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Abstract

In this paper, we prove the existence of a large family of nontrivial bifurcating standing waves for a model system which
describes two-way propagation of water waves in a channel of finite depth or in the near shore zone. In particular, it is shown
that, contrary to the classical standing gravity wave problem on a fluid layer of finite depth, the Lyapunov—Schmidt method
applies to find the bifurcation equation. The bifurcation set is formed with the discrete union of Whitney’s umbrellas in the
three-dimensional space formed with 3 parameters repirgehe time-period and the wave length, and the average of wave
amplitude.

0 2004 Elsevier SAS. All rights reserved.

1. Introduction

There are many models for studying weakly nonlinear dispersive water waves in a channel or in the near shore zone. For
one-way waves, nhamely when the wave motion occurs in one-direction, the well known KdV (Korteweg—de Vries) and BBM
(Benjamin—Bona—Mahoney) equations are the most studied. For two-way waves, a four parameter class of model equations
(which are called Bossinesg-type systems)

Ne 4 ux 4+ W)y + auxxx — bnxxr =0,

1
ur +nx +utty +cnxxx — duxxr =0, @

was put forward by Bona, Chen and Saut [1] for small-amplitude and long wavelength gravity waves of an ideal, incompressible
liquid. Systems (1) are first-order approximations to the two-dimensional Euler equation in the small paragretéyd:o and

€2 = h(z)/Lz, wherehg is the depth of water in its quiescent stateis a typical wave amplitude antl is a typical wavelength.

The dependent variablegx, ) andu(x, t), scaled byrg andcg = +/ghg respectively withg being the acceleration of gravity,
represent the dimensionless deviationhaf water surface from its undisturbed positiol ghe horizontal velocity at the level of

6hg of the depth of the undisturbed fluid with<06 < 1, respectively. The coordinatewhich measures the distance along the
channel is scaled byg and timer is scaled by/%g/g. The dispersive parametersh, c andd are not independently specifiable
parameters, but have to satisfy certain physical relevantitonsi [1]. Systems in (1) are nainly formally approximations to

Euler's equation, but also recently further justified by Bona, Colin and Lannes (cf. [2]).
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In this work, attention will be directed tx, ) — periodic solutions invariant under the reflexion symmetrns —x, of the
following system of partial differential equations (which we refer as BBM system since it has certain common properties as the
BBM equation)

1
Nt +ux + (Mu)x — énxxt =0,
2

1
Ur + Nx +uuyx — éuxxt =0,

which is a member of (1) whergé = ./2/3. One of the advantages that (2) has over alternative Boussinesg-type systems in
(1) (see Bona, Chen and Saut [1]) is the ease with which it may be integrated numerically. Furthermore, it was proved in [3]
and [4] that the initial value problem either fere R or with boundary conditionsx(e [a, b]) for (2) is well posed in certain

natural function classes. It was also proved that the solution of (2) approximates the solution of Euler’s equation with the order
of accuracy of the equation (cf. [2,5-8]), namely, for any initial valg ug) € H (R)2 with o > s > 0 large enough, there

exists a unique solutioMeyler teulep Of Euler equations, such that

2, 2
lu — ueuled Lo (0,: ) + 11 — Neuledl L (0,+; Hs) = O(eft, €5t, €1€2t)

for0<r < O(e[l, 651).
Since we look for periodic solutions i@, ¢), let us introduce the scaled variables- @x, f= M;‘, with 7/+/6 and

1/+/6 being the time period and the wavedgh. One obtains the rescaled BBM syst(the tilde is dropped for simplicity in
notation)

e+ Bux — anxxr + Pun)x =0, 3

ug + B — attxs + BW?/2)x =0, @)
wherea andpg are positive parameters defined by

a=@21)%/A%,  B=T/xr

The standing waves we are looking for are solutiong:) doubly 27 -periodic functions ofx, ¢), with « odd andp even inx.
This fixes the origin inc, but leaves the time shift invariance.

