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Abstract. In this manuscript, the existence of traveling-wave solutions
to Boussinesq systems

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

is established. We prove that all the systems with a < 0, c < 0 and
b = d exhibit traveling-wave solutions with small propagation speeds.
The result complements our earlier work [6] on a restricted family of the
systems where both existence and stability of traveling-wave solutions
were established in the presence of large surface tension, namely when
a+ b+ c+ d < 0.

1. Introduction

The four-parameter family of Boussinesq systems{
ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0, (1.1)

is introduced in [2] (generalized to include the surface tension in [7]) to
describe the motion of small-amplitude long waves on the surface of an ideal
fluid under the force of gravity. All the variables are scaled with length
scale h0 and time scale

√
h0/g, where g is the gravitational constant and

h0 (scaled to 1) the undisturbed average water depth. The quantity η(x, t)
is the deviation of free surface with respect to the undisturbed state, so
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η(x, t) + 1 corresponds to the total depth of the liquid at (x, t), while u(x, t)
is the dimensionless horizontal velocity field at height θ, where 0 ≤ θ ≤ 1.
From the derivation of (1.1), the parameters a, b, c, d are not independently
specified but satisfy the consistency condition

a+ b+ c+ d = 1
3 − τ, (1.2)

where τ is the non-dimensional surface tension coefficient. In this paper, we
assume that τ is any fixed non-negative number (including zero) and

a < 0, c < 0 and b = d. (1.3)

If a0 connotes a typical wave amplitude and λ a typical wavelength, the
condition of “small amplitude and long wavelength” just mentioned amounts
to

α =
a0

h0
<< 1, β =

h2
0

λ2
<< 1,

α

β
=
a0λ

2

h3
0

≈ 1. (1.4)

Systems (1.1) are first-order approximations in α and β to Euler’s equations,
justified rigorously by Bona, Colin and Lannes in [4]. We refer the readers
to the papers [2] and [3] for further discussion about the derivation and well
posedness of these systems.

These systems are free of the presumption of uni-directionality that is the
hallmark of KdV-type equations. One therefore expects that these Boussi-
nesq systems will have more intrinsic interest than the one-way models on
account of their considerably wider range of potential applicability. Because
dissipation is ignored in the derivation of (1.1) and the overlying Euler equa-
tions are Hamiltonian, it is expected that some of the systems in (1.1) will
likewise possess a Hamiltonian form. One finds indeed that, whenever b = d,
the functional

H(η, u) =
1
2

∫ ∞
−∞

(
− cη2

x − au2
x + η2 + (1 + η)u2

)
dx (1.5)

serves as a Hamiltonian and the systems have the conserved quantities∫ ∞
−∞

u(x, t)dx,
∫ ∞
−∞

η(x, t)dx, I(η, u) =
∫ ∞
−∞

(
ηu+ bηxux

)
dx (1.6)

along with H(η, u) (see Remark 4.1 in [3]).
By a traveling-wave solution we shall mean a solution (η, u) of (1.1) of the

form
η(x, t) = η(x− ωt) and u(x, t) = u(x− ωt) (1.7)

where ω denotes the phase speed of the wave. Notice that if
(
η(x−ωt), u(x−

ωt)
)

is a solution, then
(
η(x + ωt),−u(x + ωt)

)
is also a solution; thus the
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existence of a traveling-wave solution for ω > 0 will imply the existence of
a traveling-wave solution for ω < 0. When the traveling speed ω is zero,
the solution is time independent which usually is referred to as a standing
wave solution. In what follows, we require that η, u ∈ H1(R) and restrict
ourselves to the cases with (1.3). Let ξ = x − ωt and substitute the form
of the solution (1.7) into (1.1), integrate once and evaluate the constants of
the integrations using the fact that η, u ∈ H1(R). Then, one sees that (η, u)
must satisfy

cηξξ + η − ωu+ bωuξξ + 1
2u

2 = 0,
auξξ + u− ωη + bωηξξ + ηu = 0.

