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Let R be a Noetherian ring, and let I be a regular ideal in R. (By ring

we mean a commutative ring with unity, and by a regular ideal we mean one

that contains a nonzerodivisor.) The ideals of the form (In+1 :R I
n) = {x ∈

R | xIn ⊆ In+1} increase with n. The union of this family,

Ĩ =
∞⋃
n=1

(In+1 : In) = {x ∈ R : xIn ⊆ In+1 for some n},

is an interesting ideal first studied by Ratliff and Rush [RR]. We call Ĩ the

Ratliff–Rush ideal associated to I, and we say that I is a Ratliff–Rush ideal

if I = Ĩ.

1This article is partly based on Heinzer’s presentation at the Colorado Springs con-
ference and Lantz’s talks at the Commutative Algebra Workshop, University of Missouri,

Columbia, June 1991, and in the Purdue commutative algebra student seminar, July 1991.
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In this mainly expository article, we survey some general properties of

Ratliff–Rush ideals. Much of what we discuss here is taken from the recent

articles [HLS] and [HJLS].

1. Several ways to realize Ratliff–Rush ideals. In [HLS] the behavior

of the Ratliff-Rush property with respect to certain ideal- and ring-theoretic

operations is considered and indications are given of how one might determine

whether or not a given ideal is Ratliff–Rush.

There are a number of ways to think of Ĩ. Given regular ideals I, J in a

Noetherian ring R, it is possible that I 6= J but In = Jn for all n >> 0. Two

of the very nice properties observed in [RR] about the Ratliff–Rush ideal Ĩ

are:

Theorem 1. Let I be a regular ideal in a Noetherian ring. Then:

(1) [RR, Theorem 2.1] Ĩ is the unique largest ideal J of R with the property

that In = Jn for all n >> 0, i.e., Ĩ is the largest ideal sharing the same

high powers with I; and

(2) [RR, Remark 2.3.2] for all sufficiently large n, In = Ĩn, i.e., In is a

Ratliff–Rush ideal.

Example. Let R = k[x, y] be a polynomial ring in two variables over a field

k, and let I be the ideal (x4, x3y, xy3, y4)R. Then Ĩ = (x, y)4R = (I, x2y2)R

since I2 = (x, y)8R. But x2y2 6∈ I, so I is not a Ratliff–Rush ideal. Note

that in this example In is Ratliff–Rush for each n ≥ 2.

In the case of a domain, there is another way to approach the associated

Ratliff–Rush ideal:

Theorem 2. [HLS, Fact 2.1] If I is an ideal in a Noetherian domain R,

then Ĩ is the intersection of the contractions to R of the extensions of I to
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the rings in its blowup B(I) = {R[I/x]P : x ∈ R − 0, P ∈ SpecR[I/x]}:

Ĩ =
⋂
{IS ∩R : S ∈ B(I)} .

This is used in both [HLS] and [HJLS].

The passage from an ideal I to its associated Ratliff–Rush ideal Ĩ may

be thought of as a weak “closure” operation on the set of regular ideals I in

a Noetherian ring R. It is true that I ⊆ Ĩ,
˜̃
I = Ĩ, and if I ⊆ J ⊆ Ĩ, then

J̃ = Ĩ. But it is not true in general that from I ⊆ J it need follow that

Ĩ ⊆ J̃ , so we have refrained from calling Ĩ the Ratliff–Rush closure of I.

A natural question is: How common are Ratliff–Rush ideals? A principal

regular ideal, indeed any ideal generated by a regular sequence, is Ratliff–

Rush. An integrally closed ideal in a Noetherian domain is Ratliff–Rush.

But on the other hand: We observe in [HLS] that, even in the monoid rings

k[[ta, tb, . . . ]], where k is a field and a, b, . . . are positive integers with great-

est common divisor one, the family of Ratliff–Rush ideals has the following

properties: Products of Ratliff–Rush ideals, even a power of a Ratliff–Rush

ideal or a principal multiple of a Ratliff–Rush ideal, need not be Ratliff–Rush

[HLS, (1.11)]. Even in a polynomial ring in two variables over a field, a power

of a Ratliff–Rush ideal need not be Ratliff–Rush [HJLS, Example 6.1 (E3)].

