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ABSTRACT. If 7 is a bijection from C™ onto a complex manifold M, which
conjugates every holomorphic map in C™ to an endomorphism in M, then we
prove that v is necessarily biholomorphic or antibiholomorphic. This extends
a result of A. Hinkkanen to higher dimensions. As a corollary, we prove that if
there is an epimorphism from the semigroup of all holomorphic endomorphisms
of C™ to the semigroup of holomorphic endomorphisms in M, or an epimor-
phism in the opposite direction for a doubly-transitive M, then it is given by
conjugation by some biholomorphic or antibiholomorphic map. We show also
that there are two unbounded domains in C" with isomorphic endomorphism
semigroups but which are neither biholomorphically nor antibiholomorphically
equivalent.

1. INTRODUCTION

The question of determining a mathematical structure of an object from its
semigroup of endomorphisms, i.e. the set of all maps from this object into itself
with composition as a semigroup operation, goes back to at least C. J. Everett and
S. M. Ulam [5], [15]. In the most general form this question can be formulated
as follows. Suppose we have two sets A and B with a given structure, whose
semigroups of endomorphisms compatible with this structure, are isomorphic. Does
there exist a bijective map between A and B, which preserves the structure?

K. D. Magill, L. M. Gluskin, B. M. Schein, L. B. Sneperman, and I. S. Yoro-
ker studied the question of determining a topological space from its semigroup of
continuous endomorphisms. See a survey in [12], [6].

To the best of the authors’ knowledge, L. Rubel was the first who raised the
question of determining a complex space from its semigroup of holomorphic en-
domorphisms. In 1993, A. Eremenko proved that every two Riemann surfaces
that admit non-constant bounded holomorphic functions, and whose semigroups of
holomorphic endomorphisms are isomorphic, are necessarily biholomorphically or
antibiholomorphically equivalent. This result was extended by S. Merenkov in [13]
to bounded domains in C™.

On the other hand, A. Hinkkanen [7] proved in 1992 that there exist unbounded
domains in C whose semigroups of holomorphic endomorphisms are isomorphic, but
the domains are not even homeomorphic. In the same paper A. Hinkkanen studied
another question raised by L. Rubel. Namely, he proved that if ¢ is a one-to-one
function of the plane onto itself (but with no assumption of continuity), such that
Yo for~! is entire whenever f is entire, then v has the form v(z) = az + b,
or ¢¥(z) = az + b, where a and b are complex numbers with a # 0; i.e., ¥ is a
biholomorphic or antibiholomorphic automorphism.

In higher dimensions, any analog of A. Hinkkanen’s theorem must take into
account the fact that the automorphism group of C" is quite large, since in C2,
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for example, there are biholomorphic maps of the form (21, z2) = (21, 22 + 9(21)),
where g is an arbitrary entire function. However, one may hope that 1 is still a
biholomorphic or antibiholomorphic automorphism. The main theorem, Theorem 1,
of the present paper asserts that this is indeed the case.

Note that the set of all holomorphic endomorphisms of a complex manifold M
forms a semigroup (with unit) under composition. We denote this semigroup by
E(M). If M =C", we denote the semigroup by E.

Theorem 1. If v is a bijection of C*, n > 2 onto a complex manifold M, such
that o fo~t € E(M) for every map f € E, then 1 is biholomorphic or antibi-
holomorphic.

As in the one-dimensional case [7], it is not sufficient to assume that ¢o foyp=1 €
E(M) for every polynomial map f in order to conclude that 1 is a homeomorphism.
The reason is that there are non-continuous field automorphisms of C [11]. If £ is
such an automorphism, then we can take ¥(z1,...,2,) = (£(#1),...,&(2n)). The
conjugation by % is an automorphism of semigroups of polynomial maps in C™, but
1) is not continuous.

We say that a complex manifold N is doubly-transitive if E(N) is doubly-
transitive, i.e. if for every pair 21, 2o of distinct points in A" and every other pair of
points wy, wy in N, there exists f € E(N), such that f(zm) = wpm, m =1,2. We
say that N is weakly doubly-transitive if in the previous definition we replace the
assumption that ws arbitrary by requiring that it has to be sufficiently close to w;.
Clearly, every doubly-transitive complex manifold is weakly doubly-transitive, and
C™ is doubly-transitive. As a corollary to Theorem 1, we prove the following

Theorem 2. If there exists an epimorphism of semigroups ¢ : E — E(M), where
M is a complex manifold consisting of more than one point, then

(1) ¢(f) =tofoy™", VfeE,
for some biholomorphic or antibiholomorphic map ¢ : C* — M.