(1.8)

Local existence and continuous dependence on initial data have been stud-
ied in [3] for numerous cases of (1.1). In order to extend the local result to
a global one, some kind of control on the norms is needed in the energy
estimates. Whenever b = d, the systems (1.1) admit the conservation laws
(1.5) and (1.6) which allow one to obtain the control needed. Moreover, in
this case, the systems (1.1) with (1.3) can be written as

∂t

[
η
u

]
= J grad H(η, u), (1.9)

where the operator J is defined as

J =
[

0 (I − b∂2
x)−1∂x

(I − b∂2
x)−1∂x 0

]
,

and grad H stands for the gradient or Euler derivative, computed with re-
spect to the L2×L2-inner product, of the functionalH. Because the operator
J is skew-adjoint, H can be seen as a Hamiltonian for the systems.

Because none of the conserved quantities is composed only of positive
terms, they do not on their own provide the a priori information one needs
to conclude the global existence of solutions to the initial-value problem.
However, a time-dependent relationship can be coupled with the invariance
of the Hamiltonian to give suitable information leading to a global existence
theory. The global existence has been established in [3].

In this manuscript, the existence of traveling waves of the systems (1.1)
with (1.3) is studied, namely the existence of traveling-wave solutions with
small propagation speeds is guaranteed. The special properties of this class
of systems include established global well posedness and previously stated
conserved quantities which enable the use of the technique of constrained
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global minimization. However, unlike the case with large surface tension in-
vestigated in [6], the stability of traveling-wave solutions cannot be obtained
for this general case by this method (see item 4 of Remark 2.2).

The precise statement of the result is as follows.

Theorem 1.1. Let a, c < 0, b = d and |µ| < min{1,
√
ac/|b|} = µ0 (here,

if b = 0, then µ0 = 1). Then (1.1) exhibits traveling-wave solutions with
propagation speed ω = µ.

Here, the propagation speed ω can be zero, which implies that the system
(1.1) has a time-independent solution (or standing wave solution). Moreover,
we note that the KdV equation

ηt + λ1ηx + ηηx + ηxxx = 0

also has standing wave solutions if λ1 is negative. If λ1 is arbitrary, then for
the existence of traveling-wave solutions η(x− ωt), ω must satisfy ω > λ1.

The manuscript is organized as follows. In Section 2, some necessary
estimates for functionals are given and the existence proof of minimizers to
a variational problem is provided. The existence of traveling-wave solutions
with small propagation speed is established in Section 3.

The standard notations are used. For 1 ≤ p < ∞, Lp is the usual
Banach space of measurable functions on R with norm given by ‖f‖Lp =
(
∫∞
−∞|f |

p dx)1/p. The space L∞ consists of the measurable, essentially
bounded functions f on R with norm |f |∞ = ess supx∈R|f(x)|. For s ∈ R,
the L2-based Sobolev space Hs = Hs(R) (see [1]) is the set of all tempered
distributions f on R whose Fourier transforms f̂ are measurable functions
on R satisfying

‖f‖2Hs =
∫ ∞
−∞

(1 + |k|2 + · · ·+ |k|2s)|f̂(k)|2 dk <∞. (1.10)

We denote the spaces H1(R) × H1(R) and L2(R) × L2(R) by X and Y
respectively.

2. Variational problem

To prove the existence of traveling-wave solutions, we use the method of
concentration compactness introduced by Lions [10, 9]. The two quantities
associated with the systems, Hµ(η, u) and P (η, u) are used, where for a fixed
µ (zero included) and η, u ∈ X,

Hµ(η, u) =
1
2

∫ ∞
−∞

(−cη2
x − au2

x + η2 + u2)dx− µ
∫ ∞
−∞

(ηu+ bηxux)dx (2.1)
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and

P (η, u) =
1
2

∫ ∞
−∞

ηu2dx. (2.2)

For p > 0, define the real number mp(µ) by

mp(µ) = inf{Hµ(η, u) : (η, u) ∈ X, P (η, u) = p}. (2.3)

The set of minimizers for mp(µ) is

G(p) = {(η, u) ∈ X : Hµ = mp(µ), P (η, u) = p}, (2.4)

and a minimizing sequence for mp(µ) is any sequence {(ηn, un)} of functions
in X satisfying

P (ηn, un) = p ∀n, and lim
n→∞

Hµ(ηn, un) = mp(µ). (2.5)

Lemma 2.1. For a, c < 0, b = d and µ satisfying |µ| < µ0 = min{1,
√
ac/|b|}

(here, if b = 0, then µ0 = 1), one has

Hµ(η, u) ≥ C0

∫ ∞
−∞

(
η2
x + u2

x + η2 + u2
)
dx,

where

C0 =
1
2

min
{(

1− |µb|√
ac

)
|a|,
(

1− |µb|√
ac

)
|c|, (1− |µ|)

}
.