Defining the average af by A, we have now a 3-dimensional parameter space, where only the quast& 8 > 0 is
physically relevant. We prove below (see Theorem 6) that, roughly speaking, there is a discrete set of surfaces (Whitney’s
umbrellas) in the spacex, 8, A), which constitutes the bifurcation set of standing waves, solutions of the system (3), (4).

It is worth noting that the situation here is extremely different from the standing gravity waves problem for the full water
waves equations solved for the finite depth case by Plotnikov and Toland [9], and in the infinite depth case by looss, Plotnikov
and Toland [10]. In the finite depth case, there is a small divisor problem in the inversion of the linearized operator, which
necessitates the use of the Nash—Moser theorem for solving the nonlinear problem. There is also this necessity in the infinite
depth case, with the additional difficulty of complete resonance, i.e. the occurrence of an infinite dimensional kernel for the
linearized operator for the critical value of the parameter. Similar difficulties also occur in the study of model systems (1)
whenabced > 0, or whenb =c=d =0, a < 0. In the present case, we show (see Lemma 4) that in general the kernel of the
linearized operator is three-dimensional and that thene ismall divisor problemit is then possible, using @(2) invariance

of the system (see below), to adapt the Lyapunov—Schmidt method to reduce the bifurcation problem to a one-dimensional
bifurcation equation and the precise result is set at Theorem 6. The same method might apply on the model system (1) when
abced <0,0rb=c=d =0, a >0 (the Kaup system [11,12]), or whean=b = ¢ =0, d > 0 (the so called classical Boussinesq
system [13-16]) or when =0, b =d > 0O, ¢ < 0 (such as the Bona—Smith system [17]).

2. Study of thelinearized operator

We start the study by an examination of the linearized operatarbifurcation set, in the space of parameters, is in general
such that this operator has a nontrivial kernel. Let us study the following linear system

Nt + Bux — anxxr = fx, (5)
ur + Bny — Quxxr = gx,

where we look for solutiongn, u) with n even inx, andu odd inx, and with f given odd inx, andg given even inx. Let us
write the Fourier series
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n@.= Y. npg(cospx)ed’,
p2>0,g€Z

u(x,t) = Z upq(sinpx)eiqt,
p>0,q€Z

fen= 3" fpglsinpx)d?,

p>0,q€Z

glx, 1) = Z gpq(cospx)€?’.
p=0,9€Z

Then we getfop > 0,9 €Z

iq(1+0‘P2)leq + pBupg = Pfpq,
PBNpg —iq(L+apdiupg = pepg.,
andforp=0,¢g€Z

nog =0, wheng#0 and

noo is arbitrary.
Let us define

Alp q) =q* L+ ap?)? — p?p? (6)
then if A # 0, we obtain

pg = —A"2p[ig(L+ap®) fog + PBEpq]s
Upg = _Ailp[l’ﬂqu —ig(1+ apz)gpq].
The linearized operator has a nontrivial kernel if there exists a(pgirgg) satisfying
aé(+ap§)® — p5p? =0. )

One can then give estimates 1@, u pq) in terms of(fq, gpq) in cases of p, Iq]) # (po. g0). These estimates allow to give
a bound of the pseudo-inverse of the linearized operator on its range. We first observe that

Ap,q) = {a(+ap?) — pB}{a(L+ap®) + pB}, (®)
hence forA # 0 we have

p
llg| (L + ap?) — pB|
We have now the following useful precision on the cougtes8) solving (7}

|77pq|+|”pq|< {|qu|+|gpq|}- 9)

Lemma 1. Givena and 8 positive real numbers, the subset
Sw.p) = |(p.9) €N gL+ ap?) — pp =0}

of N2 _is either_e_mpty, or fipite. When there exi§t®, q0) € Z(«,p), then(po, qo) is the only element oF, g, if one of the
following conditions is realized

() « is irrational;

(i) o is rational and1/(apg) is not an integer, and the numbegs — 4<xq/2. are not squares of rational numbers for

q;=12,....q9m, qj # 90, gm = [B/(2/@)], where[-] means the integer part.
Proof. (i) If « isirrational, therg is irrational,rationally related tox by

B — apoqo = q0/ po-

Another solution(p, g) € N2 of the above equation would imply

a(poqo — pq) +qo0/po—q/p=0
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which implies thak is rational. Hence there is a unique elemenZig, gy whene is irrational.
(ii) If « is rational, therB is also rational. Set

X =pa, Y=q%

then a solution(p, ¢) € N2 of ¢(1+ ap?) — pB =0, leads to
Y(1+Xx%) - X =0

This leads immediately t& < % which yields
q <qm=[B/2Ja)].

