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Abstract In this article, we address the generalized BBM equation with white noise
dispersion which reads

du − duxx + ux ◦ dW + u puxdt = 0,

in the Stratonovich formulation, where W (t) is a standard real valued Brownian
motion. We first investigate the well-posedness of the initial value problem for this
equation. We then prove theoretically and numerically that for a deterministic initial

data, the expectation of the L∞
x norm of the solutions decays to zero at O(t− 1

6 ) as
t approaches to +∞, by assuming that p > 8 and that the initial data is small in
L1
x ∩ H4

x . This decay rate matches the one for solutions of the linear equation with
white noise dispersion.
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1 Introduction

The generalized Benjamin–Bona–Mahony (gBBM) equation, which is also called
generalized regularized long wave equation,
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ut − 1

6
utxx + ux + u pux = 0, (1.1)

has been widely studied theoretically and numerically in the mathematical literature.
Examples of such investigations include study of the initial value problem as in [4]
and study of the decay rate of solutions when the initial data is small [2].

These analysis and numerical simulations are based on the assumption that the
outside force is zero or deterministic, so the solution is deterministic. But in reality,
the bottom geography, such as the sand beach, and the air pressure on the surface,
such as the wind effect, are stochastic in nature. It is therefore desirable to study
the stochastic water wave equations. The exploration of stochasticity for dispersive
equations initiated first by considering forcing termswith additivewhite noise and then
moved on to forcing termswithmultiplicative white noise; see [5,10,14–16,19,24,26]
and the references therein. But as shown in [7], the bottom topography and the pressure
variation not only affect the forcing term, but also affect the linear terms of the water
wave equations.

Recently, for a particular case of nonlinear Schrödinger equations, stochasticity was
introduced in the dispersion through the linear part of the equation, which oscillates
following the variations of aBrownianmotion. In [11,18] the authors studied nonlinear
Schrödinger equation (NLS) with white noise modulation and they showed that it
describes the homogenization of the deterministic NLS equations with time dependent
dispersion satisfying some ergodicity properties. Such investigation furthers the study
where the dispersion is driven by a deterministic oscillating function [3]. More general
modulated dispersion associatedwith the initial value problem forNLS andKorteweg–
de Vries equation was investigated recently in [8,9]. In this article, we are following
this direction and introducing the stochasticity through the linear part of the generalized
BBM equation.

The article is organized as follows. In Sect. 2, we introduce the mathematical
framework and we state the main results of this article. In Sect. 3, we prove the
global well posedness for the initial value problem associated to the generalized BBM
Eq. (2.4) for any value p ≥ 1. Here we emphasize that due to the particular structure of
the Stratonovich product, the H1

x normof the solution is conservedwith respect to time.
In Sect. 4, we address the question of the decay rate of the solutions. We shall show
that, for the linear problem (2.2), the expectation of the L∞

x norm of the solutions
is decreasing to zero, but at a slower rate than the solutions of the corresponding
deterministic equation. We then prove a similar result for the nonlinear problem by
assuming that p > 8 and that the initial data is small in L1

x ∩ H4
x ; here the initial data

is assumed to be deterministic. We shall finish this work with numerical simulations
that demonstrate the theoretical results obtained on decay rates are sharp.

We complete this introduction with some notations. In general, the function f (s)
is a random function in Fs . The number s is assumed to satisfy s < t . The standard
assumptions on W (t) are that W (t) − W (s) ∼ N (0, t − s), where N (0, t − s) is
a normally distributed random numbers with mean 0 and variance t − s, and that
W (t) − W (s) is independent of the past Fs . We denote by Hm

x the standard Hilbert
space on the x variable. The notation L p

x will be used for standard Lebesgue spaces.
The Banach space L1

x ∩ Hm
x will be endowed with the sum of the L1

x and Hm
x norms.
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The notation û denotes the Fourier transform of u in space. We set A for the operator
(1 − �)−1∂x which maps Hm

x into Hm+1
x for any m. For the sake of simplicity, the

random variable ω and the space variable x may be omitted throughout this article.
The constant c is a numerical positive constant that may vary from one line to another
and we set < x >= √

1 + x2.

2 Preliminaries and main results

2.1 White noise modulated dispersion

In this article, we plan to address the generalized BBM equation with white noise
dispersion. Let W (t) be a standard real valued Brownian motion. Associated with
this Brownian motion, there is a probability space (�,F , P) and a stochastic basis
(�,F , P, (Ft )t≥0). Nowwe consider the linear BBM equation, that reads in the deter-
ministic setting as

ut − uxxt + ux = 0, (2.1)

with a white noise dispersion. For simplicity of notation, we set the constant to be 1
for the moment. For later use, it is convenient to observe that (2.1) reads also as the
ODE in H1(R)

ut + Au = 0,

where A = (I − ∂2x )
−1∂x is the bounded skew symmetric operator whose symbol is

iξ(1 + ξ2)−1.
Consider now us being a random Fs variable which takes values in some Hilbert

space such as H1
x . We seek for s < t and x ∈ R a process u(t, x) that is a solution of

the Stochastic Differential Equation (SDE) in H1(R)

du + AudW − 1

2
A2udt = 0,

u(s) = us .
(2.2)

This SDE (written in its Ito formulation) reads in its formally equivalent Stratonovich
formulation (a short hand version) as

du + Au ◦ dW = 0,

u(s) = us .