Thus, if |µ| < µ0, then C0 > 0.

Proof.

Hµ(η, u) =
1
2

∫ ∞
−∞

(
(
√
|c|ηx)2 + (

√
|a|ux)2 − 2µbηxux + η2 + u2 − 2µηu

)
dx

=
1
2

∫ ∞
−∞

((
1− |µb|√

ac

)(
(
√
|c|ηx)2 + (

√
|a|ux)2

)
+
|µb|√
ac

(√
|c|ηx ±

√
|a|ux

)2

+ (1− |µ|)(η2 + u2) + |µ|(η ± u)2
)
dx

≥ 1
2

∫ ∞
−∞

((
1− |µb|√

ac

)(
(
√
|c|ηx)2 + (

√
|a|ux)2

)
+ (1− |µ|)(η2 + u2)

)
dx

≥ C0

∫ ∞
−∞

(
η2
x + u2

x + η2 + u2
)
dx,

where ± means that for positive bµ (or µ), − is used, while for negative bµ
(or µ), + is used. �
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Remark 2.2. 1) It will be shown momentarily that indeed mp(µ) > 0.
2) Because of the homogeneity of the functionals

inf{Hµ(η, u) : P (η, u) = 1} = inf
{

1
p2/3

Hµ(η, u) : P (η, u) = p

}
,

it follows that for any p > 0, mp(µ) = p2/3m1(µ). Thus, we consider instead
the problem of investigating the minimizers for m1(µ), where

m1(µ) = inf{Hµ(η, u) : (η, u) ∈ X,P (η, u) = 1}.

3) Notice that, if |µ| < µ0, then Hµ(η, u) is equivalent to the X-norm of
(η, u). Therefore, any minimizing sequence {(ηn, un)} is uniformly bounded
in X.

4) In our previous paper [6], a different variational set up was used where
we minimized H(η, u) while holding I(η, u) constant. As both of the func-
tionals H and I are time independent, the stability of traveling wave solu-
tions is a direct consequence. However, that result came at the cost of having
to require τ > 1/3, i.e., the presence of large surface tension. In the present
manuscript, the time-dependent functionals Hµ(η, u) and P (η, u) are used,
where Hµ + P = H+ I is conserved.

Let {(ηn, un)} be a minimizing sequence and consider the concentration
function ρn = (η′n)2 + η2

n + (u′n)2 + u2
n. As ‖(ηn, un)‖X ≤ C for all n, we

can extract a convergent subsequence which we again denote as {(ηn, un)},
so that

λ = lim
n→∞

∫ ∞
−∞

ρn(x)dx

exists. Define a sequence of non-decreasing functions Mn : [0,∞)→ [0, λ] as
follows:

Mn(r) = sup
y∈R

∫ y+r

y−r
ρn(x)dx.

As Mn(r) is a uniformly bounded sequence of non-decreasing function in r,
one can show that it has a subsequence, which we still denote as Mn, that
converges pointwise to a non-decreasing limit functionM(r) : [0,∞)→ [0, λ].
Let

λ0 = lim
r→∞

M(r) :≡ lim
r→∞

lim
n→∞

sup
y∈R

∫ y+r

y−r
ρn(x)dx.

Then 0 ≤ λ0 ≤ λ. From Lions’ concentration compactness lemma, there are
3 possibilities to consider:
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(a) Case 1: (Vanishing) λ0 = 0. Since M(r) is non-negative and non-
decreasing, this is equivalent to

M(r) = lim
n→∞

Mn(r) = lim
n→∞

sup
y∈R

∫ y+r

y−r
ρn(x)dx = 0

for all r <∞, or
(b) Case 2: (Dichotomy) λ0 ∈ (0, λ), or
(c) Case 3: (Compactness) λ0 = λ, which means there exists {yn}n=1 ∈ R

such that ρn(· + yn) is tight; that is, for all ε > 0, there exists r < ∞ such
that ∫ y+r

y−r
ρn(x)dx ≥ λ− ε.

It is our purpose to show that the only possibility is case 3, so that the
minimizing sequence {(ηn, un)} has a subsequence which, up to translations
in the underlying spatial domain, converges strongly in X to an element of
G(1).

