displayed interesting dynamics, and it 
was not so large as to make computational time a factor in 
creating examples. The model consists of four nonlinear 
ordinary differential equation (ODEs) and 18 parameters. 
For these examples, mock experimental data was generated 
by simulating the model with the published (nominal) 
parameter values.  The mock data consisted of seven, error-
free, time points of the simulations for two of the four states 
(phosphorylated MAPK and MAPKK) and the examples 
utilize either just the MAPK data set or both data sets. 

C. Parameter Identification 
The main goal in most modeling projects is to identify 

parameter values, which can be a difficult problem in the 
case of large, nonlinear models. Therefore, the ability of 
adaptive sparse grid interpolation to optimize model 
parameters was demonstrated with the chosen MAPK 
model. The adaptive sparse grid optimization performance 
was compared to the performance of a standard stochastic 
optimization method, the genetic algorithm (GA), with an 
increasing number of model evaluations. The general 
optimization process is described below, followed by 



  

sections providing implementation details for the adaptive 
sparse grid and GA algorithms, respectively. 

The fit of parameter points to this mock data set was 
calculated using the least square error formula: 
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where q is the number of states with experimental data, nj is 
the number of experimental time points for state j, 
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output for state j at time i for parameter set p. The goal of 
optimization was to find the parameter set, p, in the 18-
dimensional parameter space, that minimized the value of 
the cost function, F(p), with both MAPK and MAPKK data 
included. The sparse grid method, due to symmetry, 
automatically evaluates the center point of the parameter 
space. Therefore, in order to avoid biasing the sparse grid 
towards the nominal parameter values, a new center point 
was created by selecting a random initialization point within 
an order of magnitude above and below the actual values. 
The parameter search range for both the sparse grid and GA 
was assigned from an order of magnitude smaller than this 
initial point to an order of magnitude larger. 

1) Adaptive sparse grid-based optimization 
Sparse grids in log space and interpolants were created 

using the Sparse Grid Toolbox for Matlab [16], with slight 
modifications to the code (for complete details see [20]). 
Chebyshev polynomial basis functions were used with 100% 
adaptive grids. Local searches were performed in the 
parameter space on both the interpolated and actual cost 
function from the grid point that returned the lowest cost 
function.  

2) Genetic Algorithm 
The Matlab genetic algorithm, ga, was utilized [21]. For 

each example, the maximum number of generations was 
limited in order to limit the number of model evaluations to 
the desired level. All other options, including a population 
size of 20, were kept at their defaults. The GA was run five 
independent times for each number of evaluations allowed 
(because of its stochastic nature, each outcome is different), 
followed by local searches from the returned point. 

3) Comparison of adaptive sparse grid and GA based 
optimization 

 The resulting cost function value (the least squared error 
or LSE) was calculated for the adaptive sparse grid-based 
optimization method and the GA for increasing numbers of 
model evaluations. The results are shown in Fig. 3. For the 
adaptive sparse grid method, the total number of model 
evaluations was the sum of the number of grid points and the 
number of evaluations performed by the local searches. For 
the GA method, the number of model evaluations was the 
sum of the evaluations used by the GA and the local 
searches. The results of the searches were averaged and the 
error bars in Fig. 3 represent the standard deviations of the 
results. Clearly, adaptive sparse grid interpolation can be 
applied for parameter identification, and can outperform  

 
Fig. 3. For a MAPK model [17], a comparison of the performance, 
indicated by the least squared error (LSE) between the model simulations 
and the mock data set, of the adaptive sparse grid-based optimization (blue) 
and the GA (red). The uncertain parameter space had a dimension of 18 and 
both MAPK and MAPKK data was included in the cost function. The 
adaptive sparse grid method consistently performed better than the GA for 
larger numbers of model simulations.  The GA results are the average of at 
least five runs, with the error bars representing the standard deviation of the 
results. For implementation details, see Background. 
 
standard methods such as the GA. Adaptive sparse grids 
generate additional information – the number of unique 
values for each parameter used to create the adaptive grids – 
that can be used to further optimize parameter values (data 
not shown) in an iterative search process, which is discussed 
in detail in [20]. Though adaptive sparse grid-based 
interpolation can be successfully applied to parameter 
identification, the process should not end with optimized 
parameter values but also examine the relative robustness of 
the points in the parameter space. The following section 
discusses finding and analyzing robust parameter values. 