Hence, the only possible values fpiare
q=12,....q9m

andgg is in this set. For each valug of ¢ we have

+_ B
Py = W(li /1-4r?).

where

szqj%-

A necessary condition fop}-L to be an integer is that & 4Yj2 is the square of a rational number. This is in particular true for
q; = qo since '

, (B —daq?)
L_ar2= (B® —4aqd) _ b (1—apd)®
B2 P32

which giveSpar = 1/(apo), pg = po- Forg; # qo the number 4Yj2 is in general not the square of a rational, hepﬁ}ie
are not integers. 0 '

We then have the following (denote By the setN U {0})

Proposition 2. For all positive parameter valueg, ), there exists a constadt > 0 (depending ofi«, 8)) such that for any
pair (p, q) € Ng x Z, (p, Iq]) & Z(a,p) and(p, ¢) # (0, 0) we have

p+ P2l
llg|(L+ ap?) — pB

(10)

Proof. Let us first consider pairg, ¢) satisfyingp|q| > 28/«, then

B+ lql,
1+ap?) — >{p
I+ arD = B2 lg) + apllal/2
hence
P+ p?lql 1.2
llglA+ap?)—ppl B«

Now for p =0, ¢ # 0 we have
0 —
llg|(1+ 0% — 08|
and forg=0,p #0
p+0 1
01+ ap?)— ppl B

s
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Now the set of pairgp, ¢) such that K plq| < 28/, is finite, hence a finite bound exists once the denominator is not equal
to zero. Such a situation would imply

lq1(1+ap?) — pp =0,
i.e.,(p.lgh € Z(gp). O

Remark. Let us give a geometric interpretation of Lemma 1. In thes) plane the equation

9*(L+ap®? - p?p?=0
defines for a fixedp, q) € N2a couple of straight lines, intersecting(at 8) = (—1/p2, 0). Only the line

q(1+ap?) — pp=0
is relevant in the quarter of plarie, 8) (R*)2. Lemma 1 shows that ifo, B) belongs to such a line fdip, ¢) = (po, 90),
then it belongs to at most a finite number of such lines(farg) N2, this number being one in general. Moreover, in the
region 82 — 4o < 0 of (R1)2, there is none of these lines, and in the rest of the quarter plane, the union of this discrete set of
lines is not dense.

Let us now introduce the Sobolev spaces
HE = H*Y{(R/272)?},  H®={we HE; wis even iny}

and similarIyHuku’” ={we Hk w is odd inx}. We also define the operatsp by
T
1
(mog)(1) = > / g(x, ) dr,
-7

and D;l by

D;lcOpr = p_lsinpx, p#0,

D;l sinpx = —p’1 cospx, D;ll =0.
Notice that the operatdr);l consists in first suppressing the average and then take the primitive which has a 0 average. This
guarantees the periodicity dﬂx_lf for any periodicf € L2. In particular one has for any e Hn1

Doy f =Dyt f = (T—70)f.
Taking into account the evennessio@nd oddness af, let us define the linear operatérby

L(n.u) =Dy ur + B — s, 0 + Bitx — o1xxr)

= (D;lut + B — mo)n — auyy, D;lﬂt + Bu — anx;), (11)

and notice that the structure of system (2) leadggp= 0, g # O, for Fourier coefficients of). We now look fory in the
corresponding invariant subspace

k k
Hnn”% ={ne Huu’e; Nnog = 0, g #0}.
Let us introduce the symmetry operat®y representing the reflexion symmetry—> —x, defined by
{Sm.w}x, 1) = (n(=x,1), —u(—x,1)). (12)
We have then the following straightforward results:

Lemma 3. The linear operatorZ defined in(11) is symmetric inL,Z:e0 x L:Z:’” and looking for(n, u) in Huku’% X ann’”, k>0,

the problem of solvings) where(g, f) is given inL:Z:’e X LEEU’ is equivalent to solve

L(n,u) = (A—m0)g, f)- (13)
The linear operator. commutes witls:

SLU = LSU, foranyU € domain(L).
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We can now give precisions on the kernel and rangé tifrough the following

Lemma 4. Assume thafag, fo) is such that¥,, g, has a unique elemenpo, q0) (see the above Lemniy, then denote by
Lo the corresponding linear operatdi.1). The kernel ofg in Hnu 0 X Huu , k > 0is the3-dimensional subspace spanned by
& = {1, 0} and zg and Zg whereS&g = &g, S¢o = ¢p and

¢o = (€99 cospgx, —ie'1 sin pox).

The range ofZg in Hukn’e X H’“’ is closed, defined as the intersectiorkef(zg ® 0) with the orthogonal complement of the
two-dimensional subspace spanned:gyand zg. Furthermore, the equation

Lo, u) = (8. f) (14)

has a unique solutioKy, «), denoted b)C (g f), which belongs td—I 0 X Huu orthogonal |n(L )2 to &g, ¢g and g, and
satisfies

|| g < MY CFL &) gy (15)

For (g, f) = (Wxs, ¢x¢) Orthogonal tocg andZg, with (¢, ¥) € Huku’e ? the solutlons(n, u) of (14)still liein Huu 0 X Huu

and, the equation leads to a unique solutionu) = Egl(qu,, Yxr) € H 0 X H: , orthogonal |n(L )2 to &g, ¢ and &g,
which satisfies

@) | e < M| (@9 | - (16)
Corallary 5. The operatorZ defined by(11) is selfadjoint |nLuu 0 X Luu

Proof. We noticed at Lemma 3 that the system (5) f@r 8) = («g, Bo), with the conditionzg(n;) = 0, is equivalent to

L(n,u)=(f, 8,
whereg = g — mog satisfiestgg = 0. Then we havg,, = gpq for p # 0, hence for(p, |q]) # (po. g0) andp > 0

1 _ 5 N
Npg =———=plig(L+agp) + pB ,
rq Ao(p’q)P[‘l 0P ) fpg +p ngq]

Upg = — P[Pﬁoqu - iCI(l‘l'aOPZ)g’pq],

A0(p. @)
where
Ao(p. ) = 41+ aop?)? — p2p3
and
nog =0, forg #0, (by construction)
noo arbitrary,
and, for(p, |q1) = (po. q0). provided that
(8. /) € {0, S0} ™
which means that

8po.q0 — if[’quo =0, (17)
8po.—qo — 1.fpo.~q0 =0

is satisfied, then

i fpogo . ifpo.—q0 -
Mpogo = =54 +la, Mpo.~d0 = 55 ib,
fPOqo prquO

u +a, Upg,—qo = + b,
poqgo = 2ﬁ0 P0,—40 2ﬁ0
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wherea andb are arbitraryOrthogondity in (ann)z to &, £o andZg leads to

noo="0,
1 fpogo _ 1 fpo.—q0
Npogo = — 260 Npo,—qo0 = 260
_ Jrogo _ Jpo.—q0
Mpoqo - 2/30 ’ u[’Os_qO - 2}30 ’

which insures the uniqueness of the solution. The estimate obtained in (9)—(10) |¢ads)ta Huku’% X Hukn"’ satisfying (15)
or (16) as soon a&, f) € er X H’“’ or (¢, v) € er X H’“’ and the compatibility conditionl{) is satisfied. This gives
the range ofZ. The result on the kernel is a direct consequence of the above formulas. The selfadjoinmésiggfo X L:Z:’”
results from its symmetry (see Lemma 3) and from the boundedness of its inverse.