Lemma 2.3 ((Non-vanishing of the sequence {ρn})). There exists a γ > 0
such that

lim
n→∞

Mn

(
1
2

)
= lim

n→∞
sup
y∈R

∫ y+1/2

y−1/2
ρn(x)dx ≥ γ. (2.6)

Therefore, λ0 ≥ γ > 0.

Proof. Suppose that

lim
n→∞

sup
y∈R

∫ y+1/2

y−1/2
ρn(x)dx = 0.

Let Ij = [j − 1/2, j + 1/2]. On Ij , one can see that

(sup
x∈Ij
|ηn(x)|)2 ≤ C

∫
Ij

[
(
η′n(s)

)2 +
(
ηn(s)

)2]ds ≤ C sup
y∈R

∫ y+1/2

y−1/2
ρn(x)dx.

From the expression for P (η, u), it is deduced that

2|P (ηn, un)| =
∣∣∫ ∞
−∞

ηn(x)u2
n(x)dx

∣∣ =
∣∣ ∞∑
j=−∞

∫
Ij

ηn(x)u2
n(x)dx

∣∣
≤

∞∑
j=−∞

sup
x∈Ij
|ηn|

∫
Ij

u2
n(x)dx ≤ C sup

y∈R

∫ y+1/2

y−1/2
ρn(x)dx

∫ ∞
−∞

u2
n(x)dx
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≤ C‖(ηn, un)‖2X sup
y∈R

∫ y+1/2

y−1/2
ρn(x)dx −→ 0

as n→∞, a contradiction. Hence, it follows that

λ0 = lim
r→∞

M(r) ≥M
(

1
2

)
= lim

n→∞
Mn

(
1
2

)
≥ γ > 0. �

Remark 2.4. Notice that the above argument shows more than just the
non-vanishing of the sequence {ρn}. It actually says that neither ηn nor un
can vanish.

Corollary 2.5. For any p > 0, mp(µ) = p
2
3m1(µ) > 0.

Given any ε > 0, for all sufficiently large values of r, one has

λ0 − (ε/2) < M(r) ≤M(2r) ≤ λ0. (2.7)

Suppose for the moment that a large value of r has been chosen so that (2.7)
holds. Then one can choose N large enough that

λ0 − (2ε/3) ≤Mn(r) ≤Mn(2r) ≤ λ0 + (2ε/3)

for all n ≥ N . Hence, for each n ≥ N , one can find yn such that∫ yn+r

yn−r
ρn(x)dx > λ0 − ε and

∫ yn+2r

yn−2r
ρn(x)dx < λ0 + ε.

Now, choose φ ∈ C∞0 [−2, 2] such that φ = 1 on [−1, 1], and let ψ ∈ C∞(R)
be such that φ2 + ψ2 = 1 on R. For each r ∈ R, let φr(x) = φ(xr ) and
ψr(x) = ψ(xr ) and define

gn(x) = φr(x− yn)ηn(x), g̃n(x) = ψr(x− yn)ηn(x),

hn(x) = φr(x− yn)un(x), h̃n(x) = ψr(x− yn)un(x).
(2.8)

Set

ρ1,n = (g′n)2 + g2
n + (h′n)2 + h2

n and ρ2,n = (g̃′n)2 + g̃2
n + (h̃′n)2 + h̃2

n.

Notice that gn, g̃n, hn and h̃n depend on r (which has been chosen for the
moment large enough so that (2.7) holds) and hence so do ρ1,n and ρ2,n.
One can therefore establish the following lemma.

Lemma 2.6. For every ε > 0, there exist R and N large enough such that,
for n ≥ N and r ≥ R,
a) Hµ(ηn, un) = Hµ(gn, hn) +Hµ(g̃n, h̃n) +O(ε),
b) P (ηn, un) = P (gn, hn) + P (g̃n, h̃n) +O(ε).
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Proof. From the definitions of gn, g̃n, hn and h̃n, it follows that

Hµ(gn, hn) +Hµ(g̃n, h̃n)

= Hµ(ηn, un) +
1
2

∫ ∞
−∞

[
− c(φ′r)2η2

n − c(ψ′r)2η2
n − 2cφrφ′rηnη

′
n

− 2cψrψ′rηnη
′
n − a(φ′r)

2u2
n

]
dx+

1
2

∫ ∞
−∞

[
− a(ψ′r)

2u2
n − 2aφrφ′runu

′
n

− 2aψrψ′runu
′
n − 2µb(φ′r)

