Cisotti formula

A. Eremenko

December 13, 2023

During my office hours I was asked whether there exists a continuous analog of the Schwarz-Christoffel formula, for a conformal map of a disc onto any nice region.

Such a formula indeed exists; it was found by Umberto Cisotti (1921). The reference is apparently [1] but I am not sure, I have never seen this book. I follow Lavrentiev-Shabat [2, 3, 4], just translating a page from the book.

Let $w=f(z)$ be a conformal map of the unit disc onto a smooth Jordan region bounded by a curve C, and suppose that we know the argument $\theta(t)$ of the tangent vector to the curve C at the point $f\left(e^{i t}\right)$.

Think why this is the generalization of the data entering into the SchwarzChristoffel formula.

On the unit circle we have $d z=i e^{i t} d t$, and on the curve C we have $d w=|d w| e^{i \theta}$. Then

$$
\begin{equation*}
i \frac{d w}{d z}=e^{i(\theta-t)} \frac{|d w|}{d t} \tag{1}
\end{equation*}
$$

As f is conformal, $d w / d z \neq 0$ in the unit disc, so the function

$$
-i \log \left(i \frac{d w}{d z}\right)
$$

is analytic in the unit disc, and by (1), its real part on $|z|=1$ equals $\theta-t$. On the other hand, if $z=e^{i t}$, then

$$
\Re\left\{-i \log \left[-(1-z)^{2}\right]\right\}=\pi+2 \arg (1-z)=t
$$

(Just make a picture to see this).
So the real part of the analytic function

$$
\begin{equation*}
g(z)=-i \log \left(-i(1-z)^{2} \frac{d w}{d z}\right) \tag{2}
\end{equation*}
$$

on the unit circle coincides with θ. Thus g can be recovered from the Schwarz formula:

$$
g(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \theta(t) \frac{e^{i t}+z}{e^{i t}-z} d t+i c
$$

where c is a real constant. Once we found g, we can find f from (2):

$$
f(z)=i \int_{z_{0}}^{z} \frac{e^{g(\zeta)} d \zeta}{(1-\zeta)^{2}}+w_{0}
$$

This is Cisotti's formula.
In general, it is as useless as the Schwarz-Christoffel formula, unless we know something about $\theta(t)$.

Exercise: derive the Schwarz-Christoffel formula from Cisotti's formula.

References

[1] U. Cisotti, Idromeccanica piana. I, II. Milano: Tamburini, 1921-22.
[2] М. А. Лаврентьев, Б. В. Шабат, Методы теории функций комплексного переменного, Москва, 1973 (4-th edition).
[3] M. A. Lawrentjew und B.V. Schabat, Methoden der komplexen Funktionentheorie, VEB, Berlin 1967.
[4] M. A. Lavrentiev, B. V. Shabat, Métodos de la teoria de las funciones de una variable compleja, Moscow, 1991.