III. ROBUSTNESS 
Robustness is referred to in different contexts, such as the 

robustness of Bayesian or Boolean networks [22], the 
robustness of steady states (i.e. changes to bifurcation points 
and oscillations) due to changes in parameter values [23-25], 
and the robustness of signal aspects such as time, duration, 
and amplitude to changes in parameter values [26, 27]. 
Typically, studies focus on the robustness of a model as a 
whole over the global parameter space [28]. The relative 
robustness of a model in different areas of the parameter 
space has been less examined. For instance, Chaves et al 
[29] mathematically described the robustness of disparate 
areas of the parameter space to achieve the desired steady 
states, but relied on a simplified version of the model, 
converted to algebraic equations, and approximations to 
decrease the dimension of the parameter space to five. 

Adaptive sparse grids present a valuable platform for 
examining robustness in a computationally efficient manner. 
During the parameter identification process, grids store 
information about the cost function behavior over the entire 
parameter space; such information is lost with stochastic 
searches. In addition, the error-controlled interpolant 
provides a means to examine the parameter space without 
additional, and costly, model evaluations. In order to 
demonstrate the calculation of robustness of parameter 
points using sparse grids, illustrative examples in three 
dimensions are given for the MAPK model [17], followed 
by examples utilizing the full, 18 dimensional, uncertain 



  

parameter space. 

A. Methods 
For each example, the appropriate grid and interpolant 

were created using the methods described in Background. 
For these examples, the grid type was changed from 
Chebyshev to ‘No Boundary’ in order to avoid having grid 
points at the edges of the global parameter space, Ω. It was 
assumed that Ω contained all physiologically possible 
values. As a result, the boundaries of Ω can be identified as 
non-robust a priori. Therefore, there is no advantage to 
including the boundary points in the robustness analysis. It 
should be noted that the Chebyshev grid can be used for the 
robustness analysis, provided a sufficient number of points 
are inside the boundaries of Ω. Or, one may perform 
parameter identification using the No Boundary grid, with 
the drawback that its form in the Sparse Grid toolbox does 
not currently support adaptive grid creation [16].  

After the creation of the grid and the interpolant, the 
parameter points, p, of Ω were sorted by cost function value 
(Eq. 1) and a cut-off value, or threshold, was determined. 
The choice of threshold is dependent on the problem, the 
desired maximum deviation from the data points, and the 
desired maximum number of points to evaluate for 
robustness. In this case, the threshold was arbitrarily set to 
log(1E3), or 6.9. The grid points with cost functions below 
the threshold make up the set of acceptable grid points, ω, 
which is a subset of Ω.   

From each p in ω, the distance that could be traveled in 
each parameter direction (positive and negative) before 
reaching the threshold was calculated by stepping along the 
interpolant. The choice of step size is important and is a 
trade off between accuracy and computational time. For all 
examples herein, the step size was 0.001 (in log space). The 
most robust point, pR, was defined as the point farthest from 
each of its boundaries. Therefore, for each acceptable point, 
the minimum travelable distance was found and considered 
its ‘robustness value’ (where a higher value corresponds to a 
more robust point): 

Rp = min
i
(dp,i )           (2) 

where Rp is the robustness of the parameter point p, dp,i is the 
length of space along the direction i from point p that is 
below the threshold. For an illustration of this method, see 
Fig. 4. 

Sensitivity analyses (SA) were also performed on the 
model with the cost function (Eq. 1) defining the model 
output and the unknown parameters for both the three-
dimensional and 18 dimensional cases as the inputs. 
Extended FAST [8] was used to estimate both the main 
effects attributed to each unknown parameter and the total 
effects which includes interactions effects between the 
unknown parameters. The SA was performed on a global 
scale over the entire global parameter space, Ω, as well as 
over the local neighborhood of both the best (pB) and the 
most robust points (pR). (The local neighborhood was  

 
Fig. 4. An illustration of the robustness analysis in two dimensions. For this 
illustration, ω consists of one point, the dark blue circle, surrounded by 
contours of the cost function value (blue: low, red: high). The global 
parameter space, Ω, is represented by the red area. The below threshold area 
is in light blue, and the travelable distances in the directions of parameters 1 
and 2 are represented by straight black lines. 

 
considered to be +/- 1% of the parameter values.) Local 
sensitivity analyses were not performed as they  quantify the 
effects from variation in each parameter one-at-a-time and 
do not consider parameter interactions which are known to 
be significant for systems biology models that consider 
biochemical reactions [30]. 
 

