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Abstract. Let (S,n) be a 2-dimensional regular local ring and let I = (f, g)
be an ideal in S generated by a regular sequence f, g of length two. Let I∗ be
the leading ideal of I in the associated graded ring grn(S), and set R = S/I
and m = n/I. In [GHK2], we prove that if µG(I∗) = n, then I∗ contains a
homogeneous system {ξi}1≤i≤n of generators such that deg ξi + 2 ≤ deg ξi+1 for
2 ≤ i ≤ n−1, and htG(ξ1, ξ2, · · · , ξn−1) = 1, and we describe precisely the Hilbert
series H(grm(R), λ) in terms of the degrees ci of the ξi and the integers di, where
di is the degree of Di = GCD(ξ1, . . . , ξi). To the complete intersection ideal
I = (f, g)S we associate a positive integer n with 2 ≤ n ≤ c1 + 1, an ascending
sequence of positive integers (c1, c2, . . . , cn), and a descending sequence of integers
(d1 = c1, d2, . . . , dn = 0) such that ci+1 − ci > di−1 − di > 0 for each i with
2 ≤ i ≤ n − 1. We establish here that this necessary condition is also sufficient
for there to exist a complete intersection ideal I = (f, g) whose leading ideal has
these invariants. We give several examples to illustrate our theorems.

1. Introduction

This paper examines generators of the leading ideal of a complete intersection of

height two in a 2-dimensional regular local ring. Motivation for our work comes from

a paper of S. C. Kothari [K] that answers several questions raised by Abhyankar

concerning the local Hilbert function of a pair of plane curves. Before going ahead,

let us fix some notation, which we shall maintain throughout this paper.

Setting 1.1. Let (S, n) be a regular local ring of dimension 2 and let I = (f, g)

be an ideal in S generated by a regular sequence f, g of length two. For simplicity
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we assume that the residue class field k = S/ n is infinite. We put R = S/I and

m = n /I. Let

R′(n) =
∑

i∈Z
ni ti ⊆ S[t, t−1] and R′(m) =

∑

i∈Z
miti ⊆ R[t, t−1]

denote the Rees algebras of n and m respectively, where t is an indeterminate. We

put

G = grn(S) = R′(n)/t−1R′(n) and grm(R) = R′(m)/t−1R′(m).

For each 0 6= h ∈ S let o(h) = sup{i ∈ Z | h ∈ ni} and put h∗ = htn, where n = o(h)

and htn denotes the image of htn in G. The canonical map S → R induces the

epimorphism ϕ : G → grm(R) of the associated graded rings. We put

I∗ = Ker (G
ϕ→ grm(R)).

Then the homogeneous components {[I∗]i}i∈Z of the leading form ideal I∗ of I are

given by

[I∗]i = {hti | h ∈ I ∩ ni}
for each i ∈ Z. We throughout assume that a = o(f) ≤ b = o(g) and that f∗ - g∗ in

G. The latter part of the condition is equivalent to saying that f∗, g∗ form a part

of a minimal homogeneous system of generators of I∗.

Let `S(∗) denote length over S. Kothari in [K] proves that

0 ≤ dimk[grm(R)]i − dimk[grm(R)]i+1 ≤ 1

for all i ≥ a and that `S(R) ≥ ab; moreover, one has the equality `S(R) = ab if and

only if f∗, g∗ are coprime in G, that is, f∗, g∗ form a G-regular sequence.

F. Macaulay in a 1904 paper [M] employs a different method to determine the

same necessary condition as Kothari on the Hilbert function of a pair of plane curves.

Using his inverse systems, Macaulay establishes the structure of the Hilbert function

H(A) of a complete intersection quotient A = k[[x, y]]/(f, g) to be of the form

(1) H = (1, 2, . . . , a, ta, . . . , tj , 0),

where a ≥ ta ≥ ta+1 ≥ · · · ≥ tj = 1 and |ti − ti+1| ≤ 1 for all i. Thus the Hilbert

function H after an initial rising segment breaks up into platforms and regular flights

of descending stairs, each step of height one. The structure of H(A) is studied from

the point of view of parametrizations by J. Briançon [Br] and by A. Iarrobino [Ia1]

and [Ia2]. These authors prove that every sequence satisfying the conditions in
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Equation 1 is realizable as the Hilbert function H(A) of some Gorenstein Artin

algebra of the form A = k[[x, y]]/(f, g).

