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The Incremental Unknowns - a multilevel scheme

for the simulation of turbulent channel ows

By M. Chen1, H. Choi2, T. Dubois3, J. Shen1 AND R. Temam4

In numerical simulation of complex ows, it is important to identify di�erent length
scales of the ow and treat them di�erently. In this report, we introduce a new
multilevel scheme for simulating turbulent channel ows. Two di�erent versions of
the scheme, namely the spectral and �nite di�erence versions, are presented. The
spectral version of the scheme is based on a spectral-Galerkin formulation which
provides a natural decomposition of the ow into small and large wavelength parts,
and which leads to linear systems that can be solved with quasi-optimal computa-
tional complexity. In the �nite di�erence version, the \Incremental Unknown" (IU)
is used to separate the length scales. Preliminary numerical results indicate that
the scheme is well suited for turbulence computations and provides results which
are comparable to that by Direct Numerical Simulation but with signi�cantly less
CPU time.

1. Motivation

The numerical simulation of turbulent ows is an extremely challenging task for
both the numerical analysts and computational uid dynamicists. The computing
power required to resolve the enormous number of degrees of freedom and their
nonlinear interactions involved in a turbulent ow is often near or beyond reach
of the current computer capacity so that conventional numerical schemes are often
impractical for turbulence simulations.
The aim of this paper is to introduce a new multilevel scheme which is based on

a di�erentiated treatment for small and large wavelength parts. It is well known
in turbulence theory that the large number of small wavelengths only carry a small
part of the total kinetic energy of the ow, however, the e�ect of their nonlinear
interactions with large wavelengths over a long term integration can not be ne-
glected and must be adequately resolved. Nevertheless, the small wavelength part,
especially their nonlinear interactions do not need to be represented in the same
accuracy as the large wavelength part. Our multilevel scheme is specially designed
such that it would produce results comparable to that by Direct Numerical Simula-
tion (DNS) but at signi�cantly less cost so that one can simulate more complicated
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ows with limited capability of the computer. The method can be applied to a
class of dissipative equations, and can be combined with a large number of existing
numerical methods.
The method starts with separating the length scales of the solution u as

u = f + g + r

where f is the large length scale, g is the intermediate length scale and r is the
small scale. Then the di�erent scales of the solution are treated di�erently which
could involve (a) neglecting some higher-order terms involving the small scales, (b)
updating small scales with lager time interval. The e�ect of these further approxi-
mations would, if done correctly, reduce the CPU time for each time step, improve
the stability (the CFL condition will be only related to the large wavelengths) |
allow larger time steps.
There are two ways to look at this method. One is that we neglect some e�ect

of the small scale terms. Another way is we think that large scale approximation is
not enough, so we are taking account the e�ect of small scale terms in an e�cient
way, instead of simply adding more mesh points.
This method has been applied to the simulation of 2D and 3D forced homoge-

neous turbulence (see Dubois, Jauberteau and Temam 1995a, 1995b, 1996 and the
references therein). In the 3D case, it has been shown that the main statistical prop-
erties of homogeneous turbulence is well predicted with multilevel schemes. Indeed,
while a saving in CPU time of 50 to 75 percent versus a classical Galerkin method
is obtained, the energy and enstrophy spectra as well as the high-order moments of
the velocity and its derivatives are accurately computed. The comparison of these
results has been done with the results of direct simulations.
In the case of homogeneous turbulence, when Fourier expansion of the velocity

is used, the separation of the ow into large and small scales is trivial. However,
this is not obvious for the channel ow problem because of the no-slip boundary
conditions at the walls. In particular, the popular spectral-tau (Gottlieb & Orszag
1977) method is not suitable for this purpose. We shall use the spectral-Galerkin
method developed in Shen (1994, 1995) for the non-homogeneous direction. This
spectral-Galerkin formulation not only provides a natural decomposition of the ow
into small and large wavelength parts, but also leads to linear systems that can be
solved with quasi-optimal computational complexity.
In the �nite di�erence case, we will use the Incremental Unknowns (IU) developed

by Chen and Temam (1991). The Incremental unknown method has been used for
steady equations, and the result is similar to preconditioning the associated matrix.
The scheme was shown theoretically convergent and has an improved e�ciency
(Chen and Temam 1993). Here for the �rst time, the IU method is applied to
unsteady problems.
This report is an interim report: more detailed results using the new scheme for

the turbulent channel ows will be reported later.
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2. Incremental unknowns in the spectral case