Remark on other modelsin (1). If one considers the linearized system associated with (1), the determinaoresponding
to (8) is as follows

A =g+ abp®)(L+ adp?) — B2 pP(aap? — D(acp? - 1),

wherea = (27/1)2, B = T /A, A andT being the wave length and the time period. The equatien0 gives the couplegp, ¢)
corresponding to the kernel of the linearized oparaand for noncritical couples we need to bounyilindependently of

(p, q).- We then observe thatdifbcd > 0, there is amall divisor problemHowever, in making Diophantine assumptions on the
coefficientsa, b, ¢, d, a, B, it is possible to give a bound for the pseudo-invers& ofbut in loosing some regularity between

(g, f) and (n,u). Then, it is in general not possible to use the standard Lyapunov—Schmidt method since we do not regain
enough regularity when this pseudo-inverse is applied to nonlinear terms. The use of Nash—Moser theorem becomes the only
tool available, as used in [9], and [10], depending on the dimension of the kernel. This small divisor problem also occurs when
b=c=d =0, a <0.On the contrary, our method might apply on the model system (1) whebdd) < O, (i) b=c=d =0,
a>0,(ila=b=c=0,d>0,and (iv)Ja=0,b=d > 0,c < 0.

3. Bifurcation problem

In addition to the symmetry operatst, let us introduce the following linear operatdfs for any realr

{Te w0y = (&t + 1), ulx, 1 4 1)).
The operatord; andS commute with the system (4), (3) and we h&yS = S7 _;. Due to the time periodicity, it results that
the nonlinear syster®), (3) possesses @(2) symmetry associated with the above representation operators. The aim of this
section is to use the Lyapunov—Schmidt method for obtaining the bifurcating standing waves. The role @tequivariance
of our system is to simplify the analysis. Moreover, in leaving free the origin dfis avoids to restrict a priori the study to
solutions(n, u) which have a fixed evennesstirLet us consider (4), (3) for parameter valdesg) = («g + v, Bo + 1), where
(g, Bo) is as in the above Lemma 4

ur + Bonx — agitxxr + ((Bo + wu?/2+ un — viuys), =0,

Nt + Boux — agnxxr + ((,30 + wun + pu — W?xt)x =0
with (v, u) close to 0, and let us look for nontrivial doubly periodic solutiéns:) in Huku’e0 X ann’”. We observe that far > 2
(Sobolev imbedding theorem)

(u2/2, un) € Huku’e X Hko
hence, definingg, f) by
g=—(Bo+ /2 — un + vitxy,

f=—(Bo+ wun— pu + vy

the right-hand side of (5) has the properties required gorf) in Lemma 4, once the compailiby condition is satisfied. We
can then apply the Lyapunov—Schmidt method for finding the bifurcation equation.
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Remark. Here we have a big difference with the full water wave system, where it appears impossible to use such a method,
because of the nonregularizing enough effect of the pseudo-inverse of the operator correspofiglimyiéoto a small divisor
problem (see [9] and [10]).
Let us definel = (n,u) € ero x Hk" and write our system (2) as
LoU +nIJU —vKUxt + (Bo+ N (U, U) =0 (18)
with
JU = (M=o, u), KUst = (uxr,nxr), NU,U) = ((I = wo)u®/2, un),

which means that Eq. (18) already lies in kef ® 0). As already mentioned, Eq. (18) is equivariant under@ig) symmetry
defined above:

T:Lo=LoT:, T:T=TT:, TeN=NoT, (19)
SLo=LgS, ST=TS, SN=NoS. (20)
Let us now decomposg as follows (we are looking fareal solution3
U=u=60+7
with
© = A+ Blo+Blo, (1140 =(Y.%0) = (Y, §0) =0,

where the scalar product is the one(aif,z,)z, A € R and B € C are constants. We notice, as a consequence of the above
decomposition (T, £&g) = 0), thatA is the average of)(x, 1):

1 T
Azm//n(x,t)dxdt

—T —TT

Let us defineF = (g, f) € Huku"’ X Huku’”, we also need a projectioflg expressing the copatibility condition (17)

1 1 _
QoF =F — P(F’ ¢0)%o — P(F’ ¢0)%o

and we notice that the conditiolig, ¢g) = (F, ¢g) = O are sufficient forF to belong to the range dt, if alreadymgg = 0. We
observe that

K(o)xt = pogoto, Jo=¢%0, JT& =0,
hence
QO’C@xt = O, (]C’rxt, fO) = (’CTxt, 5_0) = 0, on@ =0.