Let v(H) = 2 + #{platforms}. Iarrobino [Ia1], [Ia2] proves that I∗ needs two

initial generators f∗, g∗ and requires a new generator following each platform, and

that v(H) is the minimum possible number of generators of a graded ideal defining

a standard algebra with Hilbert function H. In [Ia1, Theorem 2.2.A], Iarrobino

characterizes those graded ideals corresponding to I∗ for which I is a complete

intersection of height two. He proves they are exactly the graded ideals with v(H)

generators. In the paper [GHK2] we prove the following.

Theorem 1.2. [GHK2, Theorem 1.2] Let notation be as in Setting 1.1 and assume

that n = µG(I∗). Then I∗ contains a homogeneous system {ξi}1≤i≤n of generators

that satisfy the following three conditions.

(1) ξ1 = f∗ and ξ2 = g∗.

(2) degξi + 2 ≤ degξi+1 for each i with 2 ≤ i ≤ n− 1.

(3) htG(ξ1, ξ2, · · · , ξn−1) = 1.

Let {ξi}1≤i≤n be a homogeneous system of generators of I∗ satisfying conditions

(1) and (2) in Theorem 1.2. Then the ideals {(ξj | 1 ≤ j ≤ i)G}1≤i≤n are indepen-

dent of the particular choice of the family {ξi}1≤i≤n and are uniquely determined by

I. We put Di = GCD(ξj | 1 ≤ j ≤ i) and di = degDi. We then have the descending

sequence of integers

a = d1 > d2 > · · · > dn−1 > dn = 0,

and we also have
ξi+1

Di+1
∈ (

ξ1

Di
,

ξ2

Di
, · · · ,

ξi

Di
) for all 1 ≤ i ≤ n − 1 [GHK2, Lemma

3.2]. Let ci = deg ξi and let H(grm(R), λ) =
∑∞

i=0 dimk[grm(R)]iλi denote the

Hilbert series of grm(R). Theorem 1.3 explicitly describes H(grm(R), λ) and the

difference `S(R) − ab in terms of the integers ci and di, thus sharpening Kothari’s

results.

Theorem 1.3. [GHK2, Theorem 1.3] Let notation be as in Setting 1.1 and assume

that n = µG(I∗). The following assertions hold true.

(1) H(grm(R), λ) =
Pn

i=2 λdi (1−λdi−1−di)(1−λci−di )
(1−λ)2

.

(2) `S(R) =
∑n

i=2(di−1 − di)(ci − di) = ab +
∑n−1

i=2 di·[(ci+1 − ci)− (di−1 − di)].

(3) ci+1 − ci > di−1 − di > 0 for each i with 2 ≤ i ≤ n− 1.
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(4) [K, Corollary1] `S(R) = ab if and only if n = 2, i.e., f∗, g∗ is a G-regular

sequence.

In Section 2, we use the inverse of a transformation considered by Kothari and

described in parts (1) and (2) of [GHK2, Corollary 2.5] to establish the existence of

examples showing that every Hilbert series described in Theorem 1.3 is realizable

as the Hilbert series of grm(R) for some complete intersection ideal I = (f, g). Thus

the conditions given in Theorem 1.3 are both necessary and sufficient for there to

exist a complete intersection ideal I = (f, g) with Hilbert series

H(grm(R), λ) =
∑n

i=2 λdi(1− λdi−1−di)(1− λci−di)
(1− λ)2

.

