Math 530, Spring 2024, midterm exam

NAME:

1. Let ε be an n-th root of unity, $\varepsilon^{n}=1$ and $\varepsilon \neq 1$. Prove these formulas:

$$
\begin{align*}
1+\varepsilon+\varepsilon^{2}+\ldots+\varepsilon^{n-1} & =0 . \tag{1}\\
1+2 \varepsilon+3 \varepsilon^{2}+\ldots+n \varepsilon^{n-1} & =\frac{n}{\varepsilon-1} . \tag{2}
\end{align*}
$$

Solution.

(1) By geometric progression formula,

$$
1+\varepsilon+\varepsilon^{2}+\ldots+\varepsilon^{n-1}=\frac{1-\varepsilon^{n}}{1-\varepsilon}=0
$$

since the numerator is 0 while the detominator is not.
(2) Multiply both sides on $\varepsilon-1$:

$$
\begin{gathered}
\left(\varepsilon+2 \varepsilon^{2}+3 \varepsilon^{3}+\ldots+n \varepsilon^{n}\right)-\left(1+2 \varepsilon+3 \varepsilon^{2}+\ldots+n \varepsilon^{n-1}\right) \\
=\left(-1-\varepsilon-\varepsilon^{2}-\ldots-\varepsilon^{n-1}\right)+n \varepsilon^{n}=0+n=n,
\end{gathered}
$$

where we used (1) and $\varepsilon^{n}=1$.
2. For which real a, b is the function

$$
u(x, y)=x^{3}+a x^{2} y+b x y^{2}+y^{3}
$$

harmonic? For these a, b find an analytic function $f(z), z=x+i y$, whose real part is u.

Solution.

$$
u_{x x}+u_{y y}=(6+2 b) x+(2 a+6) y \equiv 0
$$

so $a=b=-3$.
Now for $u(x, y)=x^{3}-3 x^{2} y-3 x y^{2}+y^{3}$, solve the Cauchy-Riemann equations for v. We obtain the general solution

$$
v(x, y)=x^{3}+3 x^{2} y-3 x y^{2}-y^{3}+C .
$$

Since only one solution is required, set $C=0$. Now it is easy to guess that $f(z)=(1+i) z^{3}$.

Solution in the form

$$
f(z)=u(x, y)+i v(x, y)
$$

where v is also acceptable.
3. Find all solutions of the equation

$$
\sin z=i
$$

and make a picture of them.

Solution.

Let $w=e^{i z}$. Then our equation is

$$
\frac{w-w^{-1}}{2 i}=i, \quad \text { or } \quad w^{2}+2 w-1=0
$$

By quadratic formula we obtain two real solutions, one positive another negative:

$$
w_{1, w}=-1 \pm \sqrt{2}
$$

Solving $e^{i z}=w_{1}=-1+\sqrt{2}$ we obtain the first series

$$
z_{1, n}=-i \log (\sqrt{2}-1)+2 \pi n, \quad n=0, \pm 1, \pm 2, \ldots
$$

Similarly

$$
z_{2, n}=-i \log (\sqrt{2}+1)+\pi+2 \pi n
$$

To make a good picture, notice that $(\sqrt{2}-1)(\sqrt{2}+1)=1$, therefore $\log (\sqrt{2}-$ $1)=-\log (\sqrt{2}+1)<0$. I will describe the pictire with words: it consists of two horizontal rows of dots parallel to the x-axis, one above the x-axis and another below, on equal distance from the x-axis. The upper row contains a point on the imaginary axis, with positive imaginary part, and the lower row contains a point whose real part is π, and both rows are arithmetic progressions with increment 2π.
4. Let a, b be complex numbers, and $|a|<r<|b|$. Evaluate the integral

$$
\int_{|z|=r} \frac{d z}{(z-a)(z-b)} d z
$$

Solution.

The partial fraction decomposition is

$$
\frac{1}{a-b}\left(\frac{1}{z-a}-\frac{1}{z-b}\right)
$$

By assumption, the pole at a is inside the circle $|z|=r$, and the other pole is outside. So by the residue theorem the integral is

$$
\frac{2 \pi i}{a-b}
$$

5. Find the radii of convergence of these series:
a) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{n}$,
b) $\sum_{n=0}^{\infty} n!e^{-n^{2}} z^{n}$,
c) $\sum_{n=0}^{\infty} e^{-\sqrt{n}} z^{n}$.

Solution.

a) Use the ratio test:

$$
\frac{(n+1)^{n+1}|z|^{n+1}}{(n+1)!} \frac{n!}{n^{n}|z|^{n}}=\left(1+\frac{1}{n}\right)^{n}|z| \rightarrow e|z|,
$$

so the radius of convergence is $1 / e$.
b) Again the ratio test:

$$
\frac{(n+1)!e^{-(n+1)^{2}}|z|^{n+1}}{n!e^{-n^{2}}|z|^{n}}=(n+1) e^{-2 n-1}|z| \rightarrow 0
$$

so the radius of convergence is ∞.
c) Use the root test:

$$
\left(e^{-\sqrt{n}}\right)^{1 / n}=e^{-1 / \sqrt{n}} \rightarrow 1
$$

so the radius of convergence is 1 .