It is well known (see [23]) that a solution of (2.2) is defined through its Fourier
transform in space as follows

û(t, ξ) = e
− iξ

1+ξ2
(W (t)−W (s))

ûs(ξ). (2.3)
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In comparison, the solution of usual BBM equation with deterministic dispersion (2.1)
reads

û(t, ξ) = e
− iξ

1+ξ2
(t−s)

ûs(ξ).

It is worth to point out that the Brownian motion acts both on the drift term and
on the dispersive term. This can be seen from the following. The BBM equation is
equivalent to the KdV equation in the long wavelength regime, namely when ξ is
sufficiently small. In this regime

iξ

1 + ξ2
(W (t) − W (s)) 	 (iξ − iξ3)(W (t) − W (s)).

Therefore, formally, the variation of the Brownian motion acts also on the KdV term
iξ3 which is the dispersion term.

The nonlinear equation we will address reads

du − duxx + ux ◦ dW + u puxdt = 0, (2.4)

in Stratonovich’s formulation. Once again this is a short-hand notation for an equation
in Ito’s formulation that reads

du + AudW − 1

2
A2udt + A

(

u p+1

p + 1

)

dt = 0. (2.5)

2.2 Statements of the main results

We first prove the well posedness of the initial value problem that is valid for any
p ≥ 1.

Theorem 2.1 Let u0 beF0 measurable and in L2(�; H1
x ). Then there exists a unique

solution u(t) of the Eq. (2.5), adapted to the filtration Ft , with paths almost surely
(a.s.) in C(0,+∞; H1

x ). Moreover a.s. the H1
x norm of the solution is conserved, that

is ||u(t)||H1
x

= ||u0||H1
x
for all t .

The classical deterministic result (see [2]) asserts that if the initial data u0 is small
enough in L1

x ∩ H4
x and p is large enough, then the solution decays in L∞

x as O(t− 1
3 )

when t → ∞, which is the same rate as for the solutions to the corresponding linear
problem. We expect an analogous result for the equation with stochastic dispersion
management, but with a decay rate which is half of the deterministic case.We consider
the set of random solutions starting from a deterministic initial data, and we prove that
in expectation the random solutions converge as fast as the solutions of the linear
random equation.

Theorem 2.2 Fix p > 8. Consider u0 ∈ L1
x ∩ H4

x such that ‖u0‖L1
x∩H4

x
< ε0 where

ε0 is small enough. Then the solution u defined in Theorem 2.1 satisfies for any t > 0

E(||u(t)||L∞
x

) ≤ C(ε0) < t >− 1
6 . (2.6)
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3 The initial value problem

Denote the solution of Eq. (2.2) by u(t) = S(t, s)u(s) given by (2.3). Then almost
surely in ω the linear operator S(t, s) defines an isometry in any Sobolev space Hm

x .
Our goal is to seek a mild solution of the Eq. (2.4) with initial condition u(x, 0) = u0,
namely a solution of the following Duhamel form

u(t) = S(t, 0)u0 − 1

p + 1

∫ t

0
S(t, s)A(u p+1(s))ds, (3.1)

where A = (1 − �)−1∂x .
To prove Theorem 2.1, we follow a classical strategy for stochastic PDEs (see

[11,18,23]). We truncate the nonlinearity to have a globally Lipschitz mapping acting
on the Banach algebra H1(R), and then we pass to the limit.

3.1 Solving a truncated equation

To begin with, we recall that for any m ≥ 1, there exists a constant cm,p > 0, that
depends on m and p, such that for any function f in Hm

x

|| f p+1||Hm
x

≤ cm,p|| f ||pL∞
x

|| f ||Hm
x
. (3.2)

A general proof of (3.2) for Lebesgue spaces appeared in [21]. In addition, due to the
Sobolev embedding H1

x ⊂ L∞
x , it is straightforward to check that themap u → Au p+1

is a locally Lipschitz mapping in H1
x .

We now introduce a smooth monotonous decreasing cutoff function θ that satisfies
θ(s) = 1 for |s| ≤ 1 and θ = 0 for |s| ≥ 2 and we investigate the solution of the
equation

uR(t) = S(t, 0)u0 − 1

p + 1

∫ t

0
S(t, s)θR(s)A

(

u p+1
R (s)

)

ds, (3.3)

where θR(s) = θ(
||uR(s)||

H1
x

R ).

Proposition 3.1 Let u0 be F0 measurable and in L2(�; H1
x ). Then there exists a

unique solution uR of the Eq. (3.3) in L2(�;C([0,+∞); H1
x )), uR(s) being adapted

to the filtration Fs .