Remark 1.4. In the case where f and g are a regular sequence in a regular local ring

S with dimS > 2, it is still true that htG(f∗, g∗) > 1 implies f∗, g∗ is a G-regular

sequence, and therefore I∗ = (f∗, g∗)G also in this case. Thus if htG(f∗, g∗) = 1

and if we set D2 = GCD(f∗, g∗) and d2 = degD2, then f∗ = D2ξ and g∗ = D2η.

Notice that ξ, η is a regular sequence in G. We have b ≥ a > d2 > 0, and µG(I∗) =

n ≥ 3. There exists a minimal homogeneous system {ξ1, ξ2, . . . , ξn} of generators

of I∗ such that ξ1 = f∗ and ξ2 = g∗, and ci := deg ξi ≤ deg ξi+1 := ci+1 for each

i ≤ n − 1. However, the ideal I∗ may fail to be perfect, and it is possible to have

D3 := GCD(ξ1, ξ2, ξ3) = D2 as is illustrated in [GHK1, Example 1.6]. We prove in

[GHK1, Theorem 1.2] that I∗ is perfect if n = 3. We also prove in [GHK1] that

ξ3 = h∗, where h has the form h = αf +βg ∈ I with o(α) = b−d2, and o(β) = a−d2,

and that c3 := o(h) > a+b−d2. Moreover, if q = σf +τg is such that q∗ 6∈ (f∗, g∗)G

and (o)(σ) = b − d2, then o(q) = o(h) and (f∗, g∗, h∗)G = (f∗, g∗, q∗)G. Thus the

ideal (ξ1, ξ2, ξ3)G is independent of the choice of ξ3. In the case where n ≥ 4, we

also prove that c4 ≥ c3 + 2 [GHK1, Proposition 2.4]. However, examples shown to

us by Craig Huneke and Lance Bryant show that it is possible to have ci+1 = ci

for i ≥ 4. This resolves a question mentioned in [GHK1, Discussion 2.5]. If I∗ is

perfect, we prove in [GHK2] that ci+1 ≥ ci + 2 for each i with 2 ≤ i ≤ n − 1. A

question raised in [GHK2] that remains open is whether for I∗ perfect in this higher

dimensional setting, does it follow that I∗ ⊆ (ξ1/D2, ξ2/D2)G.
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2. The Main Results

We record in Proposition 2.1 behavior of the Hilbert function with respect to an

inverse of a transformation considered by Kothari and described in parts (1) and

(2) of [GHK2, Corollary 2.5].

Proposition 2.1. Assume notation as in Setting 1.1 and let n = µG(I∗). Let

ξ1, ξ2, · · · , ξn be a minimal homogeneous system of generators for I∗ satisfying con-

ditions (1) and (2) in Theorem 1.2, and let ci = deg ξi for 1 ≤ i ≤ n. Also assume

that n = (x, y) and x∗ - f∗. Let m be a positive integer and consider the ideal

Jm := (f, xmg)S. Then the following assertions hold true.

(1) µG(J∗m) = µG(I∗).

(2) J∗m has ξ1, X
mξ2, X

mξ3, . . . , X
mξn as a minimal homogeneous system of

generators, so the degree sequence for J∗m is (c′1, c
′
2, . . . , c

′
n), where c′1 = c1

and c′i = ci + m for i ≥ 2.

(3) With D′
i = GCD(ξ1, X

mξ2, . . . , X
mξi) and d′i = deg D′

i, we have D′
i = Di

and d′i = di for 1 ≤ i ≤ n.

(4) H(grn(S/Jm), λ) =
∑n

i=2 λdi(1− λdi−1−di)(1− λmλci−di)
(1− λ)2

.

(5) `(S/Jm)− `(S/I) = ma.

Since the residue field of S is infinite, with notation as in Setting 1.1 we may

choose x, y so that n = (x, y) and x∗ - f∗ and y∗ - f∗. Thus it is possible to obtain

the hypothesis of Theorem 2.2.

