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Abstract. Let (S, n) be a Noetherian local ring and let I = (f, g) be an ideal in
S generated by a regular sequence f, g of length two. Assume that the associated
graded ring grn(S) of S with respect to n is a UFD. We examine generators of
the leading form ideal I∗ of I in grn(S) and prove that I∗ is a perfect ideal of
grn(S), if I∗ is 3-generated. Thus, in this case, letting R = S/I and m = n /I , if
grn(S) is Cohen-Macaulay, then grm(R) = grn(S)/I∗ is Cohen-Macaulay. As an
application, we prove that if (R,m) is a one-dimensional Gorenstein local ring of
embedding dimension 3, then grm(R) is Cohen-Macaulay if the reduction number
of m is at most 4.

1. Introduction

Setting 1.1. Let (S, n) be a Noetherian local ring and let I = (f, g) be an ideal in

S generated by a regular sequence f, g of length two. Let R = S/I and m = n /I.

Let

R′(n) =
∑
i∈Z
ni ti ⊆ S[t, t−1] and R′(m) =

∑
i∈Z
mi ti ⊆ R[t, t−1]

denote the extended Rees algebras of n and m respectively, where t is an indetermi-

nate. Let

grn(S) = R′(n)/t−1R′(n) and grm(R) = R′(m)/t−1R′(m).

Then the canonical map S → R induces the homomorphism ϕ : grn(S) → grm(R)

of the associated graded rings. We put

I∗ = Ker (grm(S)
ϕ→ grm(R)).

Then the ideal I∗ is generated by the initial forms of elements of I and grm(R) ∼=
grn(S)/I∗. We assume that G = grn(S) is a UFD. Hence htG I

∗ = gradeG I
∗ = 2.
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We are interested in determining generators for I∗ and thereby obtaining condi-

tions in order that grm(R) be Cohen-Macaulay. The goal of the paper is to prove

Theorem 1.2, the proof of which is given in Section 2.

Theorem 1.2. Assume notation as in Setting 1.1, so, in particular, grn(S) is a

UFD. If I∗ is 3-generated, then I∗ is a perfect ideal of grn(S). Therefore if grn(S)

is Cohen-Macaulay, then grm(R) = grn(S)/I∗ is Cohen-Macaulay.

As an immediate corollary to Theorem 1.2, we have

Corollary 1.3. With notation as in Setting 1.1, if (S, n) is a regular local ring and

I∗ is 3-generated, then grm(R) is Cohen-Macaulay.

In Section 3 we discuss some consequences of Theorem 1.2.

Notation 1.4. Let G = grn(S). For each f ∈ S let o(f) = sup{i ∈ Z | f ∈ ni}, the

order of f . We put

f∗ =

{
fti if f 6= 0 and i = o(f),
0 if f = 0

and call it the initial form of f , where fti denotes the image in G of fti ∈ ni ti in

R′(n). Then for all f, g ∈ S we have

o(fg) = o(f) + o(g), (fg)∗ = f∗g∗,

o(f + g) ≥ min{o(f), o(g)}, and

o(f + g) = min{o(f), o(g)} if o(f) 6= o(g).

With this notation the following two simple examples illustrate the situation we

are considering. In both examples we let S = k[[x, y, z]] be the formal power series

ring in the three variables x, y, z over a field k.

Example 1.5. Let R = k[[w5, w6, w9]] be the subring of the formal power series

ring k[[w]] and define the homomorphism φ : S → R of k-algebras by φ(x) = w5,

φ(y) = w6, and φ(z) = w9. Then the ideal I = Ker φ is generated by f = z2 − y3

and g = zy − x3, whence R is a complete intersection of dimension one. We have

grn(S) = k[x∗, y∗, z∗], f∗ = z∗2, and g∗ = z∗y∗. Let h = yf − zg = zx3 − y4. Then

h∗ = z∗x∗3 − y∗4. Let

J = (f∗, g∗, h∗) = (z∗2, z∗y∗, z∗x∗3 − y∗4) ⊆ I∗.
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Then the Hilbert series of the graded ring grn(S)/J is

1 + 2t+ t2 + t3

1− t = 1 + 3t + 4t2 + 5t3 + 5t4 + · · ·+ 5tn + · · ·

and these values are the same as those in the Hilbert series of grm(R) = grn(S)/I∗,

so that J = I∗. The reduction number of m = (w5, w6, w9) with respect to the

principal reduction (w5) is 3 and the relation type of grm(R) is 4. The ideal I∗ has

grade 2 and is generated by the 2× 2 minors of the following matrix[
y∗ z∗ 0
−x∗3 −y∗3 z∗

]
.