2ηnun − 2µb(ψ′r)
2ηnun

]
dx

+
1
2

∫ ∞
−∞

[
−2µbφrφ′rηnu

′
n− 2µbψrψ′rηnun− 2µbφrφ′rη

′
nun− 2µbψrψ′rη

′
nun

]
dx,

where for ease of notation, we have written simply φr and ψr for the functions
φr(x − yn) and ψr(x − yn). Using the facts that ‖(ηn, un)‖X ≤ C for all n,
and φ2

r + ψ2
r ≡ 1, |φ′r|L∞ ∼ O(1/r) and |ψ′r|L∞ ∼ O(1/r), one can see that

Hµ(gn, hn) +Hµ(g̃n, h̃n) = Hµ(ηn, un) +O
(

1
r

)
where O(1

r ) denotes terms bounded in absolute value by A1/r with A1 in-
dependent of r and n. Similarly, for P (ηn, un) one can see that

P (gn, hn) + P (g̃n, h̃n) =
1
2

∫ ∞
−∞

(
ηnu

2
n + (φ3

r + ψ3
r − 1)ηnu2

n

)
dx

= P (ηn, un) +A2ε

because φr = 1, ψr = 0 for |x− yn| ≤ r and φr = 0, ψr = 1 for |x− yn| ≥ 2r
which gives∣∣∣∫ ∞

−∞
(φ3
r + ψ3

r − 1)ηnu2
ndx

∣∣∣ ≤ ‖ηn‖L∞(2
∫
r≤|x−yn|≤2r

ρn dx
)
≤ A2ε

where again A2 is independent of r and n. Now, one can choose r large
enough so that 1/r ≤ ε. Consequently, for all n ≥ N , one has

Hµ(ηn, un) = Hµ(gn, hn) +Hµ(g̃n, h̃n) +O(ε),

P (ηn, un) = P (gn, hn) + P (g̃n, h̃n) +O(ε),
which proves the lemma. �

Notice that, for any (η, u) 6= (0, 0), Hµ > 0 for any µ satisfying |µ| < µ0.
With the above Lemma 2.6 in hand, one can now proceed to rule out the
dichotomy case as follows.

Proposition 2.7. λ0 /∈ (0, λ) and dichotomy cannot occur.



904 Min Chen, Nghiem V. Nguyen, and Shu-Ming Sun

Proof. The following argument is adapted from [8]. Suppose dichotomy
happens. Let {(ηn, un)} be a minimizing sequence and consider two se-
quences {(gn, hn)} and {(g̃n, h̃n)} as defined in (2.8). Then, for large r,
Lemma 2.6 ensures that

Hµ(ηn, un) = Hµ(gn, hn) +Hµ(g̃n, h̃n) +O(ε),

P (ηn, un) = P (gn, hn) + P (g̃n, h̃n) +O(ε).

As {(ηn, un)} is bounded uniformly in X, it follows that ‖(gn, hn)‖X and
‖(g̃n, h̃n)‖X are also bounded independently of n and ε. Consequently,
P (gn, hn) and P (g̃n, h̃n) are bounded and we can pass to subsequences to
define

σ(ε) = lim
n→∞

P (gn, hn) and σ̃(ε) = lim
n→∞

P (g̃n, h̃n).

As σ(ε) and σ̃(ε) are bounded independently of ε, we can pick a sequence
{εj} → 0 (here, we also need to choose large rj → +∞) such that both the
limits

lim
j→∞

σ(εj) = σ and lim
j→∞

σ̃(εj) = σ̃

exist. Certainly, σ + σ̃ = 1 and there are only three cases to consider now.
Case 1: When σ ∈ (0, 1), then

Hµ(η, u) = Hµ(gn, hn) +Hµ(g̃n, h̃n) +O(εj)

≥ mP (gn,hn)(µ) +mP (g̃n,h̃n)(µ) +O(εj)

=
[
P

2
3 (gn, hn) + P

2
3 (g̃n, h̃n)

]
m1(µ) +O(εj).

We first let n → ∞ to obtain m1(µ) ≥ [σ
2
3 (εj) + σ̃

2
3 (εj)]m1(µ) + O(εj).