Theorem 2.2. Assume notation as in Setting 1.1 with n = µG(I∗), a < b and

n = (x, y) such that x∗ - f∗ and y∗ - f∗. Let ξ1, ξ2, · · · , ξn be a minimal homogeneous

system of generators for I∗ satisfying conditions (1) and (2) in Theorem 1.2 and let

ci = deg ξi for 1 ≤ i ≤ n. Let m be a positive integer and set

Vm = (ymf, xm(f + g))S.

Then the following assertions hold true.

(1) Vm is n-primary and µG(V ∗
m) = µG(I∗) + 1.

(2) V ∗
m has Y mξ1, X

mξ1, X
mY mξ2, X

mY mξ3, . . . , X
mY mξn as a minimal homo-

geneous system of generators, so the degree sequence for V ∗
m is (c′1, c

′
2, . . . , c

′
n+1),

where c′1 = c1 + m, c′2 = c1 + m and c′i = ci−1 + 2m for i ≥ 3.
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(3) With D′
i = GCD(Y mξ1, X

mξ1, X
mY mξ2, . . . , X

mY mξi−1) and d′i = deg D′
i,

we have D′
1 = Y mD1, and D′

i = Di−1 for 2 ≤ i ≤ n + 1. Thus d′1 = m + d1

and d′i = di−1 for 2 ≤ i ≤ n + 1.

(4) H(grn(S/Vm), λ) =
∑n+1

i=2 λd′i(1− λd′i−1−d′i)(1− λc′i−d′i)
(1− λ)2

= λa(1 + λ + λ2 + · · ·+ λm−1)2 +
∑n

i=2 λdi(1− λdi−1−di)(1− λ2mλci−di)
(1− λ)2

.

(5) `(S/Vm)− `(S/I) = m(2a + m).

Proof. To show that Vm is n-primary, we observe that ymf is not in any minimal

prime P of xm(f + g). Since a < b, Xmf∗ is the leading form of xm(f + g).

Since y∗ - f∗, we see that y 6∈ P . Since (f, f + g)S = I and x∗ - f∗, we see that

f 6∈ P . Thus Vm is n-primary. Let V ′
m = (f + g, ymf)S. The part (2) of [GHK2,

Corollary 2.5] implies that µG(I) = µG(V ′
m) and the part (3) of [GHK2, Corollary

2.5] implies µG(V ′
m)+1 = µG(Vm). It also follows from Corollary 2.5 in [GHK2] that

Y mξ1, X
mξ1, X

mY mξ2, X
mY mξ3, . . . , X

mY mξn is a minimal homogeneous system

of generators for V ∗
m. The remaining assertions in Theorem 2.2 follow from this. ¤

In Theorem 2.3, we establish the existence of examples to show that every Hilbert

series described in Theorem 1.3 is realizable as the Hilbert series of grm(R) for some

complete intersection ideal I = (f, g).

Theorem 2.3. Let a and b be positive integers with a ≤ b and consider a system

consisting of

(1) An integer n with 2 ≤ n ≤ a + 1.

(2) A sequence (a = c1, b = c2, c3, . . . , cn) of integers.

(3) A sequence (a = d1, d2, . . . , dn = 0) of integers such that

ci+1 − ci > di−1 − di > 0 for all i with 2 ≤ i ≤ n− 1.

For each system satisfying these conditions, there exists an ideal I = (f, g) as in

Setting 1.1 such that (ξ1 = f∗, ξ2 = g∗, ξ3, . . . , ξn) is a minimal set of homogeneous

generators of I∗, deg ξi = ci, and di = deg Di, where Di = GCD(ξ1, . . . , ξi), for each

i with 1 ≤ i ≤ n.

Proof. The proof is by induction on a. If a = 1, then n = 2 and f = xa, g = yb

shows the assertion holds in this case. Let a′ > 1 be an integer and assume that

the assertion holds for all positive integers a < a′. Let (a′ = c′1, b
′ = c′2, c

′
3, . . . , c

′
n+1)
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and (a′ = d′1, d
′
2, . . . , d

′
n+1 = 0) be sequences of n + 1 integers such that

c′i+1 − c′i > d′i−1 − d′i > 0 for all i with 2 ≤ i ≤ n.