2.1 Formulation of the equations

We consider the Navier-Stokes equations

@u

@t
� ��u+ (u � r)u+

1

�
rP = 0; (2.1)

div u = 0; (2.2)

in a channel 
 = (0; Lx) � (�1; 1) � (0; Lz) with the boundary conditions: u =
(u; v;w) is periodic in x and z, and no slip on the walls. For this channel ow, we
assume that the pressure P takes the form P = ~P +KP x; where ~P is periodic in
directions x and z and KP is a given constant.
Following Kim, Moin and Moser (1987), we set

� = (u � r)u = (�x;�y;�z);

f =
@u

@x
+
@w

@z
;

g =
@u

@z
� @w

@x
;

hv(u;u) =
@

@x

�
@�x
@y

� @�y
@x

�
� @

@z

�
@�y
@z

� @�z
@y

�
;

hg(u;u) = �
�
@�x
@z

� @�z
@x

�
= �(u � r)g + g

@v

@y
+
@v

@x

@w

@y
� @v

@z

@u

@y
;

(2.3)

then, (2.1){(2.2) are equivalent to the following equations (cf. Kim et al. 1987):

@

@t
�v � ��2v = hv(u;u);

@g

@t
� ��g = hg(u;u);

f +
@v

@y
= 0:

(2.4)

From the boundary conditions of u and the continuity equation (2.2) we deduce
boundary conditions for v and g:

v(x;�1; z; t) = @

@y
v(x;�1; z; t) = 0;

g(x;�1; z; t) = 0:

We emphasize that hv(�; �) and hg(�; �) are indeed bilinear forms since they are
derived from the original bilinear form by linear di�erential operations.
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Writing the Fourier expansion in directions x and z for u

u(x; t) =
X
k2Z2

ûk(y; t)e
i(kx 2�

Lx
x+kz

2�
Lz
z); k = (kx; kz);

where ûk = (ûk; v̂k; ŵk), and similarly for f; g and hv; hg, we derive from (2.4)
that

@

@t
(k2 � @2

@y2
)v̂k + �

�
k4 � 2k2

@2

@y2
+

@4

@y4

�
v̂k = ĥ

v;k(u;u);

v̂k(�1) =
@v̂k
@y

(�1) = 0;

(2.5)

and
@ĝk
@t

+ �(k2 � @2

@y2
)ĝk = ĥ

g;k(u;u);

ĝk(�1) = 0;

(2.6)

where k2 =
�
2�
Lx

�2
k2x +

�
2�
Lz

�2
k2z .

From the equations relating the velocity components u and w to f and g in (2.3)
we derive

ikx
2�

Lx
ûk + ikz

2�

Lz
ŵk = f̂k;

ikz
2�

Lz
ûk � ikx

2�

Lx
ŵk = ĝk;

for all (kx; kz) 6= (0; 0): (2.7)

For (kx; kz) 6= (0; 0), the relations (2.7) can be used to determine ûk(y; t) and

ŵk(y; t) in terms of f̂k(y; t) and ĝk(y; t): Hence, to complete the system, we still
need additional relations for û0(y; t) and ŵ0(y; t): To this end, we integrate the �rst
and last components of the Navier-Stokes equations with respect to x and z to
obtain

@û0
@t

� �
@2û0
@y2

+
1

LxLz

Z Lx

0

dx

Z Lz

0

v(x)
@u

@y
(x)dz +KP = 0;

@ŵ0

@t
� �

@2ŵ0

@y2
+

1

LxLz

Z Lx

0

dx

Z Lz

0

v(x)
@w

@y
(x)dz = 0:

(2.8)

The time discretization of (2.5), (2.6) and (2.8) is achieved by using a semi-implicit
scheme with the second-order Crank-Nicolson for the linear terms and a third order
explicit Runge-Kutta scheme for the nonlinear terms. Hence, we only have to solve
a sequence of one-dimensional second-order equations for ĝk(y; t) and fourth-order
equations for v̂k(y; t):
Kim, Moin and Moser (1987) applied a Chebyshev-tau approximation to the

y�direction. Since the direct application of tau method to fourth-order equations is
unstable (Gottlieb and Orszag, 1977), they proposed a time splitting scheme which
consists of solving several successive second-order problems to enforce the boundary
conditions on v by using a technique similar to the inuence matrix method.
Based on a sequence of recent work by Shen (1994, 1995 and 1996), we present

below a spectral-Galerkin scheme for these second-order and fourth-order equations.
Using this method, the system (2.5){(2.6) can be directly solved.
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2.2. A spectral-Galerkin approximation of the Kim-Moin-Moser formulation

A Fourier-Galerkin approximation in the x and z directions is �rst applied to the
problems (2.5) and (2.6), i.e. we look for

uN (x; t) =
X
k2SN

ûk(y; t)e
i(kx 2�

Lx
x+kz

2�
Lz
z); (2.9)

