A problem of B. Ya. Levin

A. Eremenko

January 14, 2024

If all zeros of a polynomial P lie in the (closed) lower half-plane, then by the Gauss-Lucas theorem zeros of all derivatives $P^{(n)}, n \geq 0$ also lie in the lower halfplane.

Consider the closure F of this set of polynomials, that is the set of entire functions which can be approximated (uniformly on compact subsets) by polynomials with zeros in lower half-plane. This class F is closed under differentiation.

Now suppose that we have an entire function with the property that all zeros of all derivatives belong to the lower half-plane. Does it follow that $f \in F$, or

$$
\begin{equation*}
f(z)=c e^{a} z, \quad \text { or } \quad f(z)=c\left(e^{i b z}-e^{i d}\right) \tag{1}
\end{equation*}
$$

where c, a are complex and b, d are real?
If the lower half-plane is replaced by the real line, we obtain the LaguerrePólya class $L P$ instead of F. It is known [1] that for an entire function, i f the condition that all zeros of $f f^{\prime} f^{\prime \prime} f^{\prime \prime \prime}$ are real implies that $f \in L P$ or has one of the forms (1).

But for the original problem any finite number of derivatives is not enough.

References

[1] S. Hellerstein, L-C Shen and J. Williamson, Reality of zeros of an entire function and its derivatives, TAMS, 275 (1983), 319-331.