Notice that d′i−1 − d′i > 0 for all i with 2 ≤ i ≤ n and a′ =
∑n+1

i=2 (d′i−1 − d′i) implies

n + 1 ≤ a′ + 1. Let e := c′2 − c′1. By Proposition 2.1, the system consisting of

the integer n + 1 and the sequences (c′1, c
′
2, . . . , c

′
n+1) and (a′ = d′1, d

′
2, . . . , d

′
n+1 =

0) is realizable if and only if the system consisting of n + 1 and the sequences

(c′1, c
′
2 − e, . . . , c′n+1 − e) and (a′ = d′1, d

′
2, . . . , d

′
n+1 = 0) is realizable. Thus we may

assume that c′1 = c′2 = a′.

Let m = d′1 − d′2 and a = a′ −m. Then a = d′2. Consider the system consisting

of the positive integer n and the sequences (a = c1, c2, . . . , cn) and (a = d1, . . . , dn),

where ci = c′i+1 − 2m and di = d′i+1 for each i with 2 ≤ i ≤ n. We have

ci+1 − ci > di−1 − di > 0 for all i with 2 ≤ i ≤ n− 1.

Also a =
∑n

i=2(di−1 − di) implies n ≤ a + 1. By our inductive hypothesis the

system consisting of the integer n and the sequences (a = c1, c2, . . . , cn) and (a =

d1, . . . , dn = 0) is realizable. Moreover, c2 = c′3 and c′3 − a′ > m and a′ = a + m

implies c2 > a. Therefore by Theorem 2.2 the system consisting of n + 1 and the

sequences (c′1, c
′
2− e, . . . , c′n+1− e) and (a′ = d′1, d

′
2, . . . , d

′
n+1 = 0) is realizable. This

completes the proof of Theorem 2.3. ¤

3. Remarks and Examples

Remark 3.1. With notation and hypothesis as in Theorems 1.2 and 1.3, it follows

from Theorem 1.3 that the Hilbert series H(grm(R), λ) =
∑∞

i=0 dimk[grm(R)]iλi

is uniquely determined by the degree sequence (c1, c2, . . . , cn) together with the

sequence (a = d1 > d2 > d3 > · · · > dn = 0). Notice also that dimk[grm(R)]ci =

di−1 − 1, for each i with 2 ≤ i ≤ n. Usually the sequence (c1, c2, · · · , cn) does

not uniquely determine the Hilbert series of grm(R), but Theorem 1.3 implies the

following.

(1) n = µG(I∗) ≤ dn−1 + (n− 1) ≤ · · · ≤ d3 + 3 ≤ d2 + 2 ≤ a + 1.

(2) n = µG(I∗) = a + 1 ⇐⇒ di−1 − di = 1 for each i with 2 ≤ i ≤ a + 1.

Therefore, in this case, di = n− i for each i with 1 ≤ i ≤ n, and the Hilbert

series of grm(R) is uniquely determined by the sequence (c1, c2, · · · , cn).
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(3) If µG(I∗) = a + 1, then e(grm(R)) ≥ 3a2−a
2 , and equality holds ⇐⇒ a = b

and ci+1− ci = 2 for each i with 2 ≤ i ≤ a. In this case, the degree sequence

of I∗ is (a, a, a + 2, a + 4, a + 6, · · · , a + (a− 1)2).

Example 3.2. We describe examples of parameter ideals I = (f, g)S for which

µG(I∗) = 3. Let (a, b, c) be a sequence of integers such that 2 ≤ a ≤ b < b + 2 ≤ c.

If (a, b, c) is the degree sequence of I∗, where I = (f, g), then Theorem 1.3 implies

that d := d2 = deg GCD(f∗, g∗) must satisfy c− b > a− d > 0.

Let

f = xdya−d and g = xb + yc+d−a.