It results that (18) projected on the rangey and on spaftg, ¢g} (Which is orthogonal to the rme), may be written as the
system

LoY +uQoJ(Y) —vKYx + (Bo+ 1) QoN(© + 7.0 +7) =0, (21)
(MJ(@+T) — VKO +(ﬁo+u)N((~)+T,(~)+T),§o) =0, (22)
(LT (O +71) —vKOx + (Bo+ WN(© + 7,0 + 1), %) =0. (23)

Therefore, by first considering (21) we get
T+ Lo M1 QoT (1) = vK Y + (Bo+ W) QoN (@ + 1.0 + 1)} =0
which is of the form
F(Y,A,B,B,u,v)=0 (24)

and thanks to the boundedness properties of the opeifgljoshown at Lemma 4F is analytic:

{(HEG x HE) N{go. 0. 2o} x R x €% x R? — {(HL G x HE) N {&o. 2o. 201}



M. Chen, G. looss / European Journal of Mechanics B/Fluids 24 (2005) 113-124 121

and satisfies
F(0,A,0,0, u,v)=0.

Moreover, because of the fact that

$§O=§_0» Z;Ozeiqoré‘(]?
S&o=¢&0, Tiéo=¢o,
the equivariance properties (19), (20) of our system lead to

T.F(Y, A, B, B, j1,v) = F(T, T, A, €97 B, 0T B, 11, v),

SF(Y,A,B,B,u,v) =F(SY,A,B, B, j1,v).

uku’% x Huku’” by theanalytic implicit function theoregrfor A, B, 1, v close

enough to 0 iR x C x RZ. We then obtain a function
T =Y(A,B,B,i,v),

The above Eq. (24) is solvable with respectitE H

whereY is analytic in its arguments and its principal part is quadraticiinB, B), given by (after a simple identification)
T =—BoL tQoN(©,0) + Of(Iul + V) [©1% + |93}, (25)
and, because of the uniquenesgofcomes from the implicit function theorem), we have for any real
Y(A, B, B, i, v) =SV(A, B, B, i1, v),
V(A, €97 B, e 7B, 1, v) = T, Y(A, B, B, 11, v).

In addition, we notice that, because of the existence of the family of trivial solutions of {{18) A&y which correspond to
(n,u) = (A, 0), we have for anyA, u, v) close enough to 0, and thanks to the uniqueness of the solution

Y(A,0,0,u,v) =0.

By simple calculation, we have
N(@®,0)= (% cos 2x (B2290" — 2| B|? 4 B2e~2l0t),
—isin pox(ABE90" — ABe 190"y i—z(BZeZi‘fO’ — B2e 240y sin 2p0x)
and
OoN(©, 0) = (—% cospox(ABE9 + ABe 190"y 4 %cos 20x(B2?1" — 2|B|? 4 B2~ 200",
- |§ sinpox(ABE90" — ABe 190"y — iE(BZeZiW — B2 2iq0ty gin 2pox).

