Equilibrium points of Newtonian potentials

A. Eremenko

May 1, 2008

Consider the potential generated by finitely many positive charges in 3space:

$$
u(x)=\sum_{k=1}^{n} \frac{a_{k}}{\left|x-x_{k}\right|}, \quad a_{k}>0 .
$$

A point x is an equilibrium point if $\operatorname{grad} u(x)=0$.
Question 1. Is the set of equilibrium points always finite? (It can be infinite if we allow charges a_{k} of different signs).

Question 2. If the set of equilibrium points is finite, how many points can it contain?

The answer to question 2 is unknown even if there are three points and all $a_{k}=1$. J. C. Maxwell stated without proof that the number of equilibrium points is at most $(n-1)^{2}$. This gives 4 for $n=3$ which would be best possible. Gabrielov, Novikov and Shapiro proved that for $n=3$ there cannot be more than 12 equilibrium points.

References

[1] A. Gabrielov,, D. Novikov and B. Shapiro, The mystery of point charges, arXiv:math-ph/0409009
[2] J. C. Maxwell, Treatise on electricity and magnetism, vol. 1, Dover, 1954.

