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1. We consider differential operators

L:y— —y" + Py,

where the potential P is a polynomial of de-
gree d. When d € {0,1,2}, the general solu-
tion of Ly = 0 can be expressed in terms of
special functions (elementary, Airy or Weber
functions, respectively). The eigenvalue prob-
lem for d = 2 (harmonic oscillator) plays an
important role in quantum mechanics.

We mostly consider the cases d = 3 and d = 4.

Cubic and quartic oscillators were studied a lot
from the very beginning of quantum mechan-
ics, mostly by perturbative methods. Cubic
oscillator arises in quantum field theory (Zinn-
Justin) and in the theory of Painleve equations
(Masoero).



2. Boundary conditions. By an affine transfor-
mations of the independent variable we nor-
malize: P(z) = 2% 4+ 0(z92).

Consider the sectors

219 T
d + 2‘ < d—+ 2
Every solution y of Ly = 0O is an entire function.
For each j € {0,...,d+ 1} it either grows ex-
ponentially along all rays from the origin in Sj
or tends to zero exponentially along every such
ray in Sj. We choose two non-adjacent sectors,
and impose the condition that the eigenfunc-
tion tends to O in these sectors.

Sj:{z:|argz— },Ogjgd—l—l.

With such boundary conditions, the problem
has infinite discrete spectrum and eigenvalues
tend to infinity. To each eigenvalue corre-
sponds one-dimensional eigenspace.



3. Suppose that the polynomial potential de-
pends analytically on a parameter a € C"™. Then
the spectral locus Z is defined as the set of all
pairs (a,\) € C"t1 such that the differential
equation

—y"' + P(z,a)y = Ny

has a solution y satisfying the boundary con-
ditions. Spectral locus is an analytic hyper-
surface in C”‘H; it is the zero-set of an entire
function F'(a, A\) which is called the spectral de-
terminant.

The multi-valued function A(a) defined by
F'(a,\) = 0 has the following property: its only
singularities are algebraic ramification points,
and there are finitely many of them over every
compact set in the a-space (EG1).

Next we discuss connectedness of the spectral
lOoCus.



Theorem 1 For the cubic oscillator

—y" 4+ (2% —az + \)y = 0, y(Fico) =0,

the spectral locus is a smooth irreducible curve
in C2.

Theorem 2 (EG1) For the even quartic os-
cillator

—y" 4+ (z* + az?)y = My, y(£oo) =0,

the spectral locus consists of two disjoint smooth
irreducible curves in CQ, one corresponding to
even eigenfunctions, another to odd ones.

These theorems can be generalized to poly-
nomials of arbitrary degree if we use all coeffi-
cients as parameters (Habsch, Alexandersson).

However if we consider a subfamily of the fam-
ily of all polynomials of given degree, then the
spectral locus can be reducible in an interest-
ing way.



4. Quasi-exactly solvable quartic L

— 4 (2 = 2022 4+ 2J2)y = My, y(reim/g’) — 0.

When J is a positive integer, this problem has
J elementary eigenfunctions of the form

p(z) exp(2z3/3 — bz), with a polynomial p. The
(b, \) corresponding to these eigenfunctions form
the quasi-exactly solvable part Z?ES of the
spectral locus Z;, which is an algebraic curve.

T heorem 3 Z?ES IS a smooth irreducible curve
in C2.

Similar phenomenon occurs in degree 6: there
are one parametric families of quasi-exactly solv-
able sextics, and for each such family the quasi-
exactly solvable part of the spectral locus is a
smooth irreducible algebraic curve.

When J — oo, an appropriate rescaling of Z?ES
tends to the spectral locus of one-parametric
cubic family, and a rescaling of the sextic QES
spectral locus tends to the spectral locus of
the even quartic family.



5. Hermitian and P T-symmetric operators. An
eigenvalue problem can be preserved by a sym-
metry with respect to a line in the complex z-
plane. Without loss of generality, we can take
this line to be real line, and the symmetry to
be the complex conjugation. TwoO cases are
possible:

a) Each of the two boundary conditions is pre-
served by the symmetry. In this case the prob-
lem is Hermitian.

b) The two boundary conditions are interchanged
by the symmetry. Such problems are called
PT-symmetric. (Physicists prefer to choose
the symmetry with respect to the imaginary
line in this case. PT stands for “parity and
time” .)