If there exists an epimorphism of semigroups ¢ : E(M) — E, where M is a
weakly doubly-transitive complex manifold, then

(2) o(f)=mofon™', VfeEWM),

for some biholomorphic or antibiholomorphic map n: M — C™.

We note that the converse to this theorem is trivial. If ) is a biholomorphic or
antibiholomorphic map from C™ to M, then the map f ~ o fot ! is an isomor-
phism between the semigroups. Similarly, we get an isomorphism of semigroups if
there exists an (anti)biholomorphic map 7 : M — C™. In particular, we obtain the
following corollary, which follows immediately from the previous remarks plus the
fact that an antibiholomorphic equivalence from C™ to M implies a biholomorphic
equivalence simply by composing with the involution z — Z.

Corollary 1. Given a complex manifold M, the endomorphism semigroup of M is
isomorphic to the endomorphism semigroup of C™ if and only if M is biholomorphic
to C™.

The first part of Theorem 2 is in some sense quite surprising because, among
the complex manifolds of dimension n, C™ has a large and complicated semigroup
of endomorphisms (compare the simple semigroups in Theorem 3 below). Yet the
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equivalence given above requires only the existence of an epimorphism from the
“large” semigroup E onto E(M).

Also, applying methods used by D. Varolin [16], any Stein manifold M with the
(volume) density property is doubly-transitive, and hence can be used in the second
part of Theorem 2. Indeed, the fact that the manifold is Stein implies that any
single point is a holomorphically convex set. Then for distinct points p1, p2, g1, g2
in M, Theorem 0.2 of [16] with K = {p»} implies that there is an automorphism,
f1, of M so that f1(p1) = ¢1 and f1(p2) = p2. Likewise, there is an automorphism,
fa, of M so that fa(p2) = g2 and fa(q1) = ¢1. Thus for the function f = foo fi
we have f(p;) = g;. If p1,p2 are distinct and g1, g2 are arbitrary (and possibly one
or both of them is the same as p; or py), then we can first choose z1 # 2, distinct
from the previous four points, map p; to z;, and then z; to ¢; (using a constant
map if g1 = ¢2). Hence M is doubly-transitive.

We mention also a recent paper by S. G. Krantz [10], where he studies the ques-
tion of determination of a domain in complex space by its automorphism group. Of
course a domain possesses more endomorphisms than automorphisms. Therefore
the ability to determine a domain from its automorphism group implies the ability
to determine a domain from its endomorphism semigroup. Our Theorem 2 differs
from Krantz’s result in that, first of all, we assume the existence of an epimorphism
between semigroups, rather than an isomorphism. Secondly, the information we
assume has a purely algebraic character, i.e. the existence of an algebraic epimor-
phism, and not a topological one; i.e., we make no a priori assumptions about conti-
nuity. To our knowledge it is an open question if the existence of a purely algebraic
isomorphism between the automorphism group of C™ and the automorphism group
of M implies the (anti)biholomorphic equivalence of these manifolds. However,
one result along these lines is contained in the work of P. Ahern and W. Rudin [1].
They showed that Aut(C™) is sensitive to the dimension, i.e. if 1 < m < n, then
the groups Aut(C™) and Aut(C™) are not algebraically isomorphic.

To complete the analogy with Hinkkanen’s results, we show the existence of
two unbounded domains in C™ with isomorphic endomorphism semigroups but
which are not (anti)biholomorphically equivalent. This should be compared with
Merenkov’s result [13], in which it is shown that for two bounded domains in C", an
isomorphism between the endomorphism semigroups implies the (anti)biholomorph-
ic equivalence between the two domains.

Theorem 3. There exist unbounded domains D1 and Do in C™ so that the endo-
morphism semigroups E(D1) and E(D2) are isomorphic but such that there is no
biholomorphic or antibiholomorphic map from Dy onto Ds.

The paper is organized as follows. In Section 2 we prove that the map 1 in
Theorem 1 is a homeomorphism, using the notion of a Fatou-Bieberbach domain
and pose a question about Fatou-Bieberbach domains in Stein manifolds with the
density property. Section 3 and Section 4 are devoted to the proof that v is biholo-
morphic or antibiholomorphic. In Section 5 we give a proof of Theorem 2, and in
Section 6, we prove Theorem 3.

