A problem in potential theory arising in biology

A. Eremenko

September 5, 2015

Let K_{0} and K_{1} be two bounded, disjoint convex sets in $R^{n}, n \geq 3$, and u the equilibrium potential, that is the harmonic function in $R^{n} \backslash\left\{K_{0} \cup K_{1}\right\}$ such that u has boundary values 1 on $K_{1} \cup K_{2}$ and $u(x) \rightarrow 0, x \rightarrow \infty$. Denote

$$
r_{j}=r_{j}\left(K_{0}, K_{1}\right)=\int_{\partial K_{j}} \frac{\partial u}{\partial n} d s, \quad j=0,1,
$$

where n is the inner normal and $d s$ is the surface area element. Is it true that each r_{j} decreases if we move K_{0} and K_{1} closer to each other?

More precisely: Let $f: R^{n} \rightarrow R^{n}$ be a distance decreasing homeomorphism, whose restriction on each K_{j} is an isometry onto the $f\left(K_{j}\right)$. Is it true that $r_{j}\left(f\left(K_{0}, f\left(K_{1}\right)\right) \leq r_{j}\left(K_{0}, K_{1}\right)\right.$?

Comments. This problem originates in the attempts of biologists to explain why certain animals (like armadillos) group close together when they sleep. Presumably this minimizes the rate of heat loss r_{j}. It is easy to prove that $r_{1}+r_{2}$ decreases when we move animals K_{1} and K_{2} closer together, see http://www.math.purdue.edu/ eremenko/dvi/armadillo.pdf and references there.

But each individual animal K_{j} feels only r_{j} not the sum. Some condition of convexity type is indeed needed here, think of a kangaroo putting her child in the bag.

The problem is unsolved even when K_{0} and K_{1} are two balls of different radii.

