A polynomial equation in infinitely many variables

Let N be a positive integer, $\left(z_{k}\right)$ a sequence of complex numbers tending to zero, and

$$
\sum_{k} z_{k}^{n}=0 \quad \text { for every integer } \quad n>N
$$

where the series are absolutely convergent. Prove that all $z_{k}=0$.
This can be generalized in the following way: Consider the system of equations with respect to complex numbers z_{k} and w_{k} :

$$
\sum_{k} w_{k} z_{k}^{n}=a_{n} \quad \text { for every integer } \quad n>N
$$

If this system has a solution with different $z_{k} \rightarrow 0$, and such that the series converge absolutely, then such solution is unique.

In the case of finitely many variables, this is called the Sylvester-Ramanujan system, see for example,

Yuri I. Lyubich, The Sylvester-Ramanujan system of equations and the complex power moment problem, Ramanujan J. 8 (2004) 23-45.