Letting j → ∞ next we arrive at m1(µ) ≥ (σ
2
3 + σ̃

2
3 )m1(µ) > m1(µ), a

contradiction.
Case 2: When σ = 0 (or when σ = 1), we have

Hµ(gn,hn) ≥ C
∫ ∞
−∞

(
(g′n)2 + g2

n + (h′n)2 + h2
n

)
dx

= C

∫
|x−yn|≤2r

(
(u′n)2 + u2

n + (η′n)2 + η2
n

)
dx+O(εj) ≥ Cλ0 +O(εj).

Thus,

Hµ(ηn, un) = Hµ(gn, hn) +Hµ(g̃n, h̃n) +O(εj)

≥ Cλ0 +O(εj) + P
2
3 (g̃n, h̃n)m1(µ).
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Again, letting n and j →∞ respectively, we obtain

m1(µ) ≥ Cλ0 +m1(µ) > m1(µ),

a contradiction.
Case 3: When σ > 1 (or when σ < 0), we have

Hµ(ηn, un) = Hµ(gn, hn) +Hµ(g̃n, h̃n) +O(εj) ≥ Hµ(gn, hn) +O(εj)

≥ P
2
3 (gn, hn)m1(µ) +O(εj).

As before, letting n and j →∞ respectively, we arrive at the contradiction

m1(µ) ≥ σ
2
3m1(µ) > m1(µ).

Thus, each case gives a contradiction, which implies that λ0 6∈ (0, λ). �

As we have ruled out both vanishing and dichotomy, Lions’ concentration
compactness lemma guarantees that the sequence {ρn} is tight; i.e., there
exists a sequence of real numbers {yn} such that, for any ε > 0, there exists
r = r(ε) so that∫ yn+r

yn−r

(
(η′n)2 + η2

n + (u′n)2 + u2
n

)
dx > λ− ε

for all sufficiently large n. Consequently, one arrives at the following.

Theorem 2.8. Let a, c < 0, b = d and |µ| < µ0. Then the minimizing
set G(1) is non-empty. Moreover, any minimizing sequence {(ηn, un)} is
compact in X up to translation; that is, there exist a sequence of points
{ynk
} ∈ R and (η, u) ∈ G(1) such that

(
ηnk

(· + ynk
), unk

(· + ynk
)
)

has a
subsequence converging to (η, u) strongly in X.

Proof. Since the minimizing sequence {(ηn, un)} is bounded uniformly in
X, there exists a subsequence which, for ease of reading we again denote as
{(ηn, un)}, that converges strongly in (L2 × L2)-locally to a pair of limiting
functions (η, u). We next show that (ηn, un) → (η, u) strongly in Y =
L2(R)× L2(R). Indeed, for any given ε > 0, we first choose r0 so large that∫

|x|≥r0

(
η2(x) + u2(x)

)
dx < ε.

By tightness of the minimizing sequence (ηn, un), there exist an N = N(ε)
and r = r(ε) > r0 such that∫

|x|≥r

(
η2
n(x+ yn) + u2

n(x+ yn)
)
dx < ε,
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for all n ≥ N . From the strong convergence in (L2 × L2)-locally of (ηn, un),
there exists an Ñ = Ñ(ε) ≥ N such that

‖(ηn, un)− (η, u)‖2L2(−r,r)×L2(−r,r) < ε

for all n ≥ Ñ . Consequently, ‖(ηn, un)− (η, u)‖L2(R)×L2(R) < 8ε.
By the uniform boundedness of un, ηn in H1 and C0(R), we also have∫ ∞

−∞
|ηnun − ηu| dx ≤

∫ ∞
−∞
|ηnun − ηnu| dx+

∫ ∞
−∞
|ηnu− ηu| dx

≤ ‖ηn‖L2‖un − u‖L2 + ‖u‖L2‖ηn − η‖L2 ;∫ ∞
−∞
|ηnu2

n − ηu2| dx ≤
∫ ∞
−∞
|ηnu2

n − ηu2
n| dx+

∫ ∞
−∞
|ηu2

n − ηu2| dx

≤ C(‖ηn − η‖L2 + ‖un − u‖L2 .

Thus,∫ ∞
−∞

ηnun dx→
∫ ∞
−∞

ηu dx and
∫ ∞
−∞

ηnu
2
n dx→

∫ ∞
−∞

ηu2 dx as n→∞.

Since
1
2

∫ ∞
−∞

ηnu
2
n dx = 1,

it follows that
1
2

∫ ∞
−∞

ηu2 dx = 1.