Hence, by the theorem of Hilbert-Burch [BH, Theorem 1.4.17], I∗ is a perfect ideal

and grn(S)/I∗ = grm(R) is a Cohen-Macaulay ring.

Example 1.6. Let R = k[[w6, w7, w15]] be the subring of the formal power series

ring k[[w]] and consider the homomorphism φ : S → R of k-algebras defined by

φ(x) = w6, φ(y) = w7, and φ(z) = w15. Then I = Ker φ is generated by f = z2−x5

and g = zx − y3, whence R is a complete intersection of dimension one. We have

grn(S) = k[x∗, y∗, z∗], f∗ = z∗2, and g∗ = z∗x∗. Let h = xf − zg = zy3 − x6. Then

h∗ = z∗y∗3 and (f∗, g∗, h∗) = (z∗2, z∗x∗, z∗y∗3) ( I∗. The inclusion is strict, since

htgrn(S) I
∗ = 2 and z∗ is a common factor of f∗, g∗, and h∗. We have o(f) = o(g) = 2

and o(h) = 4. Let h1 = xh− y3g = y6 − z7 ∈ I. Then h∗1 = y∗6. We put

J = (z∗2, z∗x∗, z∗y∗3, y∗6) ⊆ I∗.

Then the Hilbert series of grn(S)/J is given by

1 + 2t + t2 + t3 + t5

1− t = 1 + 3t+ 4t2 + 5t3 + 5t4 + 6t5 + · · · + 6tn + · · ·

and these values are the same as those in the Hilbert series of grm(R) = grn(S)/I∗,

so that J = I∗. The reduction number of m = (w6, w7, w15) with respect to the

principal reduction (w6) is 5 and the relation type of grm(R) is 6. The ring grm(R)

is not Cohen-Macaulay. This is implied by the gap in the numerator of the Hilbert

series, and can be deduced also from the fact that the ideal I∗ has radical (y∗, z∗)

and the ideal I∗ : z∗ is primary with
√
I∗ : z∗ = (x∗, y∗, z∗).
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2. Proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. We assume notation as in

Setting 1.1. Let G = grn(S) and J = I∗. We choose f, g ∈ S so that I = (f, g) with

a = o(f) ≤ b = o(g). Without loss of generality we may assume that f∗ 6∈ NJ and

g∗ 6∈ NJ + (f∗), where N = G+. Hence the elements f∗, g∗ form part of a minimal

system of homogeneous generators of J . Notice that if htG(f∗, g∗) = 2, then the

sequence f∗, g∗ is G-regular whence J = (f∗, g∗). In what follows we assume that

htG(f∗, g∗) = 1.

Let D = GCD(f∗, g∗) and write f∗ = ξD, g∗ = ηD, where D, ξ, η are homogeneous

elements of G with degree d > 0, a − d, and b − d, respectively. Then {ξ, η} is a

G-regular sequence.

We begin with Lemma 2.1 which gives some information about homogeneous

elements of J that are not in the ideal (f∗, g∗).

Lemma 2.1. Let α, β ∈ S and h = αf + βg. Assume that h∗ 6∈ (f∗, g∗). Then

(1) o(αf) = o(βg) < o(h).

(2) o(α) + a = o(β) + b, o(α) ≥ b− d, and o(β) ≥ a− d.

(3) α∗ξ + β∗η = 0.

Proof. We have o(h) ≥ min{o(αf), o(βg)}. If o(αf) < o(βg), then o(h) = o(αf) and

h∗ = α∗f∗ ∈ (f∗), which is impossible. We similarly have o(αf) = o(βg). Hence

o(h) > o(αf) = o(βg), because h∗ 6∈ (f∗, g∗). Thus α∗f∗+β∗g∗ = (α∗ξ+β∗η)D = 0

whence α∗ξ + β∗η = 0. Therefore, since the sequence ξ, η is G-regular, we get α∗ =

−ϕη and β∗ = ϕξ for some homogeneous element ϕ of G. Thus o(α) = degϕ+(b−d)

and o(β) = degϕ+(a−d), so that o(α)+a = o(β)+b, o(α) ≥ b−d, and o(β) ≥ a−d,

as was claimed. �

The existence of a third generator of the leading ideal J of a certain form is

guaranteed by Proposition 2.2.

