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FROM BOUSSINESQ SYSTEMS TO KP-TYPE

EQUATIONS

MIN CHEN

ABSTRACT. This short note is to demonstrate that the
famous Kadomtsev-Petviashvilli II-type equation
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for water waves which are weakly three-dimensional and prop-
agating predominantly in one-direction can be derived formally
from the three-dimensional Boussinesq system
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where v = (u, v) and ε is proportional to the typical wave
height of the wave (see [2, 3]). The relationship between the
dispersion relations of Euler equations, Boussinesq systems and
KP equations are also analyzed.

1 From Boussinesq system to KP-II equations System (2) is
one of a large class of Boussinesq systems which are derived for the small
amplitude and long waves and which are all equivalent and approximate
Euler equations up to the order ε, where ε is the ratio between the wave
height and the still water depth (see e.g., [2] for derivation, [4, 3, 5] for
analysis, justification and properties). It is written in non-dimensional
variables which are order-one quantities, namely η is scaled by a0, the
typical height of the waves being modelled, and v is scaled by a0g/c0,
where c0 =

√
gh0 with g being the acceleration of gravity and h0 the

depth of water in its quiescent state. The coordinate x = (x, y) is scaled
by λ0, a representative wave length, and time t is scaled by λ0/c0. In
equation (2), the Stokes number S = a0λ

2/h3
0 is taken to be exactly 1

for notational simplicity. One replaces the constant 1/6 by 1/(6S) for

Copyright c©Applied Mathematics Institute, University of Alberta.

367



368 MIN CHEN

general values of S. In any case, S is of order one which is one of the
assumptions leading from the Euler equations to (2).

In summary, the following scaling was used to express the scales ex-
plicitly in the derivation, tilded variables are used to denote physical
variables,
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where w̃ is the vertical velocity. Substitute these into the Euler equation
and neglect the terms of order O(ε2), one obtains the scaled Boussinesq
systems such as (2). The details of the derivation can be found in [2].

The Kadomtsev-Petviashvili (K-P) equation is derived under further
assumption that the wave is weakly three-dimensional, propagates pre-
dominantly in one direction (e.g., the positive x-direction) and the non-
linear, dispersive and three-dimensional effects are of equal importance.
Specifically, it implies that

(4) ŷ = ε
1

2 y and v̂ = ε−
1

2 v

are O(1) quantities. Substitute scaling (4) into (2) and drop the terms
of order O(ε2), then one finds

(5)

ηt + ux + εv̂by + ε(ηu)x − ε

6
ηxxt = 0,

ut + ηx +
ε

2
(u2)x − ε

6
uxxt = 0,

v̂t + ηby +
ε

2
(u2)by − ε

6
v̂xxt = 0.

Now, consider the O(1) terms in the first two equations with initial data

ηt + ux = 0, η(x, ŷ, 0) = f(x, ŷ),

ut + ηx = 0, u(x, ŷ, 0) = g(x, ŷ).

The solution reads

η(x, ŷ, t) =
1

2
(f(x + t, ŷ) + f(x − t, ŷ)) +

1

2
(−g(x + t, ŷ) + g(x − t, ŷ)),

u(x, ŷ, t) =
1

2
(g(x + t, ŷ) + g(x − t, ŷ)) +

1

2
(−f(x + t, ŷ) + f(x − t, ŷ)).
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Now by using the assumption that the wave is moving only to the right,
one obtains f = g and u(x, ŷ, t) = η(x, ŷ, t) = f(x − t, ŷ) at the leading
order. Therefore, one-directional wave satisfies

(6) u(x, ŷ, t) = η(x, ŷ, t) + O(ε) = f(x − t, ŷ) + O(ε).

Using the system (5) and the assumption that wave moves to right again,

v̂ = v̂0(x − t, ŷ) + O(ε)

which together with (6) implies

(7) ∂x = −∂t + O(ε).

For the next order of approximation on u, it is natural to assume

u = η + εA(η, v̂) + O(ε2).

Substitute it into the first two equations in (5), one obtains
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For this pair of equations to be consistent,
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1

2
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By using (7), At = −Ax + O(ε), one can choose
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2
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and hence

u = η − ε

4
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Substituting (9) into the first equation of (8), one has
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Using (7) and the leading order relation from the third equation in (5),
it is obtained

(11) (v̂by)x = −(v̂by)t + O(ε) = ηbyby + O(ε).