Proof We omit the subscript R to write uR = u for the sake of simplicity. Now,
fixing R0 such that R0 ≥ 2||u0||L1(�;H1

x ), we plan to use the fixed point argument
for the Eq. (3.3) in the ball B0 of radius R0 in the Banach space XT = {u ∈
L2(�;C([0, T ]; H1

x )); u(s) adapted to Fs} where T will be specified later.
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Let T1 be the right hand side of (3.3) and let u, v be in B0. Since for 0 < t < T ,

||T1(u)(t)||H1
x

≤||u0||H1
x

+ c
∫ T

0
θR(s)||u(s)||p+1

H1
x
ds

≤||u0||H1
x

+ cT (2R)p+1,

the expectation satisfies

E

(

||T1(u)||2L∞(0,T ;H1
x )

)

≤ R2
0

2
+ cT 2(2R)2p+2 ≤ R2

0 .

For T small enough, which may depend on R0 and on R, T1 maps B0 into B0.
Now consider the difference between the two solutions u and v. Here we write

θu(s) = θ(
||u(s)||

H1
x

R ). We proceed as in [11] and obtain

||T1(u)(t) − T1(v)(t)||H1
x

≤ c
∫ T

0
||θu(s)u(s)p+1 − θv(s)v(s)p+1||H1

x
ds. (3.4)

We seek an upper bound for ||θu(s)u(s)p+1 − θv(s)v(s)p+1||H1
x
. Assume that for

a given s and a given ω, ||v(s)||H1
x

≤ ||u(s)||H1
x
. This is equivalent to θu(s) ≤ θv(s).

By the triangle inequality

||
(

θu(s)u(s)p+1 − θv(s)v(s)p+1
)

||H1
x

≤ θu(s)||u(s)p+1 − v(s)p+1||H1
x

+ |θu(s) − θv(s)|||v(s)p+1||H1
x
.

Firstly

θu(s)||u(s)p+1 − v(s)p+1||H1
x

≤ c(2R)p||u(s) − v(s)||H1
x
.

Since ||v(s)||H1
x

> 2R implies |θu(s) − θv(s)| = 0, we assume ||v(s)||H1
x

≤ 2R. In
this case we have

|θu(s) − θv(s)| ≤ cR−1||u(s) − v(s)||H1
x
,

and therefore

||v(s)p+1||H1
x
|θu(s) − θv(s)| ≤ cRp||u(s) − v(s)||H1

x
.

The reverse case θu(s) ≥ θv(s) is done similarly. Then in any case and for s < t

∣

∣

∣

∣

∣

∣

(

θu(s)u(s)p+1 − θv(s)v(s)p+1
)∣

∣

∣

∣

∣

∣

H1
x

≤ cRp||u(s) − v(s)||H1
x
.

Coming back to (3.4) and considering the expectation, we find

E(||T1(u) − T1(v)||2L∞(0,T ;H1
x
) ≤ cR2pT 2

E(||u − v||2L∞(0,T ;H1
x )

.
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When T is small enough depending on R and R0, T1 is a contraction mapping and
there exists a unique fixed point in XT . ��

4 Passing to the limit R → +∞
We first state and prove

Proposition 4.1 The mild solution given by Proposition 3.1 is the classical solution
of the truncated SDE

duR + AuR − 1

2
A2uRdt + θR A

(

u p+1

p + 1

)

dt = 0. (4.1)

Proof Proceeding as Theorem 8.1.8 in [22] (or as in [20,23]), we can prove that the
Eq. (4.1) has a unique solution in L2(�;C[0, T ](H1(R))) constructed by the fixed
point theorem on the mapping

v �→ −
∫ t

0
Au(s)dWs +

∫ t

0
A

(

Au − θR
u p+1

p + 1

)

ds.

Moreover the mild solution reads uR(t) = S(t, 0)Y (t), where Y (t) = u0 −
1

p+1

∫ t
0 S(0,−s)θR(s) f (uR(s))ds. Applying Ito’s chain rule formula we establish

that uR is also the solution of (4.1). ��

We now prove that the H1
x norm of this solution does not depend on t .

Lemma 4.2 Almost surely in ω, ||uR(t)||H1(R) = ||u0||H1(R).

Proof We drop the subscript R in the proof. We then introduce the process X =
||u||2

H1
x
. Formally, the Fourier transform of Eq. (4.1) reads

dû = μ(̂u)dt + σ (̂u)dW, (4.2)

with

μ(̂u) = −(1 + ξ2)−1

(

ξ2

2(1 + ξ2)
û + θR(t)iξ

û p+1

p + 1

)

,

and

σ (̂u) = − iξ

1 + ξ2
û.