(where N = (Nx;Nz) and SN =
�
k 2 Z2=(kx; kz) 2 [1� Nx

2
; Nx

2
]� [1� Nz

2
; Nz

2
]
	
)

as a solution of the system of

@

@t
(k2 � @2

@y2
)v̂k + �

�
k4 � 2k2

@2

@y2
+

@4

@y4

�
v̂k = ĥ

v;k(uN ;uN );

v̂k(�1) =
@v̂k
@y

(�1) = 0;

(2.10)

and
@ĝk
@t

+ �(k2 � @2

@y2
)ĝk = ĥ

g;k(uN ;uN);

ĝk(�1) = 0;

(2.11)

for all k 2 SN :
We now describe Galerkin approximations of (2.10) and (2.11) in the y�direction.

Let us denote
� PM : the space of polynomials of degree less than or equal to M ,
� VM = spanf'(y) 2 PM : '(�1) = 0g;
� WM = spanf'(y) 2 PM : '(�1) = 0; @'

@y
(�1) = 0g:

Let pj(y) be either the Legendre or Chebyshev polynomial of degree j, then

VM = spanf�0; �1; : : : ; �M�2g
with �j(y) = pj (y) � pj+2(y). Moreover, following Shen (1996), we can determine
(aj ; bj) such that

 j(y) = pj(y) + ajpj+2(y) + bjpj+4(y)

satis�es the boundary conditions  j(�1) = @ j
@y

(�1) = 0; i.e.  j 2WM : Therefore

WM = spanf 0;  1; : : : ;  M�4g:
The spectral-Galerkin scheme in the y�direction for (2.10) and (2.11) is to �nd

vN;M(x; t) such that v̂k;M (y; t) 2WM ; and uN;M(x; t) (similarly for w and g) such

that ûk;M (y; t) 2 VM ; for all k 2 SN ; such that

@

@t

�
(k2 � @2

@y2
)v̂k;  j

�
!

+ �

��
k4 � 2k2

@2

@y2
+

@4

@y4

�
v̂k;  j

�
!

=
�
ĥ
v;k(uN;M ;uN;M);  j

�
!
;

for all j = 0; : : : ;M � 4;

(2.12)
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and

@

@t

�
ĝk; �j

�
!
+ �

�
(k2 � @2

@y2
)ĝk; �j

�
!

=
�
ĥ
g;k(uN;M ;uN;M ); �j

�
!
;

for all j = 0; : : : ;M � 2;

(2.13)

where ('; )! =
R 1
�1
'(y) (y) ! dy with !(y) � 1 in the Legendre case and !(y) =

(1� y2)�
1

2 in the Chebyshev case.

It is easy to see that, in (2.13), the mass matrix M with entries mjl = (�l; �j)!
is a sparse symmetric matrix with three nonzero diagonals, and that the sti�ness

matrix S with entries sjl = ( @
2

@y2
�l; �j)! is diagonal in the Legendre case, and is a

special upper triangular matrix in the Chebyshev case such that the linear system
(�M + S)x = b associated with (2.13) can be solved in O(M) operations (Shen
1995). Similarly, the linear systems in (2.12) can be solved in O(M) operations,
see Shen (1994, 1995). We emphasize that the above spectral-Galerkin scheme is
superior, in both e�ciency and accuracy, to the tau-method used in Kim, Moin and
Moser (1987), and is, in particular, suitable for multilevel decomposition.

The Legendre-Galerkin method has been implemented and tested. In this code,
the pseudo-spectral computation of the nonlinear terms is done at the Chebyshev-
Gauss-Lobatto points in the normal direction (see Shen 1996). A 128 � 129 � 128
simulation at the Reynolds number of 180 has been conducted. The statistics have
been compared to the one presented by Kim, Moin and Moser (1987).

2.3. A multilevel spectral-Galerkin scheme

We now describe a multilevel scheme for the time integration of (2.12) and (2.13).
For the sake of simplicity, we will only present a scheme based on a �rst-order semi-
implicit scheme for the time discretization. However, one can easily generalize it to
higher-order semi-implicit scheme.