K. N. Raghavan has shown the existence of an example of an ideal generated

by a system of parameters in a two-dimensional local domain (of course, not

a Cohen–Macaulay ring) which is not Ratliff–Rush [HJLS, Example 1.2].

In [HLS], we studied mainly the case of a one-dimensional local domain

(R,M). In this context, the intersection of the rings in the blowup of a

nonzero ideal is a ring between the domain and its integral closure, so to

study Ratliff–Rush ideals, we could study such intermediate rings. To begin
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with, Ratliff and Rush remarked that if every ideal in a domain is either

principal or integrally closed, then each ideal is Ratliff–Rush. We turned

this statement somewhat inside out:

Theorem 3. [HLS, Theorem 2.8] Let R be a one-dimensional local domain.

Then every Ratliff–Rush ideal is either principal or integrally closed iff there

are no rings properly between R and its integral closure.

Then we displayed a one-dimensional local domain in which every Ratliff–

Rush ideal is either principal or integrally closed, but in which there are

nonzero ideals that are not Ratliff–Rush [HLS, Example 2.10(ii)].

A concept related to passing between an ideal and its associated Ratliff–

Rush ideal is that of a reduction: for ideals J ⊆ I, J is a reduction of I if

JIn = In+1 for all n >> 0 [NR]. The reduction number of I with respect to

the reduction J is the smallest n for which JIn = In+1. In this situation,

it follows that JkIn = In+k for all k ≥ 0. If J is a reduction of I, then I

is integral over J , and the Rees rings R[Jt] ⊆ R[It] have the property that

R[It] is integral as an extension ring of R[Jt].

A regular ideal is a reduction of its associated Ratliff–Rush ideal. But in

general, the condition on ideals J ⊆ I that J̃ = Ĩ, i.e., Jn = In for n >> 0,

is stronger than that J is a reduction of I. For example, if R = k[x, y] is a

polynomial ring in two variables over a field k and J = (x2, y2)R, then J is

a reduction of I = (x2, xy, y2)R, but J = J̃ is properly contained in I = Ĩ.

If (R,M) is a local ring and I is an M -primary ideal, then for all suf-

ficiently large n, the length λ(R/In) is a polynomial in n of degree the

dimension of R, called the Hilbert polynomial of I and denoted PI . The

integral closure I ′ of I is the largest ideal of which I is a reduction. The
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Hilbert polynomials PI and PI′ have the same highest degree coefficient, i.e.,

the same multiplicity; while PI and P
Ĩ

are the same polynomial, i.e., all

the coefficients are the same. Indeed, Ĩ is the largest ideal having the same

Hilbert polynomial as I.

Example. If k is a field and R is the subring k[[t3, t4, t5]] of the formal

power series ring k[[t]], and if I = (t3, t4)R and J = t3R, then I is prop-

erly contained in M = (t3, t4, t5)R, and Ĩ = M since I2 = M2; we have

PI(n) = PM (n) = 3n− 2. On the other hand, for the reduction J of I and

of M , we have PJ (n) = 3n.

We return to the topic of Hilbert polynomials in Section 3.

We would like to indicate why it is true that all high powers of a proper

regular ideal I are Ratliff–Rush ideals. There is a nice presentation of this

in [Mc, Chapter VIII]. If (In+1 : I) = In for all sufficiently large n, then

(In+h : Ih) = In for all positive integers h. For we have (In+2 : I2) =

((In+2 : I) : I), etc. Let x ∈ I be a nonzerodivisor. Using the Artin–Rees

lemma on the descending chain In∩xR, and the equality x(In : x) = In∩xR,

it follows that for large n one has (In+1 : I) = In. This in turn implies that

for large m and any h, one has (Im(h+1) : Imh) = Im, which means Im = Ĩm.

2. The associated graded ring. Given an ideal I in a commutative ring

R, an interesting ring construction is the associated graded ring of I in R:

G(I) = R/I ⊕ I/I2 ⊕ · · · ⊕ In/In+1 ⊕ · · · .