Thus we consider a real potential P, and the
boundary conditions are imposed on the real
line in the Hermitian case, or are interchanged
by the complex conjugation in the P T-symmetric
case. For example, thereis a real-one-parametric
family of PT-symmetric cubics, when parame-
ter a is real and normalization is on the imag-
inary line as above. There are two different
real-two-parametric families of PT-symmetric
quartics which we call I and II:

"+ (=2 + az’ 4+ cz2+ Ny =0, y(+ioo) = 0,
(1)

and

—y" (2% — 2b2° 4 2J2)y = My, y(reim/?’) — 0.
(2)



We begin with the cubic P T-symmetric spec-
tral locus

—w"+ (23 —az+ 1) =0, w(+ico)=0. (3)

Theorem 4 For every integer n > 0, there ex-
ists a simple curve ', C R?, which is the image
of a proper analytic embedding of a line, and
which has these properties:

(i) For every (a,\) € [, problem (3) has an
eigenfunction with 2n non-real zeros.

(ii) The curves [, are disjoint and the real
spectral locus of (3) is U,>0n

(i) The map -

N {(a,\) :a >0} — R>o,

(a,\) — a is a 2-to-1 covering.
(iv) For a > 0, (a,)\) € 'y and (a,\) € T,,11
imply X' > .



The following computer-generated plot of the
real spectral locus of (3) is taken from Trinh's
thesis (2002). Theorem 4 rigorously estab-
lishes some features of this picture.
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Fig 1. Real spectral locus for PT-symmetric
cubic.




Consider the PT-symmetric quartic family of
type I:

—w" 4 (—2% 4 az? + c2)w = —Aw, w(Fico) = 0.
(4)

It is equivalent to the PT-symmetric family

—w" 4 (2 + az® Ficz)w = M,  w(too) =0,

studied by Bender, et al (2001) and Delabaere
and Pham (1998).

Theorem 5 The real spectral locus of (4) con-
sists of disjoint smooth analytic properly em-
bedded surfaces S, C R3, n > 0, homeomor-
phic to a punctured disk. For (a,c,\) € Sp,
the eigenfunction has exactly 2n non-real ze-
ros. For large a, projection of S, on the (a,c)
plane approximates the region 9¢? — 443 < 0.

10



Numerical computation suggests that the sur-
faces have the shape of infinite funnels with
the sharp end stretching towards a = —o0, ¢ =
0, and that the section of S,, by every plane
a = aqg IS a closed curve.

Theorem 5 implies that this section is compact

for large ag.
The following computer-generated plot is taken
from Trinh's thesis:
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Fig 2. Section of the surfaces Sgp,...,S3 by
the plane a = —09.
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The PT-symmetric quartic family of the sec-
ond type is more complicated, due to the pres-
ence of the QES spectrum. Let Z?ES(R) be
the real QES spectral locus of the operator L,

— 4 (2% = 2by? 4 2J2)y = My, y(reim/3) — 0.

Theorem 6 For J = n+1 > 0, ZQEf(R)
consists of [n/2] + 1 disjoint analytic curves

For (b,\) € Tn.m, the eigenfunction has n ze-
ros, n — 2m of them real.

Ifn is odd, then b — +o0o on both ends of [ m n.
If n is even, the same holds for m < n/2, but
on the ends of I'), , ;> we have b — *oo.

If (b,A\) € Thm and (b,p) € Ty g1 @nd b is
sufficiently large, then u > v.
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It follows from these theorems that in each
family, there are infinitely many parameter val-
ues where pairs of real eigenvalues collide and
escape from the real line to the complex plane.

In the quartic family of the second type, an-
other interesting feature of the real spectral
locus is present: for some parameter values
the QES spectral locus crosses the rest of the
spectral locus. This is called “level crossing’ .