123



Stoch PDE: Anal Comp

By Ito’s chain rule formula

dX = 2Re

(∫

(1 + ξ2)̂uσ (̂u)dξ

)

dW

+ 2Re

(∫

(1 + ξ2)̂uμ(̂u)dξ

)

dt +
∫

(1 + ξ2)|σ (̂u)|2dξdt.

The first term vanishes because Re
(∫ |̂u|2iξdξ

) = 0. The second term expands as

− Re

(∫

ξ2

1 + ξ2
|û(ξ)|2dξ

)

− 2θR(t)Re

(

∫

iξ û
û p+1

p + 1
dξ

)

. (4.3)

We observe that the first term in the right hand side of (4.3) cancels with
∫

(1 +
ξ2)|σ (̂u)|2dξ . The remaining term can be computed using Plancherel formula as

θR(t)
∫

uxu
p+1dx = 0.

Finally dX = 0, and ||uR(t)||2
H1
x

= ||u0||2H1
x
holds a.s. In fact, this formal computation

can be proved rigorously, as in the proof of Theorem 4.1 in [11], mollifying u using a
suitable truncation function of û in the Fourier space and by a limiting argument. ��

To complete the proof of Theorem 2.1, it remains to construct a solution of the
original equation without truncation.

We proceed as follows. Consider an increasing sequence Rn that diverges towards
+∞. Let un be the sequence of solutions constructed by the fixed point argument on
the truncated Eq. (3.3) at level R = Rn . Actually un is solution to

un(t) = S(t, 0)u0 − 1

p + 1
θ

( ||u0||H1
x

Rn

)∫ t

0
S(t, s)A(u p+1

n (s))ds, (4.4)

since the H1 norm is conserved. Pick now ω ∈ � such that ||u0||H1
x

< +∞. This
assertion is possible on a subset of � of probability 1. Taking n is large enough,

depending on ω, so that Rn ≥ ||u0||H1
x
. Then we have θ(

||u0||H1
x

Rn
) = 1. Therefore

uRn = uRn+m for any m ≥ 0. The limit u = limn→+∞ uRn , that converges a.s., is
solution of the original equation. Actually, we can prove that un converges towards u
in L2([0, T ] × �; H1

x ). For the uniqueness, consider two solutions u, v starting from
u0. For a given ω such that R > ||u0||H1 , the paths u(t), v(t) starting from u0 are
solutions to the mild Eq. (3.3) at level R. Since we have uniqueness for this equation
for solutions in C(0, T ; H1

x ), then u = v a.s.
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5 Decay of solutions

5.1 Linear BBM equation with white noise dispersion

Consider a solution of the linear BBM Eq. (2.2).
We have:

Lemma 5.1 Assume u(s) be Fs measurable and in L1
x ∩ H4

x a.s., then

||S(t, s)u(s)||L∞
x

≤ c
||u(s)||L1

x∩H4
x

< W (t) − W (s) >
1
3

. (5.1)

Proof Due to the stationary phase lemma in [2], we have

||S(t, s)u(s)||L∞
x

≤ c
||u(s)||L1

x∩H4
x

|W (t) − W (s)| 13
. (5.2)

This provides the estimate (5.1) for |W (t) − W (s)| larger than 1. We also have

||S(t, s)u(s)||L∞
x

≤ c||S(t, s)u(s)||H1
x

≤ c||u(s)||H1
x
.

which gives the estimate for |W (t)−W (s)| smaller than 1 and completes the proof. ��
Using estimate (5.2), the following theorem can be obtained.

Theorem 5.2 Assume u(s) beFs measurable and in L1(�; L1
x ∩ H4

x ) , then for t > s

E(||S(t, s)u(s)||L∞
x

) ≤ c
E(||u(s)||L1

x∩H4
x
)

|t − s| 16
. (5.3)

Proof Since W (t) − W (s) is independent of Fs ,

E

( ||u(s)||L1
x∩H4

x

|W (t) − W (s)| 13

)

= E(|W (t) − W (s)|− 1
3 )E(||u(s)||L1

x∩H4
x
).

Now because W (t) − W (s) ∼ N (0, t − s) which has probability density function
1√

2π(t−s)
exp(− x2

2(t−s) ) ,

E

(

|W (t) − W (s)|− 1
3

)

= c
∫

exp

(

− x2

2(t − s)

)

dx

|t − s| 12 |x | 13
≤ c

1

|t − s| 16
.

Using (5.2), we obtain the desired result. ��
Remark 5.3 It is worth to point out that the average decay rate of the solution is 1

6
which is half of the rate for the BBM equation with deterministic dispersion. This may
be explained because E(|W (t) − W (s)|2) = t − s. Then the oscillations of solutions
propagate in average twice as slow as in the deterministic case.
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5.2 Decay for the nonlinear problem

We now handle the proof of Theorem 2.2. The proof is divided into several lemmata.
Throughout this section, u0 is a deterministic function. We first prove that if the initial
data is in H3

x , then the solution remains in H3
x .