This ring has a natural grading by the nonnegative integers and is presented

as a homomorphic image of the Rees ring of I or of the extended Rees ring
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of I as follows:

G(I) ∼= R[It]/IR[It] ∼= R[t−1, It]/(t−1)R[t−1, It] .

The existence of zero-divisors of a certain form in G(I) is related to whether

I and the powers of I are Ratliff–Rush ideals: Let G(I)+ denote the homo-

geneous ideal of G(I) generated by the elements of positive degree I/I2 ⊕

I2/I3 ⊕ · · · . An element a ∈ R − I is in Ĩ iff the image a∗ of a in R/I

annihilates some power of G(I)+. Thus I = Ĩ iff there fails to exist such

an element. Using that Ĩ2 =
⋃

(I2n+2 : I2n), we see that if I = Ĩ, then I2

is properly contained in Ĩ2 iff there exists a ∈ I − I2 such that a∗ in I/I2

annihilates some power of G(I)+.

These are illustrations of the general:

Fact 4. [HLS,(1.2)] There exists a nonzerodivisor in G(I)+ iff In = Ĩn for

all positive integers n (i.e., all the powers of I are Ratliff–Rush ideals).

Another way to phrase this is that Ĩ is the preimage in R of the an-

nihilator in R/I (regarded as the degree-0 piece of G(I)) of (G(I)+)n for

sufficiently large n. Interpreting this in terms of graded local cohomol-

ogy, H0
G(I)+(G(I))0 = Ĩ/I, and more generally, H0

G(I)+ (G(I))n = (Ĩn+1 ∩
In)/In+1; so it follows that the first n for which In+1 is not Ratliff–Rush

(if there is such an n) is the first n for which H0
G(I)+ (G(I))n is nonzero. In

particular, all powers of I are Ratliff–Rush ideals iff grade(G(I)+) > 0. Cf.

[HJLS, (1.3)]

Returning to the question of how common Ratliff–Rush ideals are, we

remark that if an M -primary ideal I in a Cohen–Macaulay local ring (R,M)

has reduction number at most one (i.e., if there exists a reduction J of I
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which is generated by a system of parameters and which is such that the

equation JI = I2 holds), then G(I) is Cohen–Macaulay [V], so if an M -

primary ideal has reduction number at most one, then all its powers are

Ratliff–Rush.

3. Ratliff–Rush ideals and Hilbert Polynomials. Ratliff and Rush

showed that Ĩ is the largest ideal J for which Jn = In for sufficiently large n;

so if I is primary for the maximal ideal in a local ring, Ĩ is the largest ideal

containing I and having the same Hilbert polynomial. This shows us that

the “coefficient ideals” introduced in [Sh1] are all Ratliff–Rush ideals:

Definition. Let I be anM -primary ideal in a quasi-unmixed local ring (R,M)

of dimension d. Write the Hilbert polynomial of I in the form:

PI(n) = e0(I)

(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2

d− 1

)
+ · · ·+ (−1)ded(I) ,

so that the coefficients ej(I) are integers. Then, for each m in {0, . . . , d},

the em-ideal associated to I, denoted I{m}, is the unique largest ideal J

containing I for which ej(J) = ej(I) for j = 0, . . . , m.

In particular, I{0} is the integral closure I ′ of I and I{d} is the Ratliff–Rush

ideal Ĩ associated to I.

Theorem 5. [HJLS, Corollary 3.12] If (R,M) is a two-dimensional quasi-

unmixed local domain and if I is an M -primary ideal, then high powers of I

are e1-ideals if and only if B(I) is Cohen–Macaulay (i.e., all the rings in the

blowup of I are Cohen–Macaulay).

More generally, it is shown in [HJLS] that, if (R,M) is a two-dimensional

quasi-unmixed analytically unramified local domain and I is an M -primary
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ideal, then if the model B(I)(1) is constructed so that its affine pieces are the

localizations at the height-one primes of the affine pieces of B(I), then I{1}

is the contraction of the extension of I to B(I)(1). We also show that the

other coefficient ideals associated to I are the contractions of the extensions

of I to other models.

