Let f be a holomorphic function in the unit disc having a simple zero at 0 and two simple 1-points at a, \overline{a} , and no other zeros and 1-points.

1. What is a_0 , the minimal possible |a|? What is the extremal function?

It is conjectured that the extremal function has a double 1-point at c, and the map

$$f: \{z: |z| < 1, z \neq 0, z \neq c\} \to C \setminus \{0, 1\}$$

is a covering, such that the simple loop around 0, c is mapped to a curve AB^2 , where A is a simple loop around 0 and B is a simple loop around 1. Such function is unique, and $c \approx 0.0505468$.

So $a_0 \leq c$, and it is conjectured that $a_0 = c$.

2. Same question if the 1-points are at b, -b.

Let b_0 be the minimal |b|. V. Blondel offered a prize in 1994 for finding b_0 . It is true that $b_0 > c$? This time, there is no reasonable conjecture about the extremal function, but it is known that $0.0145 < b_0 < 0.1148$.