Furthermore, from the weak compactness of the unit sphere, we have that
{(ηn, un)} converges weakly to (η, u) in a Hilbert space X = H1(R)×H1(R).
Thus, by Lemma 2.1, as n→∞, we obtain

C
(
‖ηn − η‖2H1 + ‖un − u‖2H1

)
≤Hµ(ηn − η, un − u) = Hµ(ηn, un)−Hµ(η, u)

−
∫ ∞
−∞

(
− c(ηn,x − ηx)ηx − a(un,x − ux)ux + (ηn − η)η + (un − u)u

− µ ((ηn − η)u+ (un − u)η + b(ηn,x − ηx)ux + b(un,x − ux)ηx)
)
dx

→ m1(µ)−Hµ(η, u) ≤ 0.

Consequently, it follows that (ηn, un) converges strongly to (η, u) in X-norm
and

Hµ(η, u) = lim
n→∞

Hµ(ηn, un) = m1(µ)

with (η, u) ∈ G(1). The theorem is proved. �
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3. Existence of Traveling-Wave Solutions

The pair of functions (η, u) is a minimizer of Hµ subject to the constraint
P = 1 and therefore is a weak solution of the Euler-Lagrange equation
∇Hµ = κ∇P ; i.e., {

cηxx + η − µu+ bµuxx = κu2

auxx + u− µη + bµηxx = 2κηu, (3.1)

for some multiplier κ ∈ R. Indeed, one has κ > 0 as follows.

Proposition 3.1. The Lagrange multiplier κ is positive.

Proof. Multiplying the first and second equations in (3.1) by η and u
respectively and integrating over the real line, we obtain∫ ∞

−∞
(−cη2

x + η2 − µηu− bµηxux)dx =
κ

2

∫ ∞
−∞

ηu2dx∫ ∞
−∞

(−au2
x + u2 − µηu− bµηxux)dx = κ

∫ ∞
−∞

ηu2dx.

Adding the two equations and using the facts that Hµ(η, u) = m1(µ) and
P (η, u) = 1, one arrives at

κ = 4m1(µ)/3 > 0. (3.2)

Because of the homogeneity of the functionals Hµ and P , if (η, u) is a
solution of (3.1), then (φ, ψ) = −κ(η, u) is a solution of (1.8). We will call
such a solution a ground state solution. This weak ground state solution
is indeed a classical solution of (1.8).

Proposition 3.2. Suppose (φ, ψ) ∈ X is a weak ground state solution of{
cφxx + φ− µψ + bµψxx + 1

2ψ
2 = 0,

aψxx + ψ − µφ+ bµφxx + φψ = 0. (3.3)

Then (φ, ψ) is actually a classical solution; that is, (φ, ψ) ∈ H∞(R)×H∞(R).

Proof. Since the solution is in X, then 1
2ψ

2 and φψ are in L2. Take the
Fourier transform of (3.3) to obtain

(1− ck2)φ̂− µ(1 + bk2)ψ̂ + 1
2 ψ̂

2 = 0,

(1− ak2)ψ̂ − µ(1 + bk2)φ̂+ φ̂ψ = 0,

where f̂ is denoted as the Fourier transform of f . Thus,

ψ̂ =
µ(1 + bk2)φ̂− φ̂ψ

(1− ak2)



908 Min Chen, Nghiem V. Nguyen, and Shu-Ming Sun

and
(1− ck2)(1− ak2)− µ2(1 + bk2)2

(1− ak2)
φ̂ = −µ(1 + bk2)φ̂ψ

(1− ak2)
− 1

2
ψ̂2.

By |µ| < µ0 = min{1,
√
ac/|b|}, it is straightforward to show that

(1− ck2)(1− ak2)− µ2(1 + bk2)2 ≥ C(1 + k4)

for some constant C > 0. Thus, (1 + k2)φ̂ ∈ L2 or φ ∈ H2, which gives ψ ∈
H2. Then, the proposition follows by a standard bootstrapping argument.

�

Remark 3.3. The variational problem shows that traveling-wave solutions
are thus global minimizers of Hµ subject to the constraint P = 1 and that
the speed of propagation is µ.

One now arrives at the advertised existence result of traveling-wave solu-
tions of the systems (1.1).

Theorem 3.4. Let a, c < 0, b = d and |µ| < µ0. Then (1.1) exhibits
traveling-wave solutions with propagation speed ω = µ.
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