A remarkable identity

A. Eremenko and A. Gabrielov

April 11, 2011

Let h and p be two polynomials. When $y=p(x) e^{h(x)}$ satisfies a second order differential equation

$$
\begin{equation*}
y^{\prime \prime}+P y=0, \tag{1}
\end{equation*}
$$

where P is a polynomial? Substitution gives

$$
\begin{equation*}
\frac{p^{\prime \prime}}{p}+2 \frac{p^{\prime}}{p} h^{\prime}+h^{\prime \prime}+h^{\prime 2}+P=0 \tag{2}
\end{equation*}
$$

Such P exists if and only if $p^{\prime \prime}+2 p^{\prime} h^{\prime}$ is divisible by p.
Another criterion is obtained if we consider the second solution y_{1} of (1) which is linearly independent of y. This second solution can be found from the condition

$$
\begin{equation*}
y y_{1}^{\prime}-y^{\prime} y_{1}=1 \tag{3}
\end{equation*}
$$

Solving (3) with respect to y_{1} we obtain

$$
\begin{equation*}
y_{1}=p e^{h} \int p^{-2} e^{-2 h} \tag{4}
\end{equation*}
$$

As all solutions of (1) must be entire functions, we conclude that all residues of $p^{-2} e^{-2 h}$ must vanish. This condition is necessary and sufficient for $y=p e^{h}$ to satisfy equation (1) with some P. Indeed, if y_{1} defined by (4) is entire, then y and y_{1} is a pair of entire functions whose Wronski deterinant is 1 , so this pair must satisfy a differential equation (1) with entire P and asymptotics at infinity show that P must be a polynomial.

Now suppose that h is an odd polynomial of degree 3, which we write in the form

$$
\begin{equation*}
h(x)=x^{3} / 3+b x . \tag{5}
\end{equation*}
$$

Suppose that all residues of $p^{-2} e^{-2 h}$ vanish. Then the integral $\int p^{-2} e^{-2 h}$ is a meromorphic function in the plane. Surprisingly, the integral of some linear combination

$$
\int\left(p^{2}(-x) e^{-2 h(x)}-c p^{-2}(x) e^{-2 h(x)}\right)
$$

is not only meromorphic but is an elementary function! Here c is a constant depending on p.

Conjecture. Let h be given by (5). Let p be a polynomial. All residues of $p^{-2} e^{-2 h}$ vanish if and only if there exist a constant c and a polynomial q such that

$$
\left(p^{2}(-x)-\frac{c}{p^{2}(x)}\right) e^{-2 h(x)}=\frac{d}{d x}\left(\frac{q(x)}{p(x)} e^{-2 h(x)}\right)
$$

In other words:

$$
p^{2}(x) p^{2}(-x)-c=q^{\prime}(x) p(x)-q(x) p^{\prime}(x)-2 q(x) p(x) h^{\prime}(x)
$$

It is known [1] that for given h of the form (5) there exist polynomials p of any given degree such that all residues of $p^{-2} e^{-2 h}$ vanish. These polynomials p have simple roots. We verified the Conjecture for $1 \leq n \leq 4$ where $n=\operatorname{deg} p$ by symbolic computation using Maple. We don't know whether there is any analog of this conjecture for other polynomials h.

Substituting $p(x)=x^{n}+a x^{n-1}+\ldots$ into (2) and using (5), we conclude that

$$
\begin{equation*}
P(x)=-h^{\prime 2}-h^{\prime \prime}-2 n x+2 a=-x^{4}-2 x^{2} b-2(n+1) x-b^{2}+2 a . \tag{6}
\end{equation*}
$$

Substituting $y=p_{n} e^{h}$ with h as in (5) to (1) with this P we obtain a polynomial relation between b and $\lambda:=b^{2}-2 a$,

$$
\begin{equation*}
Q_{n}(b, \lambda)=0 . \tag{7}
\end{equation*}
$$

We have $\operatorname{deg}_{\lambda} Q_{n}=n+1$, [1]. For every b and every λ satisfying this equation, the differential equation (1), with P as in (6), has a solution $y=p_{n} e^{h}$ where $\operatorname{deg} p_{n}=n$.

Functions $y_{n}=p_{n} e^{h}$ are eigenfunctions of the operator

$$
\begin{equation*}
y^{\prime \prime}-\left(x^{4}+2 b x^{2}+2(n+1) x\right) y \tag{8}
\end{equation*}
$$

with eigenvalue λ. For each non-negative integer n, and generic b, the operator (8) has $n+1$ eigenfunctions of the form $p_{n} e^{h}$ with eigenvalues λ which are solutions of (7).

We assume that Q_{n} is monic as a polynomial of λ, and p_{n} is a monic polynomial of x. Constant c in the Conjecture, turns out to be

$$
c(b, \lambda)=(-1)^{n} 2^{-2 n} \frac{\partial}{\partial \lambda} Q_{n} .
$$

This is also confirmed only by symbolic computation for small n.

References

[1] C. Bender and S. Boettcher, Quasi-exactly solvable quartic potential, arXiv:physics/9801007,