Acknowledgement. The authors thank A. Eremenko, A. Hinkkanen, S. Krantz,
and J.P. Rosay for helpful conversations.

2. FATOU-BIEBERBACH DOMAINS AND CONTINUITY OF ¥

Below we assume that n > 2.
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Let F'B denote the set of Fatou-Bieberbach domains, i.e. proper domains in C"
that are biholomorphic to C". A domain from this set will be called an F B-domain,
and a biholomorphic map from C™ onto an F B-domain will be called an F' B-map.

We denote by A(r) the disk in C centered at 0 and of radius 7, and by A¥(r)
the k-fold product of A(r). In [3] it was proved that there exists an F'B-domain
in C" which is contained in the union of A(r?) x A"~ !(r) and the set S; = {z =
(#15-oy2n) ¢ |21] =12 =3r+||(22, ..., 2n)||cc }, for some r > 4. This F B-domain is
a basin of attraction at 0 of a polynomial map that fixes the origin. Therefore 0 is
in the F'B-domain. By using rotations, we deduce that there exists an F'B-domain
which contains the origin and is contained in the union of A¥=1(r) x A(r?) x An=k(r)
and the set Sy, = {2z = (21,.--,2n) : |2k| =72 =3r+|[(21,- -+, 2%y -+ 2n)||co} for
some r >4, Vk =1,...,n, where Z; means that zj is omitted. It follows that in C™
there are n F'B-domains whose intersection is non-empty and bounded. By post-
composing the corresponding F'B-maps with contractions, and using translations,
we conclude that intersections of F'B-domains form a base of neighborhoods at each
point of C™.

Now, under the assumptions of Theorem 1, we can prove that v is continuous.
Let f1,...,fn be FB-maps as above so that the intersection of their images is
bounded. Then, by assumption, g; = ¥ o fio ™1, i = 1,...,n are holomorphic
maps in M. Moreover,

P(ACT) NN fa(CY) = (F1(CM)) N - N Y(f(C))

and since each g; is an injective holomorphic map, ¥(f;(C")) = g;(¢(C™)) = g;(M)
is an open set. It follows that ¢ is an open map. Using this plus the fact that v is
a bijection of C" onto a manifold, we see that )~ (K) is compact for each compact
K Cc M. With a standard argument, we conclude that 1 is a homeomorphism. In
particular [8], the dimension of M must be equal to n.

Note that [16] implies that a Stein manifold M with the (volume) density prop-
erty has an injective holomorphic map F : M — M with F(M) # M. Since our
proof of the continuity of ¥ in Theorem 1 is based on the existence of special maps
of this form in C™, it is an interesting open question whether such M can be shown
to have a base of neighborhoods given by finite intersections of injective images of
M. If so, then it should be possible to replace C™ in Theorem 1 by any manifold
with these properties.

3. LOCAL LINEARIZATION OF MAPS

Having shown that v is continuous, we proceed as in [13] to prove that 1 is
biholomorphic or antibiholomorphic using a simultaneous linearization of certain
commuting maps. Let a € C™ be an arbitrary point, and b = ¢(a). It is enough to
show that i is biholomophic or antibiholomorphic in a neighborhood of a.

A set P = {p;}} will be called a system of projections at o in a complex manifold
N, o€ N, if it consists of holomorphic maps in E(N) that fix o, and satisfy:

(1) Dbi # o, VZ,

(2) i =pi, V5

(3) piop; =0, Vi#j,
where p? = p; o p;. Let f be a biholomorphic map of A/ onto itself, that commutes
with all maps of some system of projections P at o, and fixes 0. We also assume that
for every neighborhood U of o, and every compact set K, there exists an iterate of
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f that brings K into U, i.e. there exists a positive integer [ such that f!(K) C U.
Such a map f clearly exists if N' = C", since we can take it to be a contraction at o,
and {p;} to be standard projections. Now we introduce a subsemigroup Iy of E(N),
consisting of all maps h that satisfy all the properties that f does, with the same
system of projections P, and such that A commutes with f. For reasons that will be
clear later, we call the triple {f, P, I} a linearizing triple. It is immediate to verify
that all properties listed for a linearizing triple are preserved under conjugation by
¥, 1e. if {f,P,If} is a linearizing triple in C™ at a, then {g, Q, I} is a linearizing
triple in M at b, where g = o foyp™!, Q=1 oP oL

We note here that in general it is impossible to linearize a holomorphic map
in a neighborhood of its attracting fixed point due to the presence of resonances
among the eigenvalues of its linear part [2], [14]. However, as seen in the following
proposition, under the assumption that hop; = p; o h, Vi = 1,...,n, the local
linearization of h € Iy is possible.