Lemma 5.4 Consider u(t) the solution of the equation given by Theorem 2.1. If u0
belongs to H3

x and satisfies ||u0||H3
x

≤ ε0, there exists a constant c > 0 that does not
depend on t such that a.s.

||u(t)||H3
x

≤ cε0

(

1 +
∫ t

0
||u(s)||pL∞

x
ds

)2

. (5.4)

Proof Since

u(t) = S(t, 0)u0 − 1

p + 1

∫ t

0
S(t, s)A(u p+1(s))ds,

and A maps H2
x into H3

x , we have

||u(t)||H3
x

≤ ||u0||H3
x

+ c
∫ t

0
||u p+1(s)||H2

x
ds. (5.5)

Gathering (3.2) with (5.5), we find

||u(t)||H3
x

≤ ||u0||H3
x

+ c
∫ t

0
||u(s)||H2

x
||u(s)||pL∞

x
ds.

Using interpolation and the conservation of the H1
x norm, we obtain

||u(t)||H3
x

≤ cε0 + c
√

ε0

∫ t

0
||u(s)||

1
2
H3
x
||u(s)||pL∞

x
ds. (5.6)

Let ϕ(t) be the right hand side of (5.6), we can write

ϕ̇(t) ≤ c
√

ε0||u(t)||pL∞
x

√

ϕ(t).

Integrating in time completes the proof of the lemma. ��
Remark 5.5 A similar result holds for any Hm

x norm with m ≥ 1, namely

||u(t)||Hm
x

≤ c||u0||Hm
x

(

1 +
∫ t

0
||u(s)||pL∞

x
ds

)m−1

.

A consequence of these inequalities is that any solution that has enough decay in L∞
x

is uniformly bounded in any Hm
x .
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We now prove a key inequality (5.7) which provides a link between the modulus of
the Wiener process < W (t) > and ||u(t)||L∞

x
.

Lemma 5.6 Consider u(t) the solution of the equation given by Theorem 2.1. Assume
u0 ∈ L1

x ∩ H4
x and ||u0||L1

x∩H4
x

≤ ε0. Then a.s we have

||u(t)||L∞
x

≤ ε0

< W (t) >
1
3

(

1 + (ε0

∫ t

0
< W (s) >

1
3 ||u(s)||p−1

L∞
x
ds)3

)

. (5.7)

Proof Using the linear estimate (5.1) we obtain that for a solution of (2.4)

||u(t)||L∞
x

≤ c
||u0||L1

x∩H4
x

< W (t) >
1
3

+ c
∫ t

0

||Au p+1||L1
x∩H4

x

< W (t) − W (s) >
1
3

ds.

The right hand side can be bounded by observing

||Aup+1||L1
x

≤ c||uxu p||L1
x

≤ c||u||2H1
x
||u||p−1

L∞
x

.

Using (3.2) and the Sobolev embedding H1
x ⊂ L∞

x ,

||Au p+1||H4
x

≤ c||u||pL∞
x

||u||H3
x

≤ c||u0||H1
x
||u||p−1

L∞
x

||u||H3
x
.

These inequalities, combined with the H3 bound (5.4), give

||u(t)||L∞
x

≤ c
ε0

< W (t) >
1
3

+ cε20

∫ t

0

||u(s)||p−1
L∞
x

(1 + ∫ s
0 ||u||pL∞

x
ds)2

< W (t) − W (s) >
1
3

ds. (5.8)

From the triangular inequality, we have

< W (t) >≤ √
2 < W (t) − W (s) >< W (s) > .

Therefore (5.8) implies

||u(t)||L∞
x

≤
c

ε0

< W (t) >
1
3

(

1 + cε0

∫ t

0
< W (s) >

1
3 ||u(s)||p−1

L∞
x

(1 +
∫ s

0
||u||pL∞

x
ds)2)ds

)

.

Set

I (t) = 1 + ε0

∫ t

0
< W (s) >

1
3 ||u||p−1

L∞
x
ds,

we observe that due to ||u||L∞
x

≤ c||u||H1
x

≤ cε0 ≤ c,

1 +
∫ t

0
||u||pL∞

x
ds ≤ cI (t).
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Putting together these inequalities, it is found

||u(t)||L∞
x

≤ c
ε0

< W (t) >
1
3

(

1 + c
∫ t

0
I ′(s)I 2(s)ds

)

.

This completes the proof of the Lemma by mere computations. ��
We now gather the previous results to derive an upper bound for the solutions.

We now state a preliminary result. Introduce the auxiliary function

a(t) =
(

< t >
1
2

< W (t) >

)
p−2
3p−3

, (5.9)

with the corresponding maximal function a∗(t) = sups≤t a(s).

Lemma 5.7 There exists cp > 0 that does not depend on t such that

E

(

a∗(t)
5
2

)

≤ cp. (5.10)

Proof By a convexity argument, for q > 0, the function < W (t) >−q is a submartin-
gale. Then we can apply Doob’s maximal L p inequality [25] that leads to, for any
given t > 0,

E(a∗(t)
5
2 ) ≤ cpE

⎛

⎜

⎝

(

< t >
1
2

< W (t) >

)
5p−10
6p−6

⎞

⎟

⎠
.