Theorem 7 The points (b,\) € Z?ES where
the level crossing occurs are the intersection
points of Z9"° with Z_;. For each J > 1
there are infinitely many such points, in gen-
eral, complex. When J is odd, there are in-
finitely many level crossing points with b, < O
and real \,. We have

b ~ —((3/4)7k)?/3, k — oo.
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The only known general result of reality of
eigenvalues of PT-symmetric operators is a the-
orem of K. Shin, which for our quartic of sec-
ond type implies that all eigenvalues are real if
J < 0.

We have the following extensions of this result.

Theorem 8 For every positive integer J, all
non-QES eigenvalues of Lj are real.

and

Theorem 9 All eigenvalues of Lj are real for
every real J <1 (not necessarily integer).
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Fig. 4. Z4 (R)
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Fig. 6. Z3(R).

16



Methods of proofs.

a) Nevanlinna parametrization of the spectral
locus.

b) Asymptotics at infinity (singular perturba-
tion theory).

c) Darboux transform of QES quartic.

17



Nevanlinna parametrization. Let Z be the spec-
tral locus of the problem

—y" 4+ P(z,a)y = Ay, y(z) — 0,z € S; U Sk.

Let (a,\) € Z, and yg an eigenfunction. Let
y1 be a second linearly independent solution.
Then f = yg/yq satisfies the Schwarz differen-
tial equation

I "\ 2
13 (0 = 2w,

2 \f
This function f is meromorphic in C, has no
critical points and has d + 2 asymptotic val-
ues, one in each Stokes sector. Asymptotic
values in Sj and S, are 0. Asymptotic values

in adjacent sectors are distinct.

In the opposite direction: if we have a mero-
morphic function in C without critical points
and with finitely many asymptotic values, then
it satisfies a Schwarz equation whose RHS is a
polynomial. The degree of this polynomial is
the number of asymptotic tracts minus 2.

18



Asymptotic values are meromorphic functions
on Z which serve as local parameters. These
are Nevanlinna parameters. They are simply
related to the Stokes multipliers of the linear
ODE.

Functions f of the above type with given set
of asymptotic values A = {aq,...,aq41} have
the property that

f:C\f 14 - C\A

IS a covering map. For a fixed A such covering
map can be completely described by certain
combinatorial information, a cell decomposi-
tion of the plane. These cell decompositions
label the charts of our description of the spec-
tral locus.

It is important that we know exactly which cell
decompositions can occur and how the cell de-
composition changes when the point (ag...,a441)
goes over a closed loop in C4t2,
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This gives an action of the braid group on the
set of special cell decompositions of the plane
which can be explicitly computed.

This reduces the problem of parametrization
of a spectral locus to combinatorial topology.



For QES operators we use the Darboux trans-
form. Let —D?2 4+ V be a second order lin-
ear differential operator with potential V. Let
®0,.--Pn be some eigenfunctions with eigen-
values \g, ..., An. The transformed operator is

d2
—D?*+V —2——log W (g, - .-, pn),
dz
where W is the Wronski determinant. The
eigenvalues of the transformed operator are ex-

actly those eigenvalues of —D? + V which are
distinct from Aq, ..., An.

We use the Darboux transform to Kill the QES

part of the spectrum of Ly and it turns out that
the transformed operator is L_ ;!
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Our study of the QES locus of the quartic
family gives the following interesting identities.

Let ~ and p be polynomials. When does y =
pel satisfy a linear differential equation y” +
Py = 0 with a polynomial P?

Theorem 10 TFAE:

a) " + 2p'h’ is divisible by p,

b) p—2eh has no residues,

c) zeros of p satisfy the system of equations

Z 1

jigFEk kT 7

= —h'(2), 1 <k < degp.
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Now take h(z) = 23/3 — bz.

Theorem 11 Letp be a polynomial. All residues
of y = p—2e—2" vanish if and only if there exists
a constant C and a polynomial q such that

<p2(_z)_ C >6—2h(z) (CI(Z) —2h(z)>

p?(z) p(z)
Moreover, if this happens then
S ( 1)%2—277,_@”_'_1’

where A = y"/y — 24 4 2b22 — 2(n+ 1)z, and
Qn+1(b,\) = 0 is the equation of the QES
spectral locus of Ly 1.

This was conjectured in [EG] on the basis of

calculations with Darboux transform of L, 41
and proved by E. Mukhin and V. Tarasov.
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