Proposition 1. For every linearizing triple {f, P, 1} in a complex manifold N at
o0, there exists a biholomorphic map 0 from a neighborhood of o onto a neighborhood
of the origin in C", such that for every h € Iy, in some neighborhood of o,

(3) Ooh=Apo0,
(4) Gop; =P 00, Vi,
where Ay, is a diagonal linear map (z1,...,2n) = (A121,..., An2n), i, 1 =1,...,n

satisfy 0 < |A;| < 1, and are eigenvalues of the linear part of h at o, and P; is a
diagonal matriz similar to the linear part of p; at o.

The proof of this proposition follows the same arguments as in [13], and therefore
we give only an outline here. Because of the property that for every arbitrary
compact set and every neighborhood of o, some iterate of f brings the compact set
into that neighborhood, it follows that the eigenvalues of the linear part of f at
o are smaller than 1 in absolute value. Using the fact that projections are locally
linearizable [9], and the commutativity relations h o p; = p; o h, Vi, the problem
about local linearization reduces to the one-dimensional Schréder equation, which is
solved [4]. That all maps h are linearized by the same biholomorphic map 6 follows
from the uniqueness of the solution to the Schréder equation, and the commutativity
relations between f, h, and p;.

We see in the following lemma that if N' = C", then all invertible diagonal linear
maps whose entries are smaller than 1 in absolute value appear in (3).

Lemma 1. The map 0 extends to a biholomorphic map on N'. Moreover, if N' =
C™, and A is a diagonal linear map

(Zl,...,zn)l—>()\1Z1,...,)\nzn), 0< |)\1| <l,t=1,...,n,

then the extended map 6 is a biholomorphism of C™ onto itself, and there exists
h € Iy, such that

(5) foh=Aod.

Proof. First we show that the map 6 extends to a biholomorphic map on the
whole /. This can be seen by using the formula

(6) 0=A obof* k=12,
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Because of the property that for every compact subset K of C™ and every neigh-
borhood U of o, some iterate of f brings K into U, it follows from (6) that 6 can
be extended to larger and larger sets, until its domain fills the whole N. Since f
and Ay are biholomorphisms,  is injective, and hence a biholomorphism on N.

When A/ = C", the inverse of 6 has a representation similar to (6), and therefore
6 is onto. Consider a map h =01 oA o € E. It is a biholomorphism of C™ onto
itself, and it commutes with every p;, which follows from (4). Since all entries of
A are less than 1 in absolute value, it is clear that for every compact set K and a
neighborhood U of 0, some iterate of h brings K into U. Using (3), we conclude
that A commutes with f, and thus it belongs to Iy. O

4. MATRIX EQUATION

Using the results of the previous section, we convert the statement of Theorem 1
to a linearized version, thus reducing the problem to determining the exact form of
the solution of a matrix equation ((7) below). By finding this solution, we obtain
an explicit expression for a map L defined below, which is conjugate to ¢ via
biholomorphic maps. This, with some more effort, will lead us to the proof that
is either biholomorphic, or antibiholomorphic.

We denote by Dy the set of invertible diagonal n x n matrices whose entries are
less than 1 in absolute value, and we denote by D,, the set of all diagonal n x n
matrices. We identify Dy with the set of diagonal linear maps, and D,, with a
multiplicative semigroup C" in the obvious way, and consider a topology on D,
induced by the standard topology on C™.

In the previous section, we showed that if {f,P,Ir} is a linearizing triple in
C", then 6 : C* — C" conjugates Iy to the set of diagonal linear maps, which is
isomorphic to Dy. Similarly, for a linearizing triple {g, Q,I,}, where g = ¢ o f o
Y=t Q=1 oPoy~ I, is conjugated by a biholomorphic map n: M — C™ to a
subset of Dy.

