Traces of elements of the modular group

Walter Bergweiler and Alex Eremenko

January 2, 2012

Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)
$$

These two matrices generate the free group which is called $\Gamma(2)$, the principal congruence subgroup of level 2 .

With arbitrary integers $n_{j} \neq 0$, consider the trace of the product

$$
p\left(n_{1}, \ldots, n_{2 k}\right)=\operatorname{tr}\left(A^{n_{1}} B^{n_{2}} \ldots B^{n_{2 k}}\right)
$$

It is easy to see that p is a polynomial in $2 k$ variables with integer coefficients. This polynomial can be written explicitly though the formula is somewhat complicated.

Choosing an arbitrary sequence σ of $2 k$ signs \pm, we make a substitution

$$
q_{\sigma}\left(x_{1}, x_{2}, \ldots, x_{2 k}\right)=p\left(\pm\left(1+x_{1}\right), \pm\left(1+x_{2}\right), \ldots, \pm\left(1+x_{2 k}\right)\right)
$$

We conjecture that for every σ, all coefficients of this polynomial q_{σ} are of the same sign, that is the sequence of coefficients of q_{σ} has no sign changes.

This has been verified by symbolic computation for small k.

