Holomorphic curves with bounds on the spherical derivative

A. Eremenko

April 4, 2015

Let $f: \mathbf{C} \rightarrow \mathbf{P}^{n}$ be a holomorphic map; in homogeneous coordinates $f=\left(f_{0}: f_{1}: \ldots: f_{n}\right)$, where the f_{j} are entire functions with no zeros common to all of them. The spherical derivative $\left\|f^{\prime}\right\|$ measures the length distortion from the Euclidean metric in \mathbf{C} to the Fubini-Study metric in \mathbf{P}^{n}. Explicitly,

$$
\left\|f^{\prime}\right\|^{2}=\frac{\sum_{i<j}\left|f_{i}^{\prime} f_{j}-f_{i} f_{j}^{\prime}\right|^{2}}{\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{2}}
$$

We use the standard notation for the Nevanlinna characteristic $T(r, f)$ and Nevanlinna counting functions $N(r, a, f)$, for hyperplanes a in \mathbf{P}^{n}.
Conjecture. If for some $\sigma>-1$ we have $\left\|f^{\prime}\right\|(z)=O\left(z^{\sigma}\right)$, and a_{1}, \ldots, a_{q} are hyperplanes in general position, and $f(\mathbf{C}) \notin \cup_{j=1}^{q} a_{j}$, then

$$
\sum_{j=1}^{q} N\left(r, a_{j}, f\right) \geq(q+1-n) T(r, f)+O\left(r^{\sigma+1}\right)
$$

We recall than Cartan's theorem says that

$$
\sum_{j=1}^{q} N\left(r, a_{j}, f\right) \geq(q-1-n) T(r, f)+o(T(r, f))
$$

when $r \rightarrow \infty$ avoiding a set of finite measure.
The Conjecture is known to be true in the following cases:
a) When $n=1$, when it becomes

$$
N(r, a, f)=T(r, f)+O\left(r^{\sigma+1}\right), \quad r \rightarrow \infty
$$

for every $a \in \overline{\mathbf{C}}$.
b) When f omits $n-1$ hyperplanes in general position.

A weaker form of the Conjecture, with the error term $o\left(r^{2 \sigma+2}\right)$ is also known. All these results are due to J. Duval and B. da Costa, Sur les courbes de Brody dans $\mathbf{P}^{n}(\mathbf{C})$, Math. Ann. 355 (2013), no. 4, 1593-1600.

