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Abstract

This paper is centered at deriving and studying systems model-
ing bi-directional surface waves over an uneven or a moving bottom.
Compared with the huge amount of work on model equations describ-
ing one-way propagation of water waves, much less attention has been
given to Boussinesq systems describing two-way propagation of water
waves, especially to the systems which are externally forced.
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1 Introduction

Boussinesq systems over a flat bottom have been studied in [2-4] and it was
demonstrated that the systems have the capability of predicting physical
phenomena and have the advantages of being simpler than Euler equations
and applicable to more general situations than the KdV equation. Since in
practical applications, the wave reflection due to the bottom topography
and the wave interaction have to be considered, we will derive, without ad
hoc assumptions, a class of model equations which have the same formal
accuracy as KdV-type equations, but model bi-directional surface waves
over an uneven or moving bottom.

2 Equations for Bi-directional Waves Over an Un-
even Bottom

Consider nonlinear dispersive waves in a water channel of length L with an
uneven and possibly moving bottom. The bottom may actually be moving,
as in the experiments of [10], or it may result from an imposed flow at infin-
ity which is brought to rest via a change to traveling coordinates in which an
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uneven bottom will appear to move. Let x be the coordinate along the chan-
nel and y the vertical coordinate pointing upward with the undisturbed free
surface located at y = 0. Let η(x, t) be the free surface which is a fundamen-
tal unknown of the problem and −h(x, t) be the possibly moving bottom
topography, the flow domain is then Ωt = (0, L)× (−h(x, t), η(x, t)). Let a0

denote a typical wave height, λ0 denote a typical wave length, h0 denote the
average still water depth and g be the gravity constant. By assuming the
initial flow is irrotational, the system describing two-dimensional gravity
waves on the free surface may be written in the form

momentum conservation in x : ut + uux + vuy +
1
ρ
Px = 0, for (x, y) ∈ Ωt,

momentum conservation in y : vt + uvx + vvy +
1
ρ
Py = −g, for (x, y) ∈ Ωt,

mass conservation: ux + vy = 0, for (x, y) ∈ Ωt,

irrotational flow: uy − vx = 0, for (x, y) ∈ Ωt,

where (u, v) denotes the velocity in the x and y directions, respectively,
P denotes the pressure field and ρ denotes the density. The boundary
conditions on the surfaces are

ηt + uηx − v = 0; P (x, t) = P0(x, t); on y = η(x, t),
ht + uhx + v = 0; on y = −h(x, t).

Since the object of current study is on the small amplitude and long waves,
one can scale the variables so that the magnitude of each term be more
explicit. It is not always clear, initially, how all the variables should be
scaled and sometime there may be a genuine ambiguity corresponding to
different physical situation. A natural scaling of x, y and η is chosen, so

x̃ =
x

λ0
; ỹ =

y

h0
; η̃ =

η

a0
.

In the context of waves we are considering, such as the waves on a beach,
the waves progress with a velocity (i.e phase velocity) which is of order 1,
so the time should be scaled as x and we therefore set the non-dimensional
time as

t̃ =
c0t

λ0

where c0 =
√
gh0. To maintain the approximation that would obtain in

the absence of bottom variation or bottom motion, h − h0 is assumed to
behave similarly to η, so we let

h̃ =
h− h0

a0
.
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By assuming the horizontal velocity u has the same order of magnitude as
the surface variation η,

ũ =
uh0

a0c0

is used as corresponding non-dimensional variable. From mass conservation
and the kinematic condition on the surface, one finds

a0c0
λ0

ũx̃ + vỹ = 0,

a0c0
λ0

η̃t̃ +
a2

0c0
λ0h0

ũη̃x̃ − v = 0,

so v is of order
a0

λ0
and the nondimensionalized vertical velocity is chosen

to be
ṽ =

vλ0

a0c0
.