For t ≤ 1 we have that <t>
1
2

<W (t)> ≤ c. For t ≥ 1, since W (t) − W (s) ∼ N (0, t − s),
proceeding as (5.4) we have that for q < 1

E(< W (t) >−q) ≤ c
∫

R

exp(− x2
2t )

|x |−q
√
t
dx ≤ c

1

t
q
2
.

Then for t ≥ 1, since 5p−10
6p−6 < 1

E

⎛

⎜

⎝

(

< t >
1
2

< W (t) >

)
5p−10
6p−6

⎞

⎟

⎠ ≤ c.

��
From the previous results, we now derive an upper bound for the solutions. Let us

set

f : R
+ → R

+, z �→ z

1 + ε
15
2
0 z3p−3

.
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Fig. 1 Graphical representation
of the function f (dashed line)
and the convex upper bound g
(dotted line)

f(z)

g(z)

Z0

We observe that f (z) is a convex function for z ≥ Z0 = ((
3p−4
3p−2 )ε

15
2
0 )

− 1
3p−3 . We

consider a decreasing convex function g as follows (see Fig. 1)

g(z) =
{

f (Z0) + f ′(Z0)(z − Z0), for z ≤ Z0,

f (z), for z ≥ Z0.

Let us define the auxiliary function

y(t) =< t >
p−2

6(p−1) < W (t) >
1

3(p−1) ||u(t)||L∞
x

(5.11)

and the corresponding maximal function y∗(t) = sups≤t y(s). We now state

Proposition 5.8 Assume ε0 is small enough. Then there exists c > 0 that depends on
p such that for any t ∈ R,

E(y∗(t)
5
4 ) ≤ cε

5
4
0 . (5.12)

Proof The proof is divided into two steps. We first prove

Lemma 5.9 Assume ε0 is small enough. Then, there exists c > 0 that depends on p
such that for any t ∈ R,

E(y∗(t)
5
2 ) ≤ cε

− 5
2p−2

0 . (5.13)

Proof We infer from (5.7), with a as in (5.9),

y(t) ≤ cε0a(t)

(

1 +
(

ε0

∫ t

0

y(s)p−1

< s >
p−2
6

ds

)3
)

.

Using the assumption that p > 8, which ensures < s >− p−2
6 is integrable, we then

have
y∗(t) ≤ cε0a

∗(t)
(

1 + ε30 y
∗(t)3p−3

)

. (5.14)
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This implies, with another constant c,

(y∗(t))
5
2 ≤ cε

5
2
0 (a∗(t))

5
2

(

1 + ε
15
2
0 (y∗(t)

5
2 )3p−3

)

.

The inequality (5.14) is equivalent to

f (y∗(t)
5
2 ) ≤ cε

5
2
0 (a∗(t))

5
2 .

We now compute E(y∗(t) 5
2 ) = G(t) + B(t), where

G(t) = E(y∗(t)
5
2 |y∗(t)

5
2 ≤ Z0) =

∫

{y∗(t)
5
2 ≤Z0}

y∗(t)
5
2 dP(ω) ≤ Z0,

and

B(t) = E(y∗(t)
5
2 |y∗(t)

5
2 ≥ Z0).

The Jensen inequality (see [6]) gives

g(B(t)) ≤ E(g(y∗(t)
5
2 )|y∗(t)

5
2 ≥ Z0) ≤ E( f (y∗(t)

5
2 ) ≤ cε

5
2
0 E(a∗(t)

5
2 ),

and thanks to Lemma 5.7

g(B(t)) ≤ ccpε
5
2
0 . (5.15)

We now choose ε0 small enough so that g(B(t)) ≤ g(Z0); actually, we have to
pick ε0 such that

ccpε
5
2
0 ≤ g(Z0) =

(

3p−4
3p−2

)− 1
3p−3

1 + 3p−4
3p−2

ε
− 5

2(p−1)
0 .

Since g is a decreasing function, then B(t) ≥ Z0. Therefore (5.15) implies

f (B(t)) = B(t)

1 + ε
15
2
0 B(t)3p−3

≤ cε
5
2
0 .