Proposition 2.2. Assume that the local ring S is n-adically complete. Then there

exist elements α, β of S such that o(α) = b − d, o(β) = a − d, and (αf + βg)∗ 6∈

(f∗, g∗).
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Proof. Assume the contrary. Let f0, g0 ∈ S with o(f0) = a − d and o(g0) = b − d

such that ξ = f∗0 and η = g∗0 . We are going to construct two sequences {fi}i=0,1,2,...

and {gi}i=0,1,2,... of elements in S which satisfy the following conditions: Let hi =

(−
∑i

k=0 gk)f + (
∑i

k=0 fk)g for each i ≥ 0. Then

(1) hi 6= 0,

(2) o(hi) < o(hi+1),

(3) o(hi)− b ≤ o(fi+1) and o(hi)− a ≤ o(gi+1)

for all i ≥ 0.

To construct the sequences, firstly we put h0 = (−g0)f+f0g. Then o(f0) = a−d and

o(g0) = b−d. We notice h0 6= 0, because b−d = o(g0) < o(g) = b (recall that f, g is a

regular sequence). Hence h∗0 ∈ (f∗, g∗) by our assumption. We write h∗0 = f∗ϕ+g∗ψ

with ϕ ∈ Go(h0)−a and ψ ∈ Go(h0)−b. Let ϕ = g1to(h0)−a and ψ = (−f1)to(h0)−b with

g1 ∈ no(h0)−a and f1 ∈ no(h0)−b. Then h0 = g1f+(−f1)g+h1 for some h1 ∈ no(h0)+1;

hence

h1 = [−(g0 + g1)]f + (f0 + f1)g,

where o(f1) ≥ o(h0)− b, o(g1) ≥ o(h0)− a, and o(h1) > o(h0). Because

h0ta+b−d = (−g0)tb−d · fta + f0ta−d · gtb
= (−ηf∗) + ξg∗

= (−η · ξD) + ξ(ηD)
= 0,

we get o(h0) > a+ b−d, so that o(f1) ≥ o(h0)− b > a−d and o(g1) ≥ o(h0) > b−d.

Thus o(g0 + g1) = o(g0) = b − d < b and o(f0 + f1) = o(f0) = a − d < a, whence

h1 = [−(g0 + g1)]f + (f0 + f1)g 6= 0. Repeating this procedure, we get the required

sequences {fi}i=0,1,2,... and {gi}i=0,1,2,... of elements in S.

Now let α = −
∑∞

k=0 gk and β =
∑∞

k=0 fk. We then have

αf + βg =
∑∞

k=0[(−gk)f + fkg]

= limi→∞[(−
∑i

k=0 gk)f + (
∑i

k=0 fk)g]
= limi→∞ hi
= 0,

whence β ∈ (f), which is impossible because o(β) < a (recall that β = f0 +
∑∞

k=1 fk,

o(f0) = a−d, and o(fk) ≥ o(h0)−b > a−d for all k ≥ 1). Thus (αf+βg)∗ 6∈ (f∗, g∗)

for some elements α, β of S with o(α) = b− d and o(β) = a− d. �
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Remark 2.3. Let α, β ∈ S with o(α) = b−d and assume that (αf+βg)∗ 6∈ (f∗, g∗).

Then α∗ = −ūη and β∗ = ūξ for some unit u in S. Hence α∗, β∗ form a G-regular

sequence.

Proof. With the same notation as in the proof of Lemma 2.1 we have 0 6= ϕ ∈ G0 =

S/n. Letting ϕ = ū with a unit u in S, we readily get α∗ = −ūη and β∗ = ūξ. �

Let n = µG(J) and k = S/n. In Proposition 2.4 (3) we prove the uniqueness of

the order of o(αf + βg) for the elements α and β in S given by Proposition 2.2 and

the uniqueness of the ideal (f∗, g∗, h∗) as well, where h = αf + βg.

