Problems of potential theory arising in the value distribution theory of meromorphic functions

A. Eremenko

May 12008

1. Let μ be a positive measure in the plane, satisfying

$$
\mu(\{z:|z| \leq r\}) \leq c r^{\alpha}, r \geq 0,
$$

where $0<\alpha<1 / 2$ and $c>0$ are some constants. Is it possible that the subharmonic function

$$
u(z)=\int \log \left|1-\frac{z}{\zeta}\right| d \mu_{\zeta}
$$

is locally constant on an open set D which intersects every circle $|z|=r$?
Positive or negative solution of this problem will imply a solution of the old question of W. H. J. Fuchs: is it true that $\delta\left(0, f^{\prime} / f\right)=0$ for every entire function f of order less than $1 / 2$?
2. Let u_{k} be a sequence of subharmonic functions in the unit square $\{x+i y$: $|x|<1,|y|<1\}$, and suppose that $u_{k}(x, y) \rightarrow x$ uniformly. Consider the level set $D_{k}=\left\{z: u_{k}(z)<0\right\}$. This set has a "large connected component", D_{k}^{*}, the one that contains $-1 / 2$. Is it possible that $D_{k} \backslash D_{k}^{*}$ intersects every horizontal segment $[-1+i t, 1+i t]$ for $-1<t<1$?

Positive or negative solution will imply a solution of an old problem of Edrei and Fuchs: can en entire function with large sum of deficiencies have infinite number of deficient values?
3. Let u be a subharmonic function in the ring $1<|z|<2$. Let $D_{k}, 1 \leq k<$ ∞, be disjoint open sets, each of them is a union of components of the level set $\{z: u(z)<0\}$. Suppose that for every $r \in(1,2)$ and every k we have

$$
\int_{\theta: r e^{i \theta} \in D_{k}} u\left(r e^{i \theta}\right) d \theta \leq-\delta_{k} .
$$

What can be said about the rate of decrease of the sequence δ_{k} ?
Some known results. Eremenko constructed an example with $\delta_{k}>c^{k}$ with some $c \in(0,1)$ thus disproving a conjecture of Arakelyan. In the opposite direction, Lewis and Wu proved that

$$
\sum_{k} \delta_{k}^{\alpha}<\infty
$$

with some universal constant $\alpha<1 / 3$. It is desirable to close the gap between these results.

References

[1] A. Eremenko, A counterexample to the Arakelyan conjecture. Bull. Amer. Math. Soc. 1992, vol. 27, N 1, p. 159-164.
[2] J. Lewis and J-M. Wu, On conjectures of Arakelyan and Littlewood, J. d'Analyse, 50 (1988).