We define a homeomorphism L on C" by L = no of~t. For every A in Dy we
have

LoAoL '=nogoh toAofhoy ton!
:noqpohod}*lon*l:nojon*I:M7

where h =07 1oAof € If; j =1pohoyp™!, M =nojon=t, M € Dy. Therefore the
conjugation by L defines an injective map R from Dy to Dy, R(A) = Lo Ao L™1,
which is trivially multiplicative, i.e. R(A’A”) = R(A)R(A"), A, A", AN’ € Dy.
Since R is continuous, it extends to a multiplicative map, which will also be denoted
by R for convenience, from the subset Dy of D,, that consists of all matrices in
D,, with entries less than or equal to 1 in absolute value, into itself. Indeed, for
every matrix I' in Dy, the image R(I") also belongs to Dy, which follows from the
continuation process. Now we extend R to all of D,, as follows. Let I" be an arbitrary
matrix in D,,. We choose A = diag(\1,...,\,) in Dy such that Y. ; [A;| <1 and
TA € Dy. Define

R(T) = R(TA)R(A) .

The extended map R is well defined. Indeed, if A’ is a different matrix with the same
properties as A, then R(T'A)R(A") = R(T'A’)R(A), and the conclusion follows from
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the commutativity relations for diagonal matrices. The map R is clearly injective,
and multiplicative,

(7) R(A'A") = R(A)R(A"), A, A € D,.

We denote by d; the diagonal n x n matrix which has 1 as its ii’th entry and
all other entries 0. The system {d;}?_, is clearly the only one in D,, which satisfies
§; #0, 62 =68;, 6;0; =0, Vi # j. Therefore, injectivity of R and (7) imply that
R(6;) = 6;, Vi, where j = j(4) is a permutation. In particular,

(8) R(0;A) = 6;R(A).

If we denote the jj’th entry of the diagonal matrix R(A) by r;(A1,..., Ay), then (8)
implies that r; depends on \; only. For convenience, we write 7;(A1,...,Ay) =
rj(A;). We can rewrite (7) as

(9) ri(NAY) =i (N (X)), i=1,...,n, j = j(0).

As in [4], for every j = j(i), the equation (9) has either the constant solution
ri(A) =1, or

_ﬁu

(10) ri(A) = AT9N Y, aug, Bij € C, ayy — Biy = £1,

where the last relation between «;; and (3;; is forced by the injectivity of the map
R. Using (10), we can obtain an explicit expression for L :

L(z1,...,2,) = diag(z;il()l)lff(il(;” e, z;;;;’>"2f(%>")L(l, 1)

(]_]_) = B(Z?lffl,. .. Zanggn), a; — /Bi - :l:]-a 1= 17 N2

’r n

where ¢ = i(j) is an inverse permutation to j = j(i), and B is a constant matrix.

By definition, » = 7' o L o §. From the expression (11) for L we can con-
clude that ¢ is R-differentiable and non-degenerate in C™ \ 6~!(A), where A =
Up_1{(z1,...,2n) : zr = 0}. Since the same conclusion is true for every set ob-
tained by translation of A in C”, and since 6 is a biholomorphism of C" onto itself,
the map 9 is R-differentiable and non-degenerate everywhere in C". However, this
is possible if and only if a; +3; =1, i = 1,...,n. Combining this with the equation
a; — B; = £1, we deduce that either a; =1, 8; =0, or a; =0, G; = 1.

It remains to show that either a; = 1, Vi, or a; = 0, Vi. To get a contradiction,
suppose that

L(z1,...,20) =B(. ., 2y o, Zjy o o0 )
Then
L_l(wl,...,wn): (...,li(wl,...,wn),...,lj(wl,...,wn),...),

where [;, [; are nonconstant, linear holomorphic functions. Let 6 = (61,...,0,).
We consider a map h € E in the form

h:9’1(...,Hﬂj,...,é’j,...)e,

where 60,0, is the i’th coordinate, and 6; is the j’th coordinate. Using the definition
of L, we obtain

77077[)oho77[)7107fl:Lo&oho&floLfl

= B'(...,li(wl,...,wn)lj(wl,...,wn),...,lj(wl,...,wn),...)
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for some constant matrix B’. This map, and hence 1) o h o9 ~! is not holomorphic
though, which is a contradiction. O

5. EPIMORPHISM BETWEEN SEMIGROUPS

In this section we give a proof of Theorem 2.
For a complex manifold A" we denote by C(N') the subsemigroup of E(N) con-
sisting of constant maps. If N' = C", we denote C = C(C"). In other words,

(12) ceCWN)ifand only if Vf € E(N), co f =c.

There is a natural one-to-one correspondence between the constant maps in E(N)
and points of N: for each z € N there exists c, that maps A to z, and conversely,
for each ¢ € C(N) there exists z € N/, such that ¢ = c,.