Notice that c + d− a > b. We have

I∗ = (x∗dy∗a−d, x∗b, y∗c) = I2

(
x∗b−d y∗a−d 0

y∗c+d−a 0 x∗d

)

Remark 3.3. Let I = (f, g)S be a parameter ideal such that µG(I∗) = 3. By

Theorem 1.3, the Hilbert series of grm(R) is uniquely determined by the degree

sequence (a, b, c) together with the integer d := d2 = deg GCD(f∗, g∗); moreover,

we must have c − b > a − d > 0. Example 3.2 demonstrates that each system

(a, b, c) and d with c − b > a − d > 0 is realizable. For integers (a, b, c) with

2 ≤ a ≤ b < b + 2 ≤ c, the possible values for d are constrained by the conditions

d ≤ a − 1 and d > min{0, a + b − c}. Thus the number of possible values for d,

and hence the number of different Hilbert series associated with the degree sequence

(a, b, c), is min{a− 1, c− b− 1}.

Example 3.4 illustrates Theorem 2.3 in the case where µG(I∗) = 4.

Example 3.4. With the notation of Theorem 1.3, if I∗ has degree sequence (4, 5, 8, 11),

then the possibilities for the sequence (d1, d2, d3, d4) are

(4, 3, 2, 0), (4, 3, 1, 0), (4, 2, 1, 0).

(1) This gives, for appropriate ideals I∗, the following three Hilbert series for G/I∗.

(i) QG/I∗(t) = 1 + 2t + 3t2 + 4t3 + 4t4 + 3t5 + 3t6 + 3t7 + 2t8 + 2t9 + 2t10 + t11,

(ii) QG/I∗(t) = 1 + 2t + 3t2 + 4t3 + 4t4 + 3t5 + 3t6 + 3t7 + 2t8 + t9 + t10,

(iii) QG/I∗(t) = 1 + 2t + 3t2 + 4t3 + 4t4 + 3t5 + 2t6 + 2t7 + t8 + t9 + t10.

corresponding to the sequences (4, 3, 2, 0), (4, 3, 1, 0), (4, 2, 1, 0).
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(2) Using Proposition 2.1 and Theorem 2.2, we may obtain from the degree sequence

(4, 5, 8, 11) of I∗, either the degree sequence (3, 3, 6) or (2, 2, 5). Indeed, (3, 3, 6) is

obtained by

(4, 5, 8, 11)
m=1 in Prop 2.1−→ (4, 4, 7, 10) m=1 in Thm 2.2−→ (3, 5, 8)

m=2 in Prop 2.1−→ (3, 3, 6),

and (2, 2, 5) is obtained by

(4, 5, 8, 11)
m=1 in Prop 2.1−→ (4, 4, 7, 10) m=2 in Thm 2.2−→ (2, 3, 6)

m=1 in Prop 2.1−→ (2, 2, 5).

The sequence (3, 3, 6) is the degree sequences associated with (x3 + y5, x2y)S and

(2, 2, 5) is the degree sequence associated with (x2 + y4, xy)S.

(i) Let I
′
1 = (f1, g1), where f1 = x3 + y5, g1 = x2y. Since y∗ - f∗1 , Proposition 2.1

implies that J
′
1 = (f1, y

2g1) has degree sequence (3, 5, 8). Let n = (x + y, y). Then

(x∗+y∗) - f∗1 and y∗ - f∗1 , so Theorem 2.2 implies that V
′
1 = (yf1, (x+y)(f1+y2g1)) =

(F1, G1) has degree sequence (4, 4, 7, 10). Since y∗ - G∗
1, Proposition 2.1 implies that

I1 = (yF1, G1) = (y2f1, (x + y)(f1 + y2g1) has degree sequence (4, 5, 8, 11). Also the

descending sequence (d1, d2, d3, d4) of I∗1 is (4, 3, 2, 0). Hence the Hilbert series of

G/I∗1 is (i) of part (1).

