Solution of the isochrone problem

Let the x-axis be horizontal, h-axis vertical, pointing down, and $x=f(h)$ be the equation of the curve. We may assume that the motion starts at the origin. Suppose that the initial speed is v_{0} and the constant vertical component of velocity is V. By the Energy Concervation Law the speed $v=$ $v(h)$ satisfies $v^{2}=2 g h+v_{0}^{2}$. Denoting by α the angle between the tangent to the curve and vertical direction, we see that the vertical component of velocity is $v \cos \alpha$. On the other hand, $\tan \alpha=d x / d h$, Putting all this together, and using

$$
\cos ^{2} \alpha=\left(1+\tan ^{2} \alpha\right)^{-1}
$$

we obtain the differential equation:

$$
1+(d x / d h)^{2}=V^{-2}\left(2 g h+v_{0}^{2}\right)
$$

This equation is separable and can be reduced to evaluation of the simple integral:

$$
x(h)=\int_{0}^{h} \sqrt{V^{-2}\left(2 g h+v_{0}\right)-1} d y=\frac{V^{2}}{3 g}\left(\frac{2 g h}{V^{2}}+\frac{v_{0}^{2}}{V^{2}}-1\right)^{3 / 2} .
$$

It is clear from this formula (and also from the physical interpretation) that $v_{0} \geq V$, that is the motion cannot start from rest. The curve we obtained is called a semi-cubic parabola.

