Let f be a holomorphic function in the unit disc having a simple zero at 0 and two simple 1-points at a, \bar{a}, and no other zeros and 1-points.

1 . What is a_{0}, the minimal possible $|a|$? What is the extremal function?
It is conjectured that the extremal function has a double 1-point at c, and the map

$$
f:\{z:|z|<1, z \neq 0, z \neq c\} \rightarrow C \backslash\{0,1\}
$$

is a covering, such that the simple loop around $0, c$ is mapped to a curve $A B^{2}$, where A is a simple loop around 0 and B is a simple loop around 1 . Such function is unique, and $c \approx 0.0505468$.

So $a_{0} \leq c$, and it is conjectured that $a_{0}=c$.
2. Same question if the 1-points are at $b,-b$.

Let b_{0} be the minimal $|b|$. V. Blondel offered a prize in 1994 for finding b_{0}. It is true that $b_{0}>c$? This time, there is no reasonable conjecture about the extremal function, but it is known that $0.0145<b_{0}<0.1148$.