Substitute the non-dimensional, scaled variables into the governing equa-

tions of the flow in Ω̃t̃ =
(

0,
L

λ0

)
×
(
−
(
1 + αh̃

(
x̃, t̃
))
, αη̃

(
x̃, t̃
))

, and de-

note

α =
a0

h0
and β =

h2
0

λ2
0

,

which are small parameters, one obtains

αũt̃ + α2ũũx̃ + α2ṽũỹ +
1
ρc20

Px̃ = 0, for (x̃, ỹ) ∈ Ω̃t̃, (1)

αβṽt̃ + α2βũṽx̃ + α2βṽṽỹ +
1
ρc20

Pỹ = −1, for (x̃, ỹ) ∈ Ω̃t̃, (2)

ũx̃ + ṽỹ = 0, for (x̃, ỹ) ∈ Ω̃t̃, (3)

ũỹ − βṽx̃ = 0, for (x̃, ỹ) ∈ Ω̃t̃, (4)

η̃t + αũη̃x̃ − ṽ = 0, on ỹ = αη̃(x̃, t̃), (5)

P
(
x̃, t̃
)

= P0

(
x̃, t̃
)
, on ỹ = αη̃(x̃, t̃), (6)

h̃t̃ + αũh̃x̃ + ṽ = 0, on ỹ = −(1 + αh̃(x̃, t̃)). (7)

Since we are considering the wave motion for which the classical Stokes
number S = α/β is of order one, the two small parameters α and β may
be treated on an equal footing and we seek to write approximate equations
corresponding to the orders of accuracy characterized by αn or βn for n =
1, 2, · · · .

Let Ũ(x, t) denote the horizontal velocity at the bottom of the chan-
nel ỹ = −(1 + αh̃). Integrate the relation (4) along ỹ to determine that
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ũ− Ũ = O(β).Observing from equation (7) that h̃t̃ + ṽ(x̃,−(1 + αh̃), t̃) = O(α),
the leading order approximation of ṽ is then obtained by integrating (3) in
ỹ,

ṽ + h̃t̃ = −
∫ ỹ

−(1+αh̃)
ũx̃dỹ +O(α, β) = −(ỹ + 1)Ũx̃ +O(α, β). (8)

The next order of approximation keeps all the terms which are of order one
and of order α and β. Using (4) and (8), one obtains

ũỹ = βṽx̃ = −β(ỹ + 1)Ũx̃x̃ − βh̃x̃t̃ +O(α2, αβ, β2)

which yields by integrating in ỹ

ũ− Ũ = −1
2
β(ỹ + 1)2Ũx̃x̃ − β(ỹ + 1)h̃x̃t̃ +O(α2, αβ, β2). (9)

Integrating the momentum equation (2) with respect to ỹ from ỹ to αη̃ and
using (8), one derives by keeping all the terms of order α2, αβ and β2, that

αβỹh̃t̃t̃ +
1
2
αβ(ỹ2 + 2ỹ)Ũx̃t̃ +

1
ρc20

(P0 − P ) + αη̃ − ỹ = O(α3, α2β, αβ2, β3),

which means P − P0 = ρc20(αη̃ − ỹ) +O(αβ), the pressure P consists the
hydrostatic pressure and a higher order correction.

Differentiating with respect to x̃ and combining with equation (1), one
obtains by using approximations (9) and (8) that

αŨt̃ +αη̃x̃ +α2Ũ Ũx̃−
1
2
αβŨx̃x̃t̃ +

1
ρc20

(P0)x̃−αβh̃x̃t̃t̃ = O(α3, α2β, αβ2, β3).

It is worth to note that to maintain the order of approximation, (P0)x̃

should be of the order α or α2, which means that the variation of outside

pressure along the channel should be of the order
α

λ0
or

α2

λ0
, depending on

the physical situation! In the field situation, (P0)x is lower order. But when
P0 is used to model the effect of ships as in the experiment of [10], it could
be in the higher order. As an example, we assume that (P0)x̃ is of order α2

(i.e. (P0)x is of order α2/λ0). In this case, the non-dimensional variables

P̃0 =
P0h0

ρga2
0

, P̃ =
Ph0

ρga2
0

,

can be used. We therefore obtain

Ũt̃ + η̃x̃ + αŨŨx̃ −
1
2
βŨx̃x̃t̃ + α(P̃0)x̃ − βh̃x̃t̃t̃ = O(α2, αβ, β2).
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Following the work of [8], one can derive, by using mass conservation
(3) and the boundary conditions (5) and (7), that

η̃t̃ +
∂

∂x̃

∫ αη̃

−(1+αh̃)
ũ dỹ = η̃t̃ +

∫ αη̃

−(1+αh̃)

∂ũ

∂x̃
dỹ + αũ(x̃, αη̃, t̃)

∂η̃

∂x̃

+ αũ(x̃,−(1 + αh̃), t̃)
∂h̃

∂x̃
= −h̃t̃.