(ii) Let I
′
2 = (f2, g2), where f2 = x3 + y4, g2 = xy2. Since y∗ - f∗2 , Proposition 2.1

implies that J
′
2 = (f2, y

2g2) has degree sequence (3, 5, 8). Let n = (x + y, y). Then

(x∗+y∗) - f∗2 and y∗ - f∗2 , so Theorem 2.2 implies that V
′
2 = (yf2, (x+y)(f2+y2g2)) =

(F2, G2) has degree sequence (4, 4, 7, 10). Since y∗ - G∗
2, Proposition 2.1 implies that

I2 = (yF2, G2) = (y2f2, (x + y)(f2 + y2g2) has degree sequence (4, 5, 8, 11). The

descending sequence (d1, d2, d3, d4) of I∗2 is (4, 3, 1, 0). Hence the Hilbert series of

G/I∗2 is (ii) of part (1).

(iii) Let I
′
3 = (f3, g3), where f3 = x2 + y4, g3 = xy. Since y∗ - f∗3 , Proposition 2.1

implies that J
′
3 = (f3, yg3) has degree sequence (2, 3, 6). Let n = (x + y, y). Then

(x∗ + y∗) - f∗3 and y∗ - f∗3 , so Theorem 2.2 implies that V
′
3 = (y2f3, (x + y)2(f3 +

yg3)) = (F3, G3) has degree sequence (4, 4, 7, 10). Since y∗ - G∗
3, Proposition 2.1 im-

plies that I3 = (yF3, G3) = (y3f3, (x+y)2(f3 +yg3) has degree sequence (4, 5, 8, 11).

The descending sequence (d1, d2, d3, d4) of I∗3 is (4, 2, 1, 0). Hence the Hilbert series

of G/I∗3 is (iii) of part (1).

Example 3.5 illustrates Theorem 2.3 in the case where µG(I∗) = 5.
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Example 3.5. Assume notation as in Theorems 1.2 and 1.3 and also assume that

char(k) 6= 2. If I∗ has degree sequence (6, 7, 12, 15, 18), then the possibilities for the

sequence (d1, d2, d3, d4, d5) are

(6, 5, 4, 3, 0), (6, 5, 4, 2, 0), (6, 5, 3, 2, 0), (6, 5, 3, 1, 0),

(6, 4, 3, 2, 0), (6, 4, 3, 1, 0), (6, 4, 2, 1, 0), (6, 3, 2, 1, 0).

The following eight parameter ideals Ii = (fi, gi)S have associated degree sequence

(6, 7, 12, 15, 18) and each of the eight possible sequences (d1, d2, d3, d4, d5).

(i) I1 = (yy(x + y)(f1 + y2g1), (x + 2y)(x + y)(f1 + y2g1 + y4yf1))

where f1 = x4 + y6 and g1 = x3y,

(ii) I2 = (yy(x + y)(f2 + y2g2), (x + 2y)(x + y)(f2 + y2g2 + y4yf2)),

where f2 = x4 + y5 and g2 = x2y2,

(iii) I3 = (yy(x + y)2(f3 + yg3), (x + 2y)(x + y)2(f3 + yg3 + y4y2f3)),

where f3 = x3 + y5 and g3 = x2y,

(iv) I4 = (yy2(x + y)(f4 + y2g4), (x + 2y)2(x + y)(f4 + y2g4 + y3yf4)),

where f4 = x3 + y5 and g4 = x2y,

(v) I5 = (yy(x + y)2(f5 + yg5), (x + 2y)(x + y)2(f5 + y2g5 + y4y2f5)),

where f5 = x3 + y4 and g5 = xy2,

(vi) I6 = (yy2(x + y)(f6 + y2g6), (x + 2y)2(x + y)(f6 + y2g6 + y3yf6)),

where f6 = x3 + y4 and g6 = xy2,

(vii) I7 = (yy2(x + y)2(f7 + yg7), (x + 2y)2(x + y)2(f7 + yg7 + y3yf7)),

where f7 = x2 + y4 and g7 = xy,

(viii) I8 = (yy3(x + y)(f8 + y2g8), (x + 2y)3(x + y)(f8 + y2g8 + y2yf8)),

where f8 = x2 + y4 and g8 = xy.