The principal part of) is then given by
—BoLrQoN (@, 0) = (y\D. y?)

with
1 . . 1 ) _ )
y D = 7 cospox(ABE90" 4 ABe 40"y 4 5 |B|2 cOS 2p0x + a1 COS Dgx (B2eP90! 4 B2e—2iq0t)
i i — _j L i - i
y@ = 7 sinpox(ABE9" — ABe 190"y 4 B sin 2pgx (B2€?90" — B2e~2i90t),
with
. Po(1+ 3app?) (1+ opd) (1 + 3agp?)
1 = =
4ot poqo(2 + 5erg pg) 4o p3(2 + Sagp?)
—Bo(L+200p§)  —(L+aopf)(1+2x0pf)

l = =
4ot poqo(2 + 5erg pg) 4o p3(2 + Satgp3)
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Now, substitutingl” = Y(A, B, B, i, v) into (22) we obtain an equation i of the form
h(A,B,B,u,v)=0

while (23) gives its complex conjugate. Now, let us use the equivariance of our system. We then obtain the properties
h(A, BT Be 90T | vy =d9Tp(A, B, B, 11, v),
h(A.B.B.jt.v)=h(A, B, B.1v)

as it can be seen below. Indeed, we have thanks to (19)

h(A, BE9T, Be™907 1y v) = (T T+ (O + V) —vTOxt + (Bo + N (T2 (O + V), Te (6 + ), Lo)
=(Te{nT(© + ) —vOx + (Bo+ WN (@ + V.0 + W)}, o)
=(rT (@ +T)—vOxi + (Bo+ WN (O + 1,0 + 1), T_1 o)
— 0T (LT (O + 1) — vy + (Bo+ ION (O + 1,0 + 1), o)
—d9Th(A, B, B, 11, v),
and thanks to (20)

h(A, B, B, jt,v) = (uT SO +Y) —v8Ox: + (Bo+ N (SO + 1), SO +)). to)
= (S{uT(© + ) —vOx + (Bo+ WN (O + V.0 + W)}, (o)
= (1T (O +Y) = vOxi + (Bo+ WN(O + V.0 + ). %)
=h(A, B, B, j,v).
It then results from its analyticity, thattakes the form
h(A,B,B,u,v)=BH(A,|BI? 1,v) (26)

with an analytic function taking only real values, and the complex equatica 0 reduces to eitheB = 0 or the real equation
H = 0. The same property holds for the complex conjugate equation (23). Now noticing that

(KOx. 0) = 472 poqoB.
(N(©,0), t0) = 272AB,
(JO, 5o) =4r°B,
the bifurcation equation (22) reads
BH(A,|BI? 1u,v) =0 (27)

where

1
(4% "LH (A, |1B%, 1, v) = — pogov + >PoA — B2 BI2+O(IBI* + (Il + [v] + A1) (1A] + |BI?)) (28)

and the term which is the most important to compute is the coeffigigim (28). For this we need to introduce the symmetric
bilinear operator associated with the quadratic opev&fdoy

2N (U1, Up) = ((1 = mo)uguz, ugnz + upny).
Since we have the principal part @funder the form

yi= (D, y@) = AByEY 4 aBy LD 4 220 4 2,22 4 B2,(2-2)
we then obtain

_ —Po
p2= 22
therefore,

B2=B (1 L ﬂ) _ 3pol(eopg — D> - 2]

N (9, ¢0) + 2N (%2, 79), ¢0),
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We can in addition give the exact terffi(A, O, i1, v) independent oB. For this, let us look for all terms of degree oneAn
and degree 0 iB in the expression (A, B, B, i, v). Due to the form ofY(A, B, B, i, v), these terms come from

(1T (Bto+ YB) — vBKio 1 + (Bo+ ){2N (Aéo, Bo) + 2N (Ao, Y)}, to), (29)
whereYp is the term i) (A, B, B, u, v) of degree one iB, and degree 0 iB. Now, Y3 is the solution of the affine equation
LoYp + Q0T (Yp) — vKYp xt + BQo{2N (A&o, Bio) + 2N (A&, Yp)} =0, (30)

and a careful examination shows that we can lookffprunder the form
Yg = By (A) (9% cospox, i€ sin pgx).

