Little Jo and her pig. Solution

Following the hints, we denote by $y=f(x)$ the function whose graph is Jo's trajectory. The time of Jo's arrival to a point (x, y) on this graph equals to the arclength of this graph from $(-1,0)$ to (x, y) divided by her speed. Denoting her speed by k, and using the familiar formula from Calculus for the arclength, we obtain the expression

$$
t=\frac{1}{k} \int_{-1}^{x} \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

(We prefer not to use any numerical data like $k=1.5$ till the very end).
Now if Jo is at the point (x, y) at time t then the pig is at the point $(0, t)$, so Jo's direction is given by the vector $(-x, t-y)$, whose slope is $(y-t) / x$, and this should be equal to $y^{\prime}=d y / d x$. Thus we obtain

$$
y^{\prime}=\left(y-\frac{1}{k} \int_{-1}^{x} \sqrt{1+\left(y^{\prime}\right)^{2}} d x\right) / x .
$$

To transform this into a differential equation, we multiply by x, differentiate with respect to x and simplify. The result is

$$
k x y^{\prime \prime}=-\sqrt{1+\left(y^{\prime}\right)^{2}}
$$

Setting $v=y^{\prime}$, we obtain a first-order separable equation

$$
\frac{d v}{\sqrt{1+v^{2}}}=-\frac{1}{k x} .
$$

The integral in the RHS (the so-called 'Long Logarithm') is somewhat clumsy, so I prefer to use hyperbolic functions instead, do decrease the chance of an error in calculations.

$$
\sinh ^{-1} v=-\frac{1}{k} \log |x|+C
$$

When the race starts, we have $x=-1$ and $v=y^{\prime}=0$, because Jo's direction at the starting point is along the x-axis. Plugging this we obtain $C=0$. Thus

$$
v=\sinh \left(-\frac{1}{k} \log |x|\right)=\frac{1}{2}\left(|x|^{-1 / k}-|x|^{1 / k}\right)
$$

by definition of the hyperbolic sine. Now

$$
y^{\prime}=\frac{1}{2}\left(|x|^{-1 / k}-|x|^{1 / k}\right),
$$

and it remains to evaluate the integral. In fact we are interested only in $y(0)$, where Jo reaches the vertical axis. The result is

$$
\begin{aligned}
y(0) & =\frac{1}{2} \int_{-1}^{0}(-u)^{-1 / k}-(-u)^{1 / k} d u \\
& =\frac{1}{2}\left(\frac{k}{k-1}-\frac{k}{k+1}\right) \\
& =\frac{k}{k^{2}-1} .
\end{aligned}
$$

Jo will catch the pig if $y(0) \leq 1$. This means $k^{2}-k-1 \geq 0$, or $k \geq$ $(1+\sqrt{5}) / 2 \approx 1.618$. Thus if $k=1.5$, the pig will escape. Notice that running straight to the hole requires the speed of only $\sqrt{2} \approx 1.414$ to be at the hole in time to intercept the pig.