Finally,

E

(

y∗(t)
5
2

)

= G(t) + B(t) ≤ Z0 + cε
5
2
0

(

1 + ε
15
2
0 E

(

y∗(t)
5
2

)3p−3
)

.
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The function X �→ cε100 X3p−3 − X + Z0 + cε
5
2
0 is negative for X = 2Z0 (for ε0 small

enough). We observe that t �→ E(y∗(t) 5
2 ) is continuous and that E(y∗(0) 5

2 ) ≤ cε
5
2
0 �

Z0. Then the function E(y∗(s) 5
2 ) remains trapped in [0, 2Z0]. ��

We now complete the proof of Proposition 5.8. We define

τω = inf{t > 0; y∗(t) > 2cε0a
∗(t)}. (5.16)

Either τω = +∞ or y∗(τω) = 2cε0a∗(τω). In this second case, from (5.14),
y∗(τω) ≤ 2cε40a

∗(τω)y∗(τω)3p−3, which leads to 1 ≤ cε3p0 a∗(τω)3p−3, and then

to 1 ≤ cε
5p

2p−2
0 a∗(τω)

5
2 . Therefore, for any T > 0,

P(τω ≤ T ) ≤
∫

{τω≤T }
cε

5p
2p−2
0 a∗(T )

5
2 dP(ω),

thanks to Lemma 5.7

P(τω ≤ T ) ≤ ccpε
5p

2p−2
0 . (5.17)

We now write

E(y∗(t)
5
4 ) = E(y∗(t)

5
4 |τω > t) + E(y∗(t)

5
4 |τω ≤ t). (5.18)

The first term of the right hand side of (5.18) is bounded by above by cε
5
4
0 E(a∗(t) 5

4 ) ≤
c̃ε

5
4
0 . We bound the second term by Cauchy–Schwarz inequality as

E(y∗(t)
5
4 |τω ≤ t) ≤ E(y∗(t)

5
2 )

1
2 P(τω ≤ t)

1
2 .

Using Lemma 5.9 and estimate (5.17) concludes the proof of the proposition. ��
We now complete the proof of Theorem 2.2.

Using the Hölder inequality in � and gives

E(||u(t)||L∞
x

) ≤ E(y
5
4 (t))

4
5 E((< W (t) >− 1

3 < t >− p−2
6 )

5
p−1 )

1
5 . (5.19)

The result follows promptly, due to Proposition 5.8 and to

E

(

(

< W (t) >− 1
3 < t >− p−2

6

) 5
p−1

) 1
5

≤ c < t >− 1
6 .
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6 Numerical simulations

6.1 Space and time discretizations

Spectral methods are suitable to the discretization of equations such as (2.4) because
the derivatives and the nonlinearity appearing in (2.4) can be easily treated.

For the numerical computations, we consider (2.4) on a bounded domain [−K , K ],
with K being a large fixed value. The discrete Fourier basis consisting of trigonometric
polynomial functions

ei
kπ
K x , i2 = −1 , −Nx

2
≤ k ≤ Nx

2
− 1,

where Nx ∈ 2N
∗ represents the number of modes, any periodic and locally integrable

scalar function u can be approximated by uK , where uK in the considered discrete
basis is as follows,

uK (x) =
Nx
2 −1
∑

k=− Nx
2

û

(

kπ

K

)

ei
kπ
K x ,

with

û

(

kπ

K

)

= 1

2K

∫ K

−K
u(x)e−i kπK x dx .

The problem now becomes a system of Nx ordinary differential equations with Nx

unknowns: for each ξ , find û(ξ, t), such that

{

(1 + ξ2)̂ut (ξ, t) + iξ û(ξ, t) ◦ dWt + iξ û p+1

p+1 (ξ, t) = 0 , ∀ t > 0,
û(ξ, 0) = û0(ξ) ,

(6.1)

where

ξ = kπ

K
, −Nx

2
≤ k ≤ Nx

2
− 1.

For the time discretization, the definition of the Stratonovich integral has to be used.
This integral

∫ T
0 u(t) ◦ dWt is defined as the limit in probability of the sum

N
∑

n=1

u(tn+1) + u(tn)

2
(W (tn+1) − W (tn)).

Thus, for consistent numerical computations on long time intervals, the Cranck–
Nicolson method is used.

123



Stoch PDE: Anal Comp

Let�t > 0 be the stepsize of the time discretization, and set tn = n�t . For n ∈ N,
we denote by ûn an approximation of û(ξ, tn) and by un an approximation of u(x, tn),
where x ∈ [−K , K ]. The numerical scheme reads

(1 + ξ2)(̂un+1 − ûn) + iξ
ûn+1 + ûn

2
�Wn + iξ�t

2

⎛

⎝

̂
u p+1
n+1

p + 1
+

̂
u p+1
n

p + 1

⎞

⎠ = 0

where �Wn = W (tn+1) − W (tn) = √
dt Randn(1) and W (0) = 0 with Randn(1)

being the normally distributed random numbers.
For linear case, the evolution of un+1 is straightforward. For the nonlinear case,

the un+1 is computed iteratively. Let M ≥ 1 be a maximal number of iterations of the
Picard iterations, the algorithm for solving (6.1) is as follows:

• Set u0 and compute û0.
• For n = 0, 1, . . . , compute:

• For m = 0, 1, . . . , M − 1, ûn+1,0 = ûn, and

ûn+1,m+1 :=
ûn

(

2(1 + ξ2) − iξ�Wn
) − iξ�t

(

û p+1
n+1,m
p+1 + û p+1

n
p+1

)

2(1 + ξ2) + iξ�Wn
. (6.2)

The iterations are stopped if one of the two following cases happen:
• when ‖un+1,m+1 − un+1,m‖l2/‖un+1,0‖l2 ≤ τ , with τ > 0 being a fixed
tolerance. We then set un+1 := un+1,m+1;

• or when m = M − 1. Here, we set un+1 := un+1,m .