Denoting ū =
1

(1 + αη̃ + αh̃)

∫ αη̃

−(1+αh̃)
ũ dỹ which is the depth-averaged ve-

locity, one finds
η̃t̃ +

(
(1 + αη̃ + αh̃)ū

)
x̃

= −h̃t̃. (10)

Therefore, by using

Ũ = ū+O(α, β), Ũ = ū+
β

6
ūx̃x̃ +

β

2
h̃x̃t̃ +O(α2, αβ, β2), (11)

which are consequences of (9) and by associating with (10), one obtains the
following system of equations with respect to unknown functions ū and η̃

η̃t̃ +
(
(1 + αη̃ + αh̃)ū

)
x̃

= −h̃t̃,

ūt̃ + η̃x̃ + αūūx̃ −
1
3
βūx̃x̃t̃ =

1
2
βh̃x̃t̃t̃ − α(P̃0)x̃,

(12)

where the higher-order terms are neglected in the second equation. System
(12) appeared in [10] in a different form and was studied in [7, 6, 5] under an
additional condition that the external forces h̃ and P̃0 are time independent.
To my knowledge, the well-posedness of this system when associated with
the physically relevant, non-homogeneous initial- and Dirichlet-boundary-
value conditions is still an open question, even when the external forcing
is assumed to be zero. (The pure initial-value problem with zero external
forcing has been analyzed, however, and found to have global solutions.
See [9, 1].)

Similar to the work in [2], a regularized version of system (12) might be
more suitable for imposing a physically relevant initial- and non-homogeneous
boundary-value problem. Such systems, which are also correct to first or-
der in α and β, can be obtained by considering changes in the depen-
dent variables and by making use of lower-order relations in the higher-
order terms. Letting ũθ be the scaled horizontal velocity at the depth
ỹθ = θαη̃ − (1− θ)(1 + αh̃), where 0 ≤ θ ≤ 1 and evaluating (9) at ỹθ and
using (11), we have

ū = ũθ +
1
2

(
θ2 − 1

3

)
βũθ

x̃x̃ +
(
θ − 1

2

)
βh̃x̃t̃ +O(α2, αβ, β2),
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which yields from (12) an one-parameter family of systems,

η̃t̃ + ũθ
x̃ + α(η̃ũθ + h̃ũθ)x̃ +

1
2

(
θ2 − 1

3

)
βũθ

x̃x̃x̃

= −h̃t̃ −
(
θ − 1

2

)
βh̃x̃x̃t̃ +O(α2, αβ, β2),

ũθ
t̃
+ η̃x̃ + αũθũθ

x̃ +
1
2
(
θ2 − 1

)
βũθ

x̃x̃t̃

= −α(P̃0)x̃ + (1− θ)βh̃x̃t̃t̃ +O(α2, αβ, β2).

(13)

The order one relation in (13) is

η̃t̃ + ũθ
x̃ + h̃t̃ = O(α, β), ũθ

t̃
+ η̃x̃ = O(α, β),

which formally implies that

ũθ
x̃x̃x̃ = −η̃x̃x̃t̃ − h̃x̃x̃t̃ +O(α, β), ũθ

x̃x̃t̃
= −η̃x̃x̃x̃ +O(α, β).

Therefore, for any λ, µ ∈ IR, one has

ũθ
x̃x̃x̃ = λũθ

x̃x̃x̃ − (1− λ)(η̃x̃x̃t̃ + h̃x̃x̃t̃) +O(α, β);

ũθ
x̃x̃t̃

= −µη̃x̃x̃x̃ + (1− µ)ũθ
x̃x̃t̃

+O(α, β).