B. Results 
1) Robustness in three dimensions 

These examples were limited to three dimensions in order 
to allow illustrations. Three of the model parameters were 
labeled ‘unknown’ (parameters 1-3) while the others were 
fixed at the model’s nominal values. The grid created was an 
order of magnitude less to an order of magnitude more in 
each direction from a randomly selected point within 0.5 to 2 
times the nominal values. The grid was created first with 
only the MAPK data considered in the cost function (Eq. 1), 
and then with both MAPK and MAPKK data. 

The grid points in ω, with only MAPK data considered, 
are shown in Fig. 5, color-coded by cost function (with only 
points below 6.9, or log(1E3), shown and where dark blue 
are the best, or lowest cost function, points) in Fig. 5A and 
by robustness in Fig. 5B (where red are the most robust, or 
highest in Rp). To demonstrate the difference in robustness 
of pB and pR, five random and independent perturbations 
were generated with as much as +/- 50% of each of the 
nominal parameter values in their respective direction. These 
five independent perturbations were added to both the pB and 
pR vectors and in each case the model was simulated with the 
new parameter values, with results shown in Fig. 6A and B 
for pB and pR, respectively.  

The grid was recreated for the parameters with both 
MAPK and MAPKK data considered in the cost function 
(Eq. 1). As can be seen in Fig. 7, the amount of experimental 
data can have a significant effect on the location and number 
of the acceptable points. The points in Fig. 7A are color-
coded by cost function value. In comparison, these same 
points are plotted again in Fig. 7B, this time color-coded by 
robustness. It can be seen that the best parameter points can 
overlap with the most robust points. In this case, the best 
point was the most robust point. 

2) Robustness in 18 dimensions 
For the 18 dimensional example in the case where only 

MAPK data was considered in the cost function (Eq. 1), ω 
contained 132 grid points. The robustness analysis showed 



  

A.  

B.  
Fig. 5. Analysis of three dimensions of a MAPK model, with only MAPK 
data included in the cost function. Parameters 1-3 were assumed 
‘unknown.’ A ‘No Boundary’ grid was generated. The acceptable points of 
the grid were plotted by cost function (A), where all the acceptable points 
are below 6.9 or log(1E3), and by robustness (B), where the most robust are 
in red. It can be seen in this case that the most robust grid points do not 
coincide with the grid points with the lowest cost functions. In fact, the best 
grid point was ranked 1047 out of 1627 points. 

A. B.  
Fig. 6. Perturbation of pB and pR for the three-dimensional case where only 
MAPK data is included in the cost function (Eq. 1). A. Simulation results of 
five random perturbations of the best point. B. Simulation results when the 
robust point is subjected to the same five percentage perturbations. The 
mock data is shown with stars. 
 
that the best grid point was ranked 7th in robustness. To 
demonstrate the differences between the best and most 
robust points, five random perturbations in the direction of 
three randomly chosen parameters were generated and 
applied to both points, as with the three-dimensional case, 
see Fig. 8. In this case, the perturbations were limited to +/- 
10% of the nominal values in each parameter direction. For 
the case where MAPKK data was also considered, the best 
point was ranked 6th in robustness. 

3) Sensitivity Analysis  
Sensitivity analyses (using extended FAST [8]) were 

performed on the global parameter space and in the local 
neighborhoods of the best and the most robust grid points. 
There was no correlation between the sensitivity rankings of 
parameters and the travelable distances in the directions of 
those parameters from pB and pR or the sum of the travelable 
distance of all points in ω.  As an example, the results for the 
18 dimensional case where only MAPK data is included in 
the cost function are shown in Table 1 (results not shown for 
the other examples). This is to be expected as the robustness 
of a parameter point combines both local and global 
information, as the travelable distances can vary 
significantly. In order to compare the sensitivities of the 
parameters at particular points to the travelable distances in 
the parameters’ directions from the points, the sensitivity 
analyses would have to be performed over the below- 

A.  

B.  
Fig. 7. Mapping of the log of the cost function in the three-dimensional log 
parameter space when parameters 1-3 are varied and both MAPK and 
MAPKK data are included in the cost function. In A, only acceptable 
parameter grid points (below 6.9 or log(1E3)) are shown, color-coded by 
cost function value. Disparate areas of acceptability are shown. In B, the 
acceptable grid points are color-coded by robustness (red: high, dark blue: 
low). In this case, the best and robust points have some overlap and the best 
grid point was also the most grid robust. 