The basic idea of the multilevel scheme is to decompose the solution into several
length scales and treat them di�erently in order to improve the e�ciency and sta-
bility of the classical Galerkin approximation. The special basis functions f�j ;  jg
provide a natural decomposition of small and large wavelengths for this purpose.
Furthermore, the small and large wavelengths are quasi-orthogonal in the following
sense:

(�l; �j)! = 0; for j 6= l; l � 2;

(
@2�l
@y2

; �j)! = 0; for l 6= j (Legendre case);

(
@2�l
@y2

; �j)! = 0; for l < j or l + j odd (Chebyshev case);

(2.14)



The Incremental Unknowns 7

and
( l;  j )! = 0; for j 6= l; l � 2; l � 4;

(
@2 l
@y2

;  j)! = 0; for l 6= j; l 6= j � 2;

(
@4 l
@y4

;  j)! = 0; for l 6= j (Legendre case);

(
@4 l
@y4

;  j)! = 0; for l < j or l + j odd (Chebyshev case):

(2.15)

Given two appropriate cut-o� numbers Mp; Mq such that 0 < Mp < Mq < M;
we may decompose ûk;M (y; t) 2 VM as follows

ûk;M (y; t) =
M�2X
j=0

ûk;j(t)�j(y)

=

Mp�2X
j=0

ûk;j�j(y) +

Mq�2X
j=Mp�1

ûk;j�j(y) +
M�2X

j=Mq�1

ûk;j�j(y)

= pu(y; t) + qu(y; t) + ru(y; t);

(2.16)

and similarly for ŵk;M (y; t) and then for ĝk;M (y; t); for all k 2 SN : Note that for
the sake of simplicity, the dependence of pu; qu and ru in k is omitted. We may
also decompose v̂k;M (y; t) 2WM as

v̂k;M (y; t) =

M�4X
j=0

v̂k;j j(y)

=

Mp�4X
j=0

v̂k;j j(y) +

Mq�4X
j=Mp�3

v̂k;j j (y) +

M�4X
j=Mq�3

v̂k;j j(y)

= pv(y; t) + qv(y; t) + rv(y; t):

(2.17)

We �nally obtain the following decomposition for ûk;M :

ûk;M = p+ q + r;

where p = (pu; pv; pw) and similarly for q and r: The decomposition (2.16) on ûk;M
and ŵk;M induces a decomposition of ĝk;M into

ĝk;M (y; t) = pg + qg + rg :

Then, thanks to (2.15) (resp. (2.14)), we can approximate the system (2.12) (resp.
(2.13)) in WMp

(resp. VMp
) as follows

@

@t

�
(k2 � @2

@y2
)pv;  j

�
!

+ �

��
k4 � 2k2

@2

@y2
+

@4

@y4

�
pv;  j

�
!

= (ĥ
v;k(p + q + r;p+ q + r);  j )!;

for j = 0; : : : ;Mp � 4;

(2.18)
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@

@t
(pg; �j)! + �k2(pg; �j)! � �

�
@2pg
@y2

; �j

�
!

= (ĥ
g;k(p+ q + r;p+ q + r); �j)! ;

for j = 0; : : : ;Mp � 2;

(2.19)

and in WMq
(resp. VMq

) as follows

@

@t

�
(k2 � @2

@y2
)(pv + qv);  j

�
!

+ �

��
k4 � 2k2

@2

@y2
+

@4

@y4

�
(pv + qv);  j

�
!

= (ĥ
v;k(p + q + r;p+ q + r);  j )!;

for j = 0; : : : ;Mq � 4;
(2.20)

@

@t
(pg + qg; �j)! + �k2(pg + qg ; �j)! � �(

@2

@y2
(pg + qg); �j)!

= (ĥ
g;k(p+ q + r;p+ q + r); �j )!;

for j = 0; : : : ;Mq � 2:

(2.21)

Note that in (2.18){(2.19) and (2.20){(2.21) linear interaction terms coming from
(pg ; �j)! (resp. (qv ; �j)!) and similarly for rg (resp. rv) are neglected. Until
numerical tests are performed, it is not clear whether or not these terms have to be
neglected. However, for the sake of simplicity we do not take them into account in
the large or intermediate scale equations.
By projecting (2.12) (resp. (2.13)) onto the space WMnWMq

(resp. VMnVMq
) we

obtain the small scale equation

@

@t

�
(k2 � @2

@y2
)rv ;  j

�
!

+ �

�
(k4 � 2k2

@2

@y2
+

@4

@y4
)rv;  j

�
!

= (ĥ
v;k(p+ q;p+ q);  j)!

� @

@t

�
(k2 � @2

@y2
)qv;  j

�
!

� �

�
(k4 � 2k2

@2

@y2
)qv;  j

�
!

;

for j =Mq � 3; : : : ;M � 4;

(2.22)

@

@t
(rg ; �j)! + �k2(rg ; �j)! � �(

@2rg
@y2

; �j)!