Differentiating (10) with respect to x and using (11) yield the KP-type
equation (KP II) [6]
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A more familiar form of the KP-II equation
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is obtained by another use of (7).
In summery, it is shown that KP-II type equations can be easily ob-

tained from a Boussinesq system under the KP assumptions. It is worth
noting that the argument presented above is purely a formal derivation.
We assume that after the proper scaling, all terms keep their order of
magnitude under derivation and integration. A rigorous justification
along with numerical comparisons similar to [1], where the KdV-type
equations and Boussinesq systems in one space dimension is compared,
will be carried out in a separate paper.

This formal derivation is equivalent to say that the expansions of u
and v̂ in terms of η are

u = η − ε

4
η2 − ε

2

∫ ∫ x

ηbyby(s, ŷ, t) ds dx + O(ε2),

v̂ =

∫
ηby dx + O(ε).

Substituting these into the first equation of (5) and using (7), one obtains
a KP II-type equation by dropping out the higher order terms.

The next order of expansion for v̂ can be useful when the information
on v̂ is required with η given. It is obtained with a similar argument
that

(14) v̂ =

∫
ηby dx + ε

∫
ηηby dx +
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6
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Remark 1.1. In fact, since all of the Boussinesq systems, such as clas-
sical Boussinesq system and the Bona-Smith system, are formally equiv-
alent to each other to the order of O(ε), one can start from any one and
derive the KP-type equations (12) or (13).

Remark 1.2. One can get rid of the ε’s in (12) (and in (2)) by using
the scaled physical variables (tilded variables)

η = εη̃, x = ε−
1

2 x̃, t = ε−
1

2 t̃, ŷ = ε−1ỹ.

2 Dispersion relations It is also interesting to observe the rela-
tionship between the Euler equation, the Boussinesq system and the KP
equation from their corresponding dispersive relations.

By assuming the solution has the form

η = η0e
i(k·x−ωt), v = v0e

i(k·x−ωt),

where k = (k1, k2) and x = (x, y), one finds the dispersion relation for
the two-dimensional linearized Euler equation is

(15) ω2
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|k|√
ε

tanh(
√

ε|k|) = |k|2 − 1

3
ε|k|4 + · · ·

under the scaled variables (3) and |k| =
√

k2
1 + k2

2 .
Similarly, simple computations shows the two-dimensional linearized

BBM2 system (2) has the dispersion relation

ω2
BBM =

|k|2
(1 + ε

6 |k|2)2
= |k|2 − ε

3
|k|4 + · · · .

For all other abcd-systems in [2], the dispersion relations also have the
same leading terms

ω2 = |k|2 − ε

3
|k|4 + · · · .

Therefore, the difference between the dispersion relations of Euler equa-
tions and (2) (or any of the Boussinesq-type systems in [2]) is of order
O(ε2).

Remark 2.1. The dispersion relation for the BBM2-system, ω2
BBM , is

positive for all |k|, just as the Euler equations. This is one of the main
differences between a BBM-type equation and a KdV-type equation.
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The linearized KP-II equation (1) has the dispersion relation

(16) ωKP =
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6
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It is worth noting that (16) is on ωKP , instead of on ω2
KP because the KP

assumption that the wave is traveling predominantly in one direction.
To compare ωKP with ωeuler , we take the square root of (15), take

the positive sign (right moving) and keep the leading orders

(17) ωeuler = |k|
(

1 − 1

6
ε|k|2

)
+ O(ε2).

For (17) and (16) to agree up to the order ε, it is necessary to have
(k2/k1)

2 = O(ε), the meaning of KP assumption that the wave is weakly
three-dimensional. Therefore, it is observed that the dispersion relation
of KP-II (1) approximates the dispersion relation of Euler equations up
to the order O(ε) only under the assumption (k2/k1)

2 = O(ε).

3 Summary In this short note, we derived the famous KP-II type
equation from Boussinesq systems, which are O(ε) approximations to
Euler equations, under KP assumptions. Since there are less assump-
tions on waves with Boussinesq systems, it is expected that more in-
teresting and physically relevant problems can be studied with the use
of Boussinesq systems. On the other hand, the established, physically
verified results from KP-II type equations should hold with Boussinesq
systems.
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