Substituting the relations above into (13) and neglecting the higher-order
terms, one derives a restricted four-parameter family of systems

η̃t̃ + (ũθ)x̃ + α(η̃ũθ + h̃ũθ)x̃ + aβũθ
x̃x̃x̃ − bβη̃x̃x̃t̃

= −h̃t̃ +
1
2
β

(
(1− λ)

(
θ2 − 1

3

)
− 2θ + 1

)
h̃x̃x̃t̃,

ũθ
t̃
+ η̃x̃ + αũθũθ

x̃ + cβη̃x̃x̃x̃ − dβũθ
x̃x̃t̃

= −α
(
P̃0

)
x̃

+ (1− θ)βh̃x̃t̃t̃,

(14)

where a, b, c, d are giving by

a =
1
2

(
θ2 − 1

3

)
λ, b =

1
2

(
θ2 − 1

3

)
(1− λ),

c =
1
2
(1− θ2)µ, d =

1
2
(1− θ2)(1− µ).

(15)

The following change of variables

x̃ = β
1
2 x̂, t̃ = β

1
2 t̂, η̃ = α−1η̂,

ũθ = α−1ûθ, h̃ = α−1ĥ, P̃0 = α−2P̂0,
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will simplify the equations by hiding the magnitude of each term

η̂t̂ + (ûθ)x̂ + (η̂ûθ + ĥûθ)x̂ + aûθ
x̂x̂x̂ − bη̂x̂x̂t̂

= −ĥt̂ +
1
2

(
(1− λ)

(
θ2 − 1

3

)
− 2θ + 1

)
ĥx̂x̂t̂ ,

ûθ
t̂
+ η̂x̂ + ûθûθ

x̂ + cη̂x̂x̂x̂ − dûθ
x̂x̂t̂

= −
(
P̂0

)
x̂

+ (1− θ)ĥx̂t̂t̂ ,

(16)

It is worth to note that the relationship between the original physical
variables x, t, η, uθ, h, P0 and the new variables x̂, t̂, η̂, ûθ, ĥ, P̂0 is

x = h0x̂, t = h0t̂/c0, η = h0η̂,

uθ = c0û
θ, h− h0 = h0ĥ, P0 = ρc20P̂0.

It follows that x̂, t̂, η̂ and ûθ are the standard non-dimensionalization of
x, t, η and uθ wherein the length scale is taken to be h0 and the time scale
to be h0/c0.

3 Remarks

Systems in (16)-(15) are the model equations describing two-way propa-
gating surface waves over an uneven or a moving bottom. In general, it is
more challenging to study a system than a single equation and there are
fewer results available. But to describe the two-way propagation of water
waves, one is obliged to study such a system.

It is clear from the derivation that (16) is valid under the assumptions
that the bottom of the channel is moving slowly and has a small variation,
and the variation of outside pressure along the channel is small. Therefore,
the forcing terms in (16) should be of the form

ĥ(x̂, t̂ ) = αH(α
1
2 x̂, α

1
2 t̂ ), P̂0(x̂, t̂ ) = α2F (α

1
2 x̂, α

1
2 t̂ )

where H,F and their first few derivatives are all of order one.
If one poses the pure initial-value problem for (16), then to be physically

relevant, the initial data

η̂(x̂, 0) = φ(x̂), ûθ(x̂, 0) = ψ(x̂),

should satisfy the small-amplitude, long-wavelength assumptions inherent
in the derivation of the models. That is, in principle, φ(x̂) and ψ(x̂) should
be of the form

φ(x̂) = αf(α
1
2 x̂), ψ(x̂) = αg(α

1
2 x̂),

where f, g and their first few derivatives are all of order one.
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One sample system which corresponding to the regularized Boussinesq
system studied in [2] reads, by taking λ = µ = 0 and θ2 = 2

3 ,

η̂t̂ + (ûθ)x̂ + (η̂ûθ + ĥûθ)x̂ −
1
6
η̂x̂x̂t̂ = −ĥt̂ +

(
1
2
−
√

2
3

)
ĥx̂x̂t̂,

ûθ
t̂
+ η̂x̂ + ûθûθ

x̂ −
1
6
ûθ

x̂x̂t̂
= −(P̂0)x̂ +

(
1−

√
2
3

)
ĥx̂t̂t̂.

The theoretical and numerical analysis of above system and the systems in
(16) will be presented elsewhere.
Acknowledgement: The author wish to thank Professor Jerry Bona for
his helpful comments and suggestions.
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