Proposition 2.4. Let α, β, σ, τ ∈ S with o(α) = b − d. Let h = αf + βg and

q = σf + τg. Assume that h∗ 6∈ (f∗, g∗). Then the following assertions hold true.

(1) Assume that q∗ 6∈ (f∗, g∗). Then o(q) ≥ o(h) + o(σ)− (b− d).

(2) Assume that q∗ 6∈ (f∗, g∗, h∗). Then o(q) > o(h) + o(σ)− (b− d).

(3) Assume that q∗ 6∈ (f∗, g∗) and o(σ) = b − d. Then o(q) = o(h) and

(f∗, g∗, q∗) = (f∗, g∗, h∗).

(4) The elements f∗, g∗, h∗ form a part of a minimal system of homogeneous

generators of J .

(5) Assume that n ≥ 4 and I ⊆ n2. Then writing J =
⊕
Jn, we have

J ) (Ji | 1 ≤ i ≤ 5)G.

Proof. Assume that q∗ 6∈ (f∗, g∗) and let c = o(σ) − (b − d). Then σ∗ξ + τ∗η = 0

by Lemma 2.1. Choose a unit u in S so that α∗ = −ūη and β∗ = ūξ. Then, since

σ∗ξū + τ∗ηū = 0, we get σ∗β∗ = τ∗α∗. Hence σ∗ = α∗δ∗ and τ∗ = β∗δ∗ for some

δ ∈ S with o(δ) = c, because α∗, β∗ is a G-regular sequence. Thus σ = αδ + σ1 and

τ = βδ + τ1 for some σ1, τ1 ∈ S with o(σ1) > o(σ) and o(τ1) > o(τ);

q = hδ + (σ1f + τ1g).(1)

Now let

Λ =

{
o(σ′f + τ ′g)

∣∣∣∣ σ′, τ ′ ∈ S such that
(σ′f + τ ′g)∗ 6∈ (f∗, g∗) and o(σ′) ≥ b− d+ c

}
.

Then o(q) ∈ Λ. Let n = min Λ and put

Γ =

{
o(σ′)

∣∣∣∣ σ′ ∈ S for which there exists τ ′ ∈ S such that
(σ′f + τ ′g)∗ 6∈ (f∗, g∗), o(σ′) ≥ b− d+ c, and o(σ′f + τ ′g) = n

}
.
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Then Γ 6= ∅ and γ < n − a for all γ ∈ Γ (cf. Lemma 2.1 (1)). Let γ = max Γ

and choose σ′, τ ′ ∈ S so that (σ′f + τ ′g)∗ 6∈ (f∗, g∗), γ = o(σ′) ≥ b − d + c, and

o(σ′f + τ ′g) = n. Let q′ = σ′f + τ ′g. Then, because q′∗ 6∈ (f∗, g∗), similarly as in

equation (1) we have

q′ = hδ′ + (σ2f + τ2g)

for some δ′, σ2, τ2 ∈ S with o(δ′) = o(σ′)− (b− d), o(σ2) > o(σ′), and o(τ2) > o(τ ′).

Let q′′ = σ2f + τ2g and assume that o(q′) < o(hδ′). We then have

n = o(q′) = o(q′′) and q′∗ = q′′∗,

whence q′′∗ 6∈ (f∗, g∗). On the other hand, because o(σ2) > o(σ′) ≥ b− d+ c, we get

o(σ2) ∈ Γ, which is impossible (recall that o(σ′) = max Γ). Thus o(q′) ≥ o(hδ′) and

so

o(q) ≥ n = o(q′) ≥ o(h) + o(δ′)

= o(h) + o(σ′)− (b− d)

≥ o(h) + [(b− d) + c]− (b− d)

= o(h) + c,

as was claimed. This proves assertion (1).

Now assume that q∗ 6∈ (f∗, g∗, h∗). Then o(q) ≥ o(h) + c by assertion (1), where

c = o(σ)− (b− d). Assume o(q) = o(h) + c and write q = hδ + (σ1f + τ1g) for some

δ, σ1, τ1 ∈ S with o(δ) = c, o(σ1) > o(σ), and o(τ1) > o(τ) (cf. equation (1)). We

put q1 = σ1f + τ1g. Then, because o(q) = o(hδ) ≥ min{o(hδ), o(q1)}, o(q1) ≥ o(hδ).