A direct identification in (30) leads to

1
(2B0+ 1+ poqov)y (A) — 5BA{1—y (A)} =0,
which givesy (A): (notice that8g + u = B)

(Bo+ WA _ pA
2(2B0 + 1 + pogov) + (Bo+m)A 228 — u + pogov) + BA’

which is coherent (taking the limijt, v, A tending towards 0) with the coefficient™? of AB in (yV, y@). We then observe
that

)’,u,v(A) =

(31)

(7 (YB),¢0) =0
which leads for the coefficient (29) to the following expression

1
4ﬂ23{u — podov + 5 (Po+ AL =y, v(A)) }

Now, from the form ofy,, , (A), and from the identity

1
1= pogov = (poB — qo(L+ ap?))

we obtain
2{pap%(L+ A) — g2 (1 +ap3)?)
Po{2(poB + qo(1+ apd)) + poBA}’

We then obtain, in addition to the triviaammily of solutions of (27) corresponding ® = 0 (already seen), another bifur-
cating family given by the solutions df (A, |B|2, u, v) =0, i.e. thanks to the analyticity df and the above computation, the
solutions of the following improved form for (28)

2{p3B2(L+ A) — g3 (1+apd)?)
Po{2(poB + qo(1+ apd)) + poBA}

This provides standing waves, determined up to a phase shiftéquivalent to an arbitrary choice of the phasepof
Moreover, forg # 0, we can obtain, via the implicit function theorem,

pEB2(L+ A) — g2+ ap})?
2p3Bob2

for arbitrary A, u, v close to 0, while the bifurcation only takes place either;ﬁéﬁz(l + A) — qg(l + ozp%)2 > 0 or for
PEB2(L+ A) — g2(1+ apd)? < 0. We sum up our result in the following

1
= poqov + 5 (Fo+ WAL=y v(A) =

— B2IB2 + O(1BI* + (Il + vl + |A])(1BI?)) = 0.

|B|? = {1+ O(IAI + Il + [v])}

Theorem 6. Consider any positivéxq, Bg) such that

Zao o) ={(P-) | (p.q) € N2 andq(1+ aop®) — pho= o}

has a unique elemelipg, go)- Then, foru, v, A close enough to 0, whete= g+ v, B = Bg+ 1, A is the average ofi(x, 1),
and for

{P3B2(L+ A) — g3 (L + apd)?}(eop3 — (L +2) > 0,
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there is a three parametdr, 8, A) family of bifurcating standing waveds = (5, u), solution of the systei8), (4)in Huku’% X

ann"’, k > 2, defined up to a time shift. More precisely, we héve- 7; Ug, T € R (time shifted solutions, with respectig),
and

Uo(x, 1) = (no, uo)(x, 1),

no(x, 1) = A + 2|B| cosqot cospox + O(|B|(|A| + |B])),

ug(x, 1) = 2| B| singot sinpox + O(| B|(|A| + | B])),

PEB2(L+ A) — g1+ ap})?
2p3Bob2

|B|? = {1+ O(IA| + il + Iv])}.

Remark 1. In the cases whefg, o) is such that¥, g,) contains more than one element, the kerneLgfis still finite
dimensional, and the bifurcation equation is a systenmo&fuations foA, By, ..., B;, wherem is the number of elements in

X (ap, B0)- EVEN though, the structure of this system is simplified bpit®) equivariance, the general study of such a nongeneric
system is not studied here.

Remark 2. If we consider the linearization of the system (3), (4) at a pojnt:) = (A, 0) instead of the origin, we obtain for
the inverse operator, a new denominator replacing (6) by

7?1+ ap®? - p2B2(1+ A).

This is thequantity appearingn the expression of the squajrB|2 of the amplitudeof the bifurcating standing waves, as it

is natural. Now, the set afx, 8, A) in the three-parameter space, where bifurcation takes place is when the above expression
cancels, which is for fixedp, ¢) a right conoid (axise = —1/p2, 8 = 0) called awhitney’s umbrellaThe intersection of this

surface with the plané = 0 is the couple of straight lines already mentioned in the remark of Section 2. The above theorem
shows that the bifurcation of standing waves takes place along a discrete set of such Whitney's umbrellas (do not forget that
(p.q) is arbitrary inN?).
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