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During my office hours I was asked whether there exists a continuous
analog of the Schwarz—Christoffel formula, for a conformal map of a disc
onto any nice region.

Such a formula indeed exists; it was found by Umberto Cisotti (1921).
The reference is apparently [1] but I am not sure, I have never seen this book.
I follow Lavrentiev-Shabat [2, 3, 4], just translating a page from the book.

Let w = f(z) be a conformal map of the unit disc onto a smooth Jordan
region bounded by a curve C, and suppose that we know the argument 0(t)
of the tangent vector to the curve C at the point f(e').

Think why this is the generalization of the data entering into the Schwarz—
Christoffel formula.

On the unit circle we have dz = iedt, and on the curve C we have
dw = |dw|e?. Then

dw i(@—t)|dw|
i =e pr (1)
As f is conformal, dw/dz # 0 in the unit disc, so the function
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is analytic in the unit disc, and by (1), its real part on |z| = 1 equals 6 — t.
On the other hand, if z = €, then

R{—ilog[—(1 — 2)?]} =7+ 2arg(l — 2) = t.

(Just make a picture to see this).
So the real part of the analytic function
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on the unit circle coincides with 8. Thus g can be recovered from the Schwarz
formula:
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where ¢ is a real constant. Once we found g, we can find f from (2):
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This is Cisotti’s formula.

In general, it is as useless as the Schwarz—Christoffel formula, unless we
know something about 6(t).

Exercise: derive the Schwarz—Christoffel formula from Cisotti’s formula.
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