If o(q1) > o(hδ), then we have q∗ = (hδ)∗ = h∗δ∗ ∈ (f∗, g∗, h∗), which is impossible.

Hence o(q1) = o(hδ) = o(q) so that q∗ = h∗δ∗ + q∗1 6∈ (f∗, g∗, h∗). Consequently

q∗1 6∈ (f∗, g∗) and so we get by assertion (1) that

o(h) + c = o(hδ) = o(q1)

≥ o(h) + o(σ1)− (b− d)

≥ o(h) + [o(σ) + 1]− (b− d)

= o(h) + c+ 1,

which is absurd. Hence o(q) > o(h) + c. This proves assertion (2).
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To show assertion (3), thanks to assertion (2), it is enough to check the equality

o(q) = o(h). The inequality o(q) ≥ o(h) follows from assertion (1), whence o(h) =

o(q) by symmetry.

We now prove assertions (4) and (5). Let V = J/NJ and choose homogeneous

elements δ1, δ2,..., δn of J so that their images δ̄1, δ̄2,..., δ̄n in V form a k-basis

of V . We may assume δ1 = f∗, δ2 = g∗. Hence J = (f∗, g∗, δ3, ..., δn). For each

3 ≤ i ≤ n let δi = q∗i with qi ∈ I and write qi = σif + τig for some σi, τi ∈ S. Then

o(σi) ≥ b − d by Lemma 2.1. We have o(qi) = o(h) and (f∗, g∗, q∗i ) = (f∗, g∗, h∗)

(resp. o(qi) > o(h)), if o(σi) = b− d (resp. if o(σi) > b − d) by assertion (3) (resp.

assertion (1)). Hence o(qi) ≥ o(h). We may assume o(q3) ≤ o(q4) ≤ ... ≤ o(qn).

Then, because h∗ ∈ (f∗, g∗, δ3, δ4, ..., δn) but h∗ 6∈ (f∗, g∗), we get deg h∗ = o(h) ≥

deg δ3 = o(q3) so that o(q3) = o(h), whence (f∗, g∗, δ3) = (f∗, g∗, h∗) by assertion

(3). Thus assertion (4) follows. Suppose that n ≥ 4. Then δ4 = q∗4 6∈ (f∗, g∗, δ3) =

(f∗, g∗, h∗). Therefore o(σ4) > b− d. Hence by assertion (2) we have

deg δ4 = o(q4)
≥ o(h) + [o(σ4)− (b− d) + 1] ≥ o(h) + 2
≥ (a+ b− d) + 3 (by Lemma 2.1)
≥ b+ 4 ≥ a+ 4.

Consequently, deg δ4 = o(q4) ≥ 6, if I ⊆ n2. Hence J ) (Ji | 1 ≤ i ≤ 5)G, which

completes the proof of Proposition 2.4. �

We are now ready to prove Theorem 1.2 .

Proof of Theorem 1.2. We may assume that S is complete and htG(f∗, g∗) = 1.

Hence µG(J) = 3. Choose α, β ∈ S so that o(α) = b− d and (αf + βg)∗ 6∈ (f∗, g∗).

Let h = αf + βg. Then J = (f∗, g∗, h∗) by Proposition 2.4 (4). We furthermore

have h∗ ∈ (α∗, β∗), because α∗, β∗ is a G-regular sequence (cf. Remark 2.3) and

h ∈ (α, β). Let h∗ = α∗ϕ+ β∗ψ with ϕ,ψ ∈ G. Then, since α∗ = −ūη and β∗ = ūξ

for some unit u in S, we see

J = I2

(
ūϕ ūψ D
ξ η 0

)
where D ∈ G is the element such that f∗ = ξD and g∗ = ηD. Thus J is a perfect

ideal of G, because gradeG J = 2. �
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Discussion 2.5. Assume notation as in Setting 1.1 and also assume that I ⊂ n2.

Let µ(I∗) denote the minimal number of generators of I∗. If µ(I∗) = 3, then

I∗ = (f∗, g∗, h∗0)G, where h0 = αf + βg and o(α) = b− d. We have

2 ≤ deg f∗ ≤ deg g∗ < deg g∗ + 2 ≤ degh∗0,

so degh∗0 ≥ 4. If µ(I∗) ≥ 4, then there exist homogeneous generators for I∗ so that

I∗ = (f∗, g∗, h∗0, h
∗
1, . . . , h

∗
r)G,

where we have r = µ(I∗)− 3, and

2 ≤ deg f∗ ≤ deg g∗ < deg g∗ + 2 ≤ deg h∗0 < deg h∗0 + 2 ≤ deg h∗1 ≤ · · · ≤ deg h∗r .