= (ĥ
g;k(p+ q;p+ q); �j)! �

@

@t
(qg ; �j)! � �k2(qg ; �j)!;

for j =Mq � 1; : : : ;M � 2:

(2.23)

We note that in (2.22){(2.23) the nonlinear interaction between the small wave-
length part r and the larger wavelength parts (p+ q) is neglected.
Since hg(�; �) is a bilinear form, we can write

hg('+ ;'+ ) = hg(';') + (hg('; ) + hg( ;') + hg( ; ))

= hg(';') + hg;int('; );
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and similarly for hv(�; �):
We may now de�ne the multilevel scheme based on the approximation (2.18) {

(2.23).
Given Un

N;M = pn + qn + rn, the approximation of uN;M(n�t), and an integer

nu, we de�ne U
n+2nu
N;M = pn+2nu+qn+2nu+rn+2nu by using the following multilevel

scheme:
For j = 0; 1; : : : ; nu � 1,

k2(1 + �k2�t)(pn+2j+1v ;  l)! � (1 + �k2�t)(
@2

@y2
pn+2j+1v ;  l)!

+ ��t

�
@4

@y4
pn+2j+1v ;  l

�
!

=

�
(k2 � @2

@y2
)pn+2jv ;  l

�
!

+�t(ĥv(p
n+2j;pn+2j;  l)! +�t(ĥv;int(p

n;qn + rn);  l)! ;

for l = 0; : : : ;Mp � 4;

qn+2j+1v = qn+2jv ;

rn+2j+1v = rn+2jv = rnv ;

(2.24)

(1 + �k2�t)(pn+2j+1g ; �l)! � ��t(
@2

@y2
pn+2j+1g ; �l)! = (pn+2jg ; �l)!

+�t(ĥg(p
n+2j ;pn+2j); �l)! +�t(ĥg;int(p

n; (q + r)n); �l)!;

for l = 0; : : : ;Mp � 2;

qn+2j+1g = qn+2jg ;

rn+2j+1g = rn+2jg = rng ;

(2.25)

k2(1 + �k2�t)((pv + qv)
n+2j+2;  l)! � (1 + �k2�t)(

@2

@y2
(pv + qv)

n+2j+2;  l)!

+ ��t

�
@4

@y4
(pv + qv)

n+2j+2;  l

�
!

=

�
(k2 � @2

@y2
)(pv + qv)

n+2j+1;  l

�
!

+�t(ĥv((p+ q)
n+2j+1; (p+ q)n+2j+1);  l)!

+�t(ĥv;int(p
n + qn; rn);  l)!;

for l = 0; : : : ;Mq � 4;

rn+2j+2v = rn+2j+1v = rnv ;
(2.26)

(1 + �k2�t)((pg + qg)
n+2j+2; �l)! � ��t(

@2

@y2
(pg + qg)

n+2j+2; �l)!

= ((pg + qg)
n+2j+1; �l)!

+�t(ĥg((p + q)
n+2j+1;pn+2j+1); �l)!

+�t(ĥg;int(p
n + qn; rn); �l)!;

for l = 0; : : : ;Mq � 2;

rn+2j+2g = rn+2j+1g = rng :

(2.27)
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Once we obtain pn+2nu and qn+2nu from above, we compute rn+2nu as follows

k2(1 + 2nu�k
2�t)(rn+2nuv ;  l)! � (1 + 2nu�k

2�t)(
@2

@y2
rn+2nuv ;  l)!

+2nu��t

�
@4

@y4
rn+2nuv ;  l

�
!

=

�
(k2 � @2

@y2
)rnv ;  l

�
!

+2nu�t(ĥv((p + q)
n+2nu; (p+ q)n+2nu);  l)!

�
�
(k2 � @2

@y2
)(qn+2nuv � qnv );  l

�
!

� 2nu�t

�
(k4 � 2k2

@2

@y2
)qn+2nuv ;  l

�
!

for l =Mq � 3; : : : ;M � 4;

(2.28)

and

(1 + 2nu�k
2�t)(rn+2nug ; �l)! � 2nu��t(

@2

@y2
rn+2nug ; �l)!

= (rn+2nug ; �l)!

+ 2nu�t(ĥg((p + q)
n+2nu; (p+ q)n+2nu); �l)!

� �
(qn+2nug � qnv ); �l

�
!
� 2nuk

2�t(qn+2nug ; �l)!

for l =Mq � 1; : : : ;M � 2:

(2.29)

Note that the computation of the right-hand side of (2.24){(2.25) (resp. (2.26){
(2.27)) requires only fast Chebyshev transforms (FCT) with O(Mplog2(Mp)) (resp.
O(Mplog2(Mp)) ) operations in the normal direction. The nonlinear interaction
terms hv;int and hg;int are computed once at the time iteration j = n: Hence, during
the 2nu time iterations described above, FCT with O(Mlog2(M)) are required only
at j = n and j = n+2nu: Compared to a classical Galerkin (or tau) approximation
the multilevel scheme proposed here allows to signi�cantly reduce the CPU time
needed for channel ow simulations. In the case of forced homogeneous turbulence,
savings of the order of 50 to 70 percent have been obtained (see Dubois, Jauberteau
and Temam 1995b and 1996).