Lemma 2. Let N7 and N> be complex manifolds, with N1 being weakly doubly-
transitive. Let ® : E(N7) — E(N2) be an epimorphism of semigroups. Then there
exists a bijective map ¥ : N7 — Ns such that

(13) B(f)=Vofol ! VfeEWN).

Proof. Because of (12), and the assumption that ® is an epimorphism, for every
¢ € C(N1) we have that ®(c) € C(N3). Now we can define a map ¥ : N; — N3 as
follows

U(z) = w if and only if ®(c,) = cy.
Let f be arbitrary map in E(N7). Then
(14) foc.=cype.
Applying ® to both sides of (14), we obtain
P(f) 0 cu(z) = Cu(f(z))
which is equivalent to
(15) B(f)ol =To f.

Equation (15) implies surjectivity of ¥. Indeed, since ® is an epimorphism, for
every w € Ny, there exists f € E(N}), such that ®(f) = c¢,. Therefore, by (15),
Vo f(z) =w, Vz € N1, which implies that ¥ is onto.

We prove that ¥ is injective by showing that for every w € N3 the full preimage
S = ¥~ (w) consists of one point. Assume, by contradiction, that S, consists
of more than one point for some w. It cannot be all of N7, since ¥ is onto. Let
z1 be a point in Sy, such that in arbitrary neighborhood of it there exist a point
in Sy, and a point in N7 \ Sy. Let 22 be arbitrary point in S, different from
z1. From our assumption that N; is weakly doubly-transitive, it follows that there
exists h € E(N1), such that h(z1) = w1 € Sy, and h(z2) = wy ¢ S,,. Evaluating
®(h) at w, and applying (15) we have

D(h)(w) = D(h)o¥(z1) =Toh(z) =T(w1) = w,
D(h)(w) = @(h) 0 U(z2) = Wo h(z) = U(w2) # w,

which is a contradiction. Thus we proved that ¥ is a bijection, and the equation (13)
follows from (15). O



MAPS CONJUGATING HOLOMORPHIC MAPS 9

The first part of Theorem 2 now follows from Lemma 2 and Theorem 1, if we
choose N7 = C”, and Ny = M. The second part follows if we take N7 = M, Ny =
C™, and observe that equation (13) implies that ® is an isomorphism. O

6. ISOMORPHIC SEMIGROUPS FOR INEQUIVALENT MANIFOLDS

In this section we prove Theorem 3. We construct the domains D; and Do
by taking direct sums of n copies of domains as in Hinkkanen [7]. From [7], we
know that there exist unbounded domains U;,Us in C such that U; is neither
conformally nor anticonformally equivalent to Us, and such that E(Uy), and E(Us)
are isomorphic and consist of the constants plus the identity. Omne such choice
of domains is given by U; = C\ {0,1,2}, and Uy, = C\ {0,1,2,...}. We set
Dy =U; x---x Uy, Dy = Us X -++ x Uy, and verify that for these domains the
conclusion of Theorem 3 holds.

Let F € E(D,,), m =1,2. Then each component f; of F' maps D,, holomorphi-
cally into U,,. Therefore, by the choice of U,,, if we fix all zx, k=1,...,n,k # i,
then the induced map g;(2;) is in E(Up,), hence is either a constant map or the
identity. Since f; is a continuous function in a domain, which is a direct sum of
domains in C, we conclude that it is identically equal to either a constant, or z; for
some i = 1,...,n. Using this description of the elements in D,,,, we can easily show
that F(D1) and E(D2) are isomorphic. Let £ be a bijective map from U; onto Us.
If F' is an endomorphism of D;, whose components are f1,..., f,, then we set ¢(F)
to be an endomorphism of Dy, whose j’th component is z; if f; = z;, and £(c) if
f; = ¢, a constant map. It is a simple matter to verify that the map ¢, so defined,
is an isomorphism of semigroups.

To show that D; and Ds are not biholomorphically or antibiholomorphically
equivalent, we argue by contradiction. Suppose first that there exists a biholomor-
phic map F' from D; onto Ds. Let g be a non-constant restriction of a component
of F' to a coordinate axis. Such a component exists, since otherwise the map F
would be constant. Since g omits more than two points, each of the points 0, 1, 2, co
must be a removable singularity or a pole. Therefore, g extends to a rational map.
But this is a contradiction, because g omits infinitely many points. Similarly, we
arrive at a contradiction by assuming that there exists an antibiholomorphic map
from D; onto Do, and applying the same argument to a conjugate map. O
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