A. B.  
Fig. 8: Perturbation of pB and pR for the 18 dimensional case where only 
MAPK data is included in the cost function (Eq. 1). A. Simulation results of 
five random perturbations of the best point. B. Simulation results when the 
robust point is subjected to the same five percentage perturbations. The 
mock data is shown with stars. 
 
threshold area (light blue in Fig. 4) around each point. Hence 
the output of a traditional sensitivity analysis and this 
robustness analysis differ in the information they convey. 

IV. CONCLUSIONS AND FUTURE WORK 
Adaptive sparse grid-based optimization provides, in a 

computationally efficient manner, sets of parameter values 
that support acceptable model simulation replication of 
experimental  data. For a MAPK model with 18 parameters 
[17], the sparse grid method showed a faster decrease in 
least squared error with increasing model evaluations than 
did the GA. In addition, the optimization process retains 
important information that describes the cost function over 
the entire uncertain parameter space. This information can 
be explored to determine, without additional model 
evaluations or manipulation of the model equations, the 
relative robustness of grid points in the acceptable parameter 
space. As discussed, this information should be considered 
when choosing parameters for “sloppy models,” where many 
combinations of parameters can replicate experimental data, 
due to correlations and identifiability issues. The proposed 
process to identify the most robust parameter values resulted 
in ranking the parameters differently than traditional 
sensitivity analysis:  the most robust parameter values were 
not necessarily the least sensitive parameter values.  In 
summary, we purport that instead of focusing on identifying 
the parameter values that give the lowest cost function value 



  

TABLE 1: SENSITIVITY ANALYSIS VS ROBUSTNESS 
SA Ω pB pR Robust-

ness 
ω pB pR 

Most 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Least 

15 
1 
13 
3 
14 
18 
11 
12 
6 
8 
10 
16 
2 
7 
9 
5 
4 
17 

1 
2 
7 
10 
4 
17 
6 
13 
14 
11 
15 
12 
3 
16 
8 
18 
9 
5 

7 
104 

2 
1 

13 
11 
6 

14 
17 
15 
12 
3 

16 
8 
9 

18 
5 

Least 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Most 

18 
9 
8 

11 
7 

16 
5 
3 

14 
12 
15 
17 
1 

13 
6 
2 

10 
4 

18 
8 

11 
9 
7 
3 
5 

16 
12 
10 
14 
1 

15 
13 
6 

17 
2 
4 

5 
18 
3 
7 

16 
9 

11 
17 
8 

14 
12 
1 
2 
4 
6 

10 
13 
15 

For the 18 dimensional case where only MAPK data was considered in the 
cost function, sensitivity analyses were performed on both the entire 
parameter space, Ω, and in the local neighborhoods (+/- 1%) of the best (pB) 
and most robust (pR) points. The results, by parameter number, are shown in 
order of the model being most sensitive to least sensitive to the parameter. 
These results are compared to the travelable distances (in both the positive 
and negative directions) summed over all the acceptable points, ω, and from 
pB and pR. The highest correlation coefficient among these six vectors is 
0.43, between the local SA around pR and the travelable distances around 
pR. 

possible, the focus should be on selecting parameter values 
such that the model output will be robust to parameter 
perturbations. 

For the examples herein, the model was exactly identical 
to the “experimental” system and therefore, the nominal 
parameters were the correct ones. As such, it is expected that 
increasing the amount of available data would push the best 
points toward the nominal parameter values and increase the 
relative robustness of the best points, as was seen in the 
examples. This trend is not expected to occur where models 
are gross abstractions of biological systems and 
experimental data is noisy, as is typically the case. 

For future work, the method of calculating robustness will 
be further developed to decrease calculation time. Currently, 
the method is limited by having a fixed step size, even 
though travelable distances can widely vary. Therefore, 
similar to methods introduced in [6], eigenvalue analysis of 
the Hessian of the parameters’ local, second order sensitivity 
coefficients will be used to adapt the step size taken in each 
parameter direction from each point as well as help identify 
a priori in which direction the minimum travelable distance 
lies. It is expected that this information will significantly 
speed up the computation as well as increase the accuracy of 
the results. 
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