Remark 6.1 The Stratonovich integral is used since Itô’s formulation (2.5) is not suit-
able for the discretization of these stochastic partial differential equations. Indeed,
Itô’s integral is explicitly defined as

N
∑

n=1

u(tn)(W (tn+1) − W (tn)),

and an explicit discretization of the equations implies a loss of conservation laws.

6.2 The linear case

The numerical scheme is first tested for the stochastic linear equation

du − duxx + ux ◦ dW = 0. (6.3)

In this case, the scheme is explicit and no iteration is required. Simulations are per-
formed with K = 100, Nx = 212,�t = 0.1. To obtain a precise computation of the
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1/6

Fig. 5 Decay rate of the L∞-norm expectation (dashed line) and logarithm of the H1-norm (dotted line)
with respect to time

expectation with respect to the Brownian motion, a Monte-Carlo method is performed
with 95% confidence interval using the standard estimator

σ 2
N = 1

N − 1

N
∑

i=1

(

||uωi ||L∞ − E(||uN ||L∞)
)2

.

Simulations start from the initial Gaussian datum:

u0(x) = αe−x2

with α = 0.5. In the left figure of Fig. 2, the approximate solution, computed with
Crank–Nicolson scheme as stated before and the exact solution

ûex (ξ, t) = e
− iξ

1+ξ2
(Wt−W0)û0(ξ).

at t = 1000 are plotted. The two solutions are almost on top of each other. The right
figure of Fig. 2 shows the L∞ error of the solutions at t = 1000 with respect to �t
(�t is computed uniformly from .005 to .1). Contrary to the deterministic case, the
Crank–Nicolson scheme applied to stochastic differential equations is of order 1. To
demonstrate the scheme is indeed order 1, we also plotted two additional curves in the
figure, one is �t and another is �t2.

Figure 3 shows the solutions of the linear equation for three distinct Brownian
motions (Wt ) at t = 1000. We note that for any (Wt ), the solution disperses, but the
dispersion tails are relatively large. The corresponding solution of the deterministic
linear equation is also shown in the left figure. In comparison, the wave fronts in
the stochastic case moves slower than the deterministic case. For the three solutions
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presented in Fig. 3, the decay rates of the L∞ norm of the solutions are computed and
they varies between 0.22 and 0.18 at t = 1000.

In Fig. 4, the time evolution of the solution is plotted for one Brownian motion. It
is observed that the dispersion of the solution is highly dependent on the stochastic
motion. Each turn in the Brownian motion induces or prevents the dispersion. We
see in Fig. 4 that in the early stages, the decrease of the Wiener process benefits the
dispersion. The growth of the process reduces it. The same phenomena can be observed
in also in Fig. 3.

To check that the decay rate for the expectation of the solution isO(t1/6)wecompute

in log–log scale, i.e. we plot in Fig. 5 the ratio
log

(

E(||u(t+�t)||L∞
x

)

E(||u(t)||L∞
x

)

)

log
(

t+�t
t

) . It approaches

approximately 1
6 ≈ 0.167 as t increases,whichdemonstrates that our result inTheorem

5.3 is sharp. The expectation of the H1 norm of the solution is also plotted and it is
well preserved. In fact, the H1 norm of the solution is well preserved for all Brownian
motions by the numerical scheme. Recall that, on average, the solution of the stochastic
equation (Theorem 2.2) moves twice as slow as the one of the deterministic problem
[1,2] as illustrated by Figs. 3 and 6.

6.3 Decay of small solutions of the nonlinear problem

We now evaluate the decay rate of the L∞ norm expectation to the nonlinear problem

du − duxx + ux ◦ dW + u puxdt = 0.

The behavior of small solutions of the nonlinear problem is very close to that of the
linear problem solutions. Although each stochastic solution disperses differently, the
decay rate of the L∞ norm expectation, obtained in Fig. 6, goes to 1

6 as t increases.
Here again, the H1 norm is well preserved for all Brownian motions by the numerical
scheme.

Remark 6.2 Similar results are obtained for other values of α, in particular for large
α which implies large amplitude initial data where the theorem does not cover. It
seems that the stochastic nature of the dispersion makes easier for the solutions to
decrease. One may wonder if we can prove the decay rate estimate for any solution of
the equation, for instance removing the smallness assumption on the initial data, by
probability arguments as in [17]. This raises technical difficulties andwill be addressed
in a forthcoming work. The decay result also implies that there is no solitary wave in
expectation. Nevertheless, it seems possible to build stochastic modulations that allow
the solution to remain close to the deterministic soliton φ(x − ct) [12,13].
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