To obtain these parameter ideals we reason as follows. Using Proposition 2.1 and

Theorem 2.2, we may obtain from the degree sequence (6, 7, 12, 15, 18) of I∗ one of

the following three degree sequences (4, 4, 7), (3, 3, 6), or (2, 2, 5). Indeed, (4, 4, 7) is
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obtained by

(6, 7, 12, 15, 18)
m=1 in Prop 2.1−→ (6, 6, 11, 14, 17) m=1 in Thm 2.2−→ (5, 9, 12, 15)

m=4 in Prop 2.1−→ (5, 5, 8, 11) m=1 in Thm 2.2−→ (4, 6, 9)
m=2 in Prop 2.1−→ (4, 4, 7).

The sequence (3, 3, 6) is obtained in two ways:

(6, 7, 12, 15, 18)
m=1 in Prop 2.1−→ (6, 6, 11, 14, 17) m=1 in Thm 2.2−→ (5, 9, 12, 15)

m=4 in Prop 2.1−→ (5, 5, 8, 11) m=2 in Thm 2.2−→ (3, 4, 7)
m=1 in Prop 2.1−→ (3, 3, 6).

and

(6, 7, 12, 15, 18)
m=1 in Prop 2.1−→ (6, 6, 11, 14, 17) m=2 in Thm 2.2−→ (4, 7, 10, 13)

m=3 in Prop 2.1−→ (4, 4, 7, 10) m=1 in Thm 2.2−→ (3, 5, 8)
m=2 in Prop 2.1−→ (3, 3, 6).

The sequence (2, 2, 5) is also obtained in two ways:

(6, 7, 12, 15, 18)
m=1 in Prop 2.1−→ (6, 6, 11, 14, 17) m=2 in Thm 2.2−→ (4, 7, 10, 13)

m=3 in Prop 2.1−→ (4, 4, 7, 10) m=2 in Thm 2.2−→ (2, 3, 6)
m=1 in Prop2.1−→ (2, 2, 5).

and

(6, 7, 12, 15, 18)
m=1 in Prop 2.1−→ (6, 6, 11, 14, 17) m=3 in Thm 2.2−→ (3, 5, 8, 11)

m=2 in Prop 2.1−→ (3, 3, 6, 9) m=1 in Thm 2.2−→ (2, 4, 7)
m=2 in Prop 2.1−→ (2, 2, 5).

We describe a procedure for obtaining the parameter ideal I8. Let I
′′
8 = (f8, g8),

where f8 = x2 + y4, g8 = xy. Then I
′′
8 has degree sequence (2, 2, 5). Since y∗ -

f∗8 , Proposition 2.1 implies that J
′′
8 = (f8, y

2g8) has degree sequence (2, 4, 7). Let

n = (x + y, y). Then (x∗ + y∗) - f∗8 and y∗ - f∗8 , so Theorem 2.2 implies that V
′′
8 =

(yf8, (x + y)(f8 + y2g8)) = (F
′
8, G

′
8) has degree sequence (3, 3, 6, 9). Since y∗ - G′∗

8 ,

Proposition 2.1 implies that J
′
8 = (y2F

′
8, G

′
8) has degree sequence (3, 5, 8, 11). Since

n = (x + 2y, y) = (x + y, y) = (x, y) and (x + 2y)∗ - G
′∗
8 and y∗ - G

′∗
8 , Theorem

2.2 implies that V
′
8 = (y3G

′
8, (x + 2y)3(G

′
8 + y2F

′
8)) = (F8, G8) has degree sequence

(6, 6, 11, 14, 17). Since y∗ - G∗
8, Proposition 2.1 implies that I8 = (yF8, G8) =

(y4G
′
8, (x+2y)3(G

′
8+y2F

′
8) = (y4(x+y)(f8+y2g8), (x+2y)3(x+y)(f8+y2g8+y3f8)),

has degree sequence (6, 7, 12, 15, 18).

Similar reasoning is used to obtain the parameter ideals Ii, for 1 ≤ i ≤ 7.
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