3. Incremental unknowns in the �nite di�erence case

The main idea of the multilevel scheme is to treat the large and small scales dif-
ferently in numerical simulation. Therefore, it is important to have an appropriate
decomposition of the ow into di�erent length scales. In Section 3.1, we describe a
procedure to decompose the solution into large and small scales in �nite di�erence
method. To illustrate the method, we start by applying the incremental unknowns
to the Burger's equation. In Section 3.2, we test the method of separating scales
using turbulent channel ow database. In Section 3.3, we suggest an algorithm to
implement the scheme for the turbulent channel ow.
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3.1. Incremental unknowns on Burger's equation

In this section, we start with the two-level incremental unknowns, namely, we
decompose the solution u into

u = y + z:

The second-order incremental unknowns in one-dimensional case are de�ned as in
Chen and Temam (1991) by

y2j = u2j ;

z2j+1 = u2j+1 � 1

2
(u2j+2 + u2j):

Multilevel incremental unknowns can be de�ned recursively. Three-level incremen-
tal unknowns will be de�ned in Section 3.2.
Let us consider the Burger's equation,

@u

@t
+

@

@x
(
u2

2
) = �

@2u

@x2
+ X (x; t); u(0; t) = u(1; t) = 0:

When the second order central di�erence scheme is used for the space derivatives
and the explicit Euler is used for the time advancing, the �nite di�erence scheme
reads

un+1i � uni
�t

+
1

4�x
[(uni+1)

2 � (uni�1)
2] =

�

�x2
[uni+1 � 2uni + uni�1] + X (xi; tn):

Writing y and z components separately, one �nds that y satis�es

un2j+1 = zn2j+1 +
1

2
(yn2j+2 + yn2j);

yn+1
2j � yn2j

�t
+

1

4�x
[(un2j+1)

2 � (un2j�1)
2]

=
�

�x2
[un2j+1 � 2yn2j + un2j�1] + X (x2j ; tn);

and z satis�es

zn+1
2j+1 � zn2j+1

�t
+

1

2�t
[(yn+12j+2 + yn+12j )� (yn2j+2 + yn2j)]

+
1

4�x
[(yn2j+2)

2 � (yn2j)
2] =

�

�x2
[�2zn2j+1] + X (x2j+1; tn):

Instead of evaluating z at each time step, we propose to �x z for m steps and then
evaluate once to save the CPU time and memory. Therefore, as m increases, so
does the the saving of the CPU time. On the other hand, we are also at the risk
of losing accuracy as m increases. It is clear that when m = 0, the scheme is the
same as the original standard method with the �ne mesh, while if we never update
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z and let it be 0, the scheme is simply the original standard method in the coarse
mesh and u = y.
To illustrate how much savings one could obtain by freezing z systematically,

we list in table 1 the ratio of the work with freezing z m times vs. 0 times, with
the assumption that the work per time step per grid point is independent of the
mesh size. As an example, if one freezes z for one time step in a three-dimensional
problem, the work by using incremental unknowns is only 56.25% of that by using
the standard �nite di�erence method.

Table 1. Ratio of the work with freezing z m times vs. 0 times

m 0 1 2 3 � � � Nt

1-D 1 0.75 0.67 0.625 � � � 0.50

2-D 1 0.625 0.5 0.44 � � � 0.25

3-D 1 0.5625 0.42 0.34 � � � 0.125

We now test this scheme on a model problem, in which we try to recover the
steady solution us(x) = f(20x)�f(0)+(f(0)�f(20))x of Burger's equation, where

f(t) =
15X
k=1

exp(cos(k
p
k(2:5 + 0:5t)�=10)� 0:3 sin(0:8k

p
kt�=10)):

The forcing function X (x; t) = X (x) is calculated by substituting us(x) into the
equation. Initial condition is taken as u(x; 0) = sin(2x) with the boundary con-
ditions u(0; t) = u(1; t) = 0. By comparing the graphs of us(x) with Nx = 512,
Nx = 256 and Nx = 128, one �nds that Nx = 256 is approximately the minimum
number of grid points required to adequately resolve us(x).
The numerical results using the original scheme and the proposed scheme with

di�erent m are compared (�gure 1). For m = 1 to 4, the results are almost iden-
tical. However, for m = 5, the approximate solution is signi�cantly less accurate.
Therefore, the proposed scheme has to be used with caution and m can not be too
large.