The inequality deg h∗1 ≥ deg h∗0 + 2 is by Proposition 2.4 (2). In particular, if

µ(I∗) ≥ 4, then the relation type of grm(R) is greater than or equal to 6.

It would be interesting to know whether deg h∗i + 2 ≤ deg h∗i+1 holds for all i with

0 ≤ i < r, or, if this fails to hold in general, whether degh∗i + 1 ≤ deg h∗i+1. An

interesting result of Kothari [K] shows that if S is a 2-dimensional regular local ring

containing a coefficient field, then deg h∗i + 1 ≤ degh∗i+1 for all i with 1 ≤ i < r.

3. Applications of the theorem

Let us give some consequences of Theorem 1.2. We begin with the following.

Corollary 3.1. Let (R,m) be a d-dimensional Gorenstein local ring. Assume that

m is minimally generated by d + 2 elements. Then grm(R) is a Cohen-Macaulay

ring, if the relation type of grm(R) is less than or equal to 5.

Proof. We may assume that (R,m) is complete. Hence, thanks to the structure

theorem of Cohen ([BH, Theorem A.21]), we get R = S/I, where I is an ideal of

a (d + 2)-dimensional regular local ring (S, n). Because R is a Gorenstein ring and

dimR = d, the ideal I is generated by a regular sequence f, g of length 2. Let

J = Ker (grn(S)
ϕ→ grm(R)), where ϕ : grn(S) → grm(R) denotes the canonical

map. We may assume that µgrn(S)(J) ≥ 3. Then by Proposition 2.4 (5) the ideal J

is 3-generated, because the relation type of grm(R) is at most 5, whence by Theorem

1.2, grm(R) is a Cohen-Macaulay ring since the polynomial ring grn(S) is a UFD. �



10 SHIRO GOTO, WILLIAM HEINZER, AND MEE-KYOUNG KIM

Corollary 3.2. Let (R,m) be a one-dimensional Gorenstein local ring and assume

that m is minimally generated by 3 elements. If the reduction number of m is less

than or equal to 4, then grm(R) is a Cohen-Macaulay ring.

Proof. The result of Huckaba [H, Theorem 2.3] shows that in our setting the relation

type of grm(R) is at most one more than the reduction number of m. Hence by

Corollary 3.1 the ring grm(R) is Cohen-Macaulay. �

The example studied in Example 1.6 shows that Corollary 3.2 may fail if the

reduction number of m is 5. The following example is explored by Sally [S, Example

2.2] and shows that Corollary 3.1 may fail if we assume that R is a Cohen-Macaulay

(rather than Gorenstein) ring.

Example 3.3. Let S = k[[x, y, z]] be the formal power series ring with three vari-

ables x, y, z over a field k . Let R = k[[w4, w5, w11]] be the subring of the formal

power series ring k[[w]] and consider the homomorphism φ : S → R of k-algebras

defined by φ(x) = w4, φ(y) = w5, and φ(z) = w11. Then I = Ker φ is generated by

xz − y3, yz − x4, and z2 − x3y2. We have grn(S) = k[x∗, y∗, z∗],

I∗ = (z∗2, z∗y∗, z∗x∗, y∗4),

and the ring grm(R) = grn(S)/I∗ is not Cohen-Macaulay. The relation type of

grm(R) is 4 and the reduction number of m is 3.

Corollary 3.4. Let (R,m) be a one-dimensional Gorenstein local ring and assume

that m is minimally generated by 3 elements. If the reduction number r of m is less

than or equal to 4, then grm(R) is a Gorenstein ring if and only if Jr : mr = mr,

where J is a reduction of m.

Proof. By Corollary 3.2, grm(R) is Cohen-Macaulay. Therefore all the powers of m

are closed in the sense of Ratliff-Rush. Hence grm(R) is a Gorenstein ring if and

only if Jr : mr = mr (cf. [HKU, Corollary 4.8]). �
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