

We consider the vertical plane P, containing the given points, A and B, and assume that A is higher than B. Then we introduce the rectangular coordinates in this plane, with the origin at A, horizontal x axis, and the y axis pointing down. Let $y=f(x)$ be the function whose graph is the curve of minimal time from A to B.

If the motion starts from rest at A, and there is no friction, the speed v of the particle at a point (x, y) can be found from the energy conservation law

$$
m v^{2} / 2=m g y \quad \text { that is } \quad v=\sqrt{2 g y} .
$$

On the other hand, Snell's law and Fermat's principle tell us that $\sin \alpha$ (see the picture) should be proportional to the speed v. (Think about this, this is a crucial point of Bernoulli's argument!) We compute $\sin \alpha$ in terms of the derivative,

$$
\sin \alpha=\cos \beta=\frac{1}{\sqrt{1+\tan ^{2} \beta}}=\frac{1}{\sqrt{1+\left(y^{\prime}\right)^{2}}}
$$

Combining these two equations we obtain

$$
y\left(1+\left(y^{\prime}\right)^{2}\right)=k
$$

where k is a constant. This equation is separable, and we have

$$
d x=\sqrt{\frac{y}{k-y}} d y
$$

Such integrals are evaluated by trigonometric substitutions. In our case the
proper change of variables is

$$
\sqrt{\frac{y}{k-y}}=\tan t
$$

that is

$$
\begin{equation*}
y=\frac{k}{2}(1-\cos 2 t) \tag{1}
\end{equation*}
$$

Using this substitution and integrating, we obtain

$$
\begin{equation*}
x=\frac{k}{2}(2 t-\sin 2 t)+C . \tag{2}
\end{equation*}
$$

From the condition that our curve poasses through the origin, we conclude that $C=0$. The equalities (1) and (2) five a parametric description of our curve. Putting $\theta=2 t$ and $a=k / 2$ we get a simpler parametrization:

$$
x=a(\theta-\sin \theta) \quad \text { and } \quad y=a(1-\cos \theta) .
$$

This curve is a cycloid. It is easy to visualize as the trajectory of a point on the circumference of a wheel, rolling along the x axis.

Source: G. Simmons, Differential equations with applications and historical notes, McGraw Hill, NY, 1072.