3.2. Small scales in IU

In the multilevel scheme given in section 2, a spectral method is used to decompose
scales. However, it is not easy to de�ne small scales in �nite di�erence methods.
In Section 3.1, the small scale component of the ow is de�ned in the context of
incremental unknowns. In this section, we examine this concept.
For simplicity, we will only treat the three-level IU. As is done in Section 2, the

method starts with separating the length scales of the ow into

u = f + g + r; (3:1)

where u is the velocity in the streamwise direction, f; g and r are respectively the
large, intermediate and small scales. The de�nitions of f; g and r are given below
(see �gure 2):



The Incremental Unknowns 13

Figure 1. An exact steady state solution of the Burger's equation.

f4i = u4i

g4i+2 = u4i+2 � 1

2
(u4i+4 + u4i)

r4i+1 = u4i+1 � 1

2
(u4i+2 + u4i);

(3:2)

where i is the index for the streamwise (or wall-normal, or spanwise) direction
(i = 0; 1; 2; :::;Nx=4). The wall-normal and spanwise velocities can be de�ned in a
similar way. We require the condition

jf j > jgj > jrj (3:3)

in order to validate the assumption of separating length scales.
In the present study, the magnitudes of f; g and r are estimated using the database

of turbulent channel ow. Turbulent ow in a channel is simulated using the Di-
rect Numerical Simulation (DNS) technique. The convection and di�usion terms
are integrated in time using a third-order Runge-Kutta method and the Crank-
Nicolson method, respectively. A second-order central di�erence is used in space.
A fractional step method is used to decouple the pressure from the velocity. The
Reynolds number used is Re� = u��=� = 180 and the computational domain is
4�� (x) � 2� (y) � 4�=3� (z), where u� is the wall shear velocity, � is the channel
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x

4i 4i+1 4i+2

f

g

r

u (x)

4i+3 4i+4

f

Figure 2. Schematic diagram of separating scales in a �nite di�erence method

half width, and � is the kinematic viscosity. The number of grid points used is
128 (x) � 129 (y) � 128 (z).

Figure 3 shows the energy spectra of the velocity components in the streamwise
and spanwise directions, whereE(fi); E(gi) andE(ri) are shown at three y-locations
(y+ = 6; 33; 177). It is clear that ri's have the energy of small scales, while gi's have
the energy of intermediate scales. Both gi and ri have orders of magnitude smaller
energies in small wavenumbers as compared to fi. Therefore, the incremental un-
knowns de�ned in (3.2) properly describe the small and intermediate scales of the
velocity.

3.3. Implementation of IU in turbulent channel ow

Implementation of IU for the Navier-Stokes equations is very similar to that of
IU for the Burgers equation (see Section 3.1), once the approximating factorization
scheme is used (see below). The only di�erence is the coupling between the velocity
and the pressure.

The governing equations for an incompressible ow are

@ui
@t

+
@

@xj
uiuj = � @p

@xi
+

1

Re

@

@xj

@ui
@xj

; (3:4)

@ui
@xi

= 0: (3:5)

The integration method used to solve (3.4) and (3.5) is based on a semi-implicit
fractional step method, i.e., third-order Runge-Kutta method for the convection
terms and Crank-Nicolson method for the di�usion terms:
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Figure 3. Energy spectra of the velocities, u1 ( ), u2 ( ), u3 ( ):
no symbol, fi; �, gi; , ri. (a) y+ = 6; (b) y+ = 33; (c) y+ = 177.
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ûki � uk�1i

�t
=(�k + �k)Li(u

k�1) + �kLi(û
k � uk�1)

� kNi(u
k�1) � �kNi(u

k�2);

(3:6)

r2�k =
1

�t

@ûki
@xi

; (3:7)

uki � ûki
�t

= �@�
k

@xi
; (3:8)

where Li and Ni are the di�usion and convection terms of (3.4), k = 1; 2; 3, and

�1 = �1 =
4

15
; 1 =

8

15
; �1 = 0

�2 = �2 =
1

15
; 2 =

5

12
; �2 = �17

60

�3 = �3 =
1

6
; 3 =

3

4
; �3 = � 5

12
:

Here, (�k + �k)pk = �k � (�t�k=Re)r2�k.
Rearranging (3.6) in delta form (�ûki = ûki � uk�1i ) gives

(1 ��t�k
1

Re
r2)�ûki = �t

�
(�k + �k)Li(u

k�1)� kNi(u
k�1)� �kNi(u

k�2)
�
:

Approximating factorization of this equation gives

(1��t�k
1

Re

@2

@x2
)(1��t�k

1

Re

@2

@y2
)(1��t�k

1

Re

@2

@z2
)�ûki

= �t
�
(�k + �k)Li(u

k�1)� kNi(u
k�1)� �kNi(u

k�2)
�

� Ri(u
k�1;uk�2):

(3:9)

Let us de�ne �i as

�i � (1 ��t�k
1

Re

@2

@y2
)(1��t�k

1

Re

@2

@z2
)�ûi: (3:10)

Then, (3.9) becomes

(1��t�k
1

Re

@2

@x2
)�i = Ri: (3:11)

For simplicity, we only focus on the velocity in the streamwise component. Note
that in turbulent channel ow the periodic boundary conditions are applied in the
streamwise and spanwise directions (x; z) and the no-slip condition is applied in the
wall-normal direction (y).
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Now, let us decompose � (streamwise component of �i) into three di�erent scales
as was introduced in section 3.2:

� � f + g + r (3:12)

As a �rst step, (3.11) is approximated at each fourth grid point using a second-
order central di�erence scheme:

�4i � �(�4i+1 � 2�4i + �4i�1) = R14i ; (3:13)

where � = �t�k=(Re�x2).
Using a similar relation to (3.2), it can be easily shown that (3.13) becomes

� �

4
�4i+4 + (1 +

�

2
)�4i � �

4
�4i�4

= R14i + �(
1

2
g4i+2 +

1

2
g4i�2 + r4i+1 + r4i�1):

(3:14)

The � at every fourth grid point is obtained by solving (3.14). The �4i�1 and �4i�2
are updated with the newly obtained �4i from (3.14): e.g.,

�4i+2 = g4i+2 +
1

2
(�4i + �4i+4)

�4i+1 = r4i+1 +
1

2
(�4i + �4i+2);

(3:15)

where g and r are frozen for the periods of �tg and �tr, respectively. �tg and �tr
are called as the frozen times for the intermediate and small scales, respectively.
As a second step, (3.11) is approximated at every other grid point at t = l�tg (l

is an integer) using a second-order central di�erence:

��

2
�2i+2 + (1 + �)�2i � �

2
�2i�2 = R12i +�(r2i+1 + r2i�1): (3:16)

The � at every other grid point is obtained by solving (3.16). The �2i�1 are then
updated with the frozen r, and g4i�2 are updated: e.g.,

�2i+1 = r2i+1 +
1

2
(�2i + �2i+2) (3:17)

g4i+2 = �4i+2 � 1

2
(�4i + �4i+4): (3:18)

As a third step, (3.11) is approximated at every point at t = l�tr:

���i+1 + (1 + 2�)�i � ��i�1 = R1i : (3:19)
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The � at every grid point is obtained by solving (3.19). The r2i�1 are then updated
as

r2i+1 = �2i+1 � 1

2
(�2i + �2i+2): (3:20)

Once �'s are obtained at either 4i, 2i or i points, similar procedures are applied
to the other two directions. It is straightforward to extend the procedure described
above in the spanwise and wall-normal directions. At the end of these procedures,
the streamwise velocity is obtained. Again, the same procedure can be easily applied
to the other two velocity components.
Let us write the numerical algorithm of IU:

1. Start with an initial velocity �eld u0 or a previous time step un;k�1 = un�1.
2. Solve the discretized momentum equations at (4i; 4j; 4k) grid points (similar to

(3.14)) to obtain u at (4i; 4j; 4k) points.
3. Update u at non-(4i; 4j; 4k) points with frozen g and r (see (3.15)).
4. If t = l�tg, go to Step 5. If not, go to Step 2.
5. Solve the discretized momentum equations at (2i; 2j; 2k) grid points (similar to

(3.16)) to obtain u at (2i; 2j; 2k) points.
6. Update u at (2i � 1; 2j � 1; 2k � 1) points with frozen r and also update g at

(4i� 2; 4j � 2; 4k � 2) points (see (3.17) - (3.18)).
7. If t = l�tr, go to Step 8. If not, go to Step 2.
8. Solve the discretized momentum equations at all the grid points (similar to (3.19))

to obtain u at all points.
9. Update r at (2i � 1; 2j � 1; 2k � 1) points (see (3.20)).
10. Solve the Poisson equation (3.7) at all points, update the velocity (3.8), and go

to Step 2.
Note that it is not necessary for us to decompose the velocity into the same

levels of scales in all the directions. That is, one may decompose the ow into two
scales in the wall-normal direction and three scales in the streamwise and spanwise
directions.
The interpolation used in obtaining the neighboring velocity (e.g., (3.15)) dete-

riorates the momentum conservation property and the mass conservation is easily
violated unless the Poisson equation (3.7) is solved at each time step. However,
the requirement of the Poisson solution at each time step clearly diminishes the
advantage of using the IU method.
The modi�cation and application of the present multilevel scheme to the turbulent

channel ow are in progress and will be reported in the future.
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