During the talk at the Colorado Springs Conference, Larry Levy asked

whether a Ratliff–Rush M -primary ideal of a local ring (R,M) has the prop-

erty that λ(R/In) is given by the Hilbert polynomial of I for all positive

integers n? It can be seen that this is not true in general. For example, if k

is a field and (R,M) is the one-dimensional local domain k[[t3, t4]], then M

and even all its powers are Ratliff–Rush ideals, but the Hilbert polynomial

PM (n) = 3n− 3 of M does not satisfy PM (1) = λ(R/M).

Then after the talk at the Colorado Springs Conference, Tom Marley

asked if a converse to Larry Levy’s question is true, i.e., if I is an M -primary

ideal in a local ring (R,M) and if PI(n) = λ(R/In) for all positive n, does

it follow that I is a Ratliff–Rush ideal? It is well known that if I is an M -

primary ideal with this property in a one-dimensional Cohen–Macaulay local

ring (R,M), then I is a stable ideal (cf. Section 4), so I and all its powers

are Ratliff–Rush [L, Corollary 1.6]. But it is noted in [HJLS, Example 6.1,

(E1)] that an example of Sally in [Sy2, Section 5] shows that this need not

be true for an M -primary ideal of a 2-dimensional regular local ring.

4. Every nonzero ideal Ratliff–Rush. Motivated by a comment of

Ratliff and Rush, we classify in [HLS, Section 3] the Noetherian domains

in which every nonzero ideal is Ratliff–Rush.

It is not hard to see that a ring in which every nonzero ideal is Ratliff–
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Rush is a one-dimensional domain, and that it is enough to look locally.

So we consider a one-dimensional local domain (R,M). Such an domain is

called stable iff each of its nonzero ideals is stable, that is, has a principal

reduction and reduction number at most one. A stable ideal is Ratliff-Rush,

so in a stable domain all ideals are Ratliff-Rush. The converse also holds:

Theorem 6. [HLS, Theorem 3.9] If every nonzero ideal in a one-dimensional

local domain is Ratliff–Rush, then the domain is stable.

And these conditions are almost equivalent to the condition that every

module between the domain and its integral closure is a ring. (Roger Wie-

gand has pointed out to us that there is one exceptional case, i.e., the case

in which (R,M) is a one-dimensional local domain with integral closure R′

such that R/M is the field with two elements and R′/MR′ is the direct sum

of three copies of the field with two elements.)

Work of Sally and Vasconcelos in [SV1] and [SV2] shows that if the mul-

tiplicity of a one-dimensional local domain is two, then the domain is stable;

but they also give an example of a stable domain of multiplicity three. Us-

ing a result of Rush in [R], we show in [HLS] that, although that example

could be generalized somewhat, many of the properties of that example are

properties of every stable local domain with multiplicity greater than two.

In particular:

Theorem 7. [HLS, Corollary 3.11] If (R,M) is a stable local domain of

multiplicity greater than two, then:

(1) the integral closure R′ of R is local,

(2) the residue field of R′ is isomorphic to R/M under the canonical map

of R′ onto its residue field,
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(3) R′ is not finitely generated as an R-algebra, and

(4) for each R-subalgebra S of R′, the square of the (unique) maximal ideal

of S is contained in MS.

Moreover:

(5) (Huneke [HLS, Proposition 3.14]) the maximal ideal M ′ of R′ is the

extension of M to R′.

5. A question on coefficient ideals. The paper [HJLS] considers the

Ratliff–Rush and “coefficient ideal” properties of M -primary ideals, espe-

cially in two-dimensional local rings (Cohen–Macaulay or even regular).

Suppose (R,M) is 2-dimensional and Cohen–Macaulay. Narita [Nr] has

shown that for any M -primary ideal I, the constant term e2 of the Hilbert

polynomial of I is nonnegative. It is easy to see that this implies that:

Fact 8. [HJLS, Proposition 3.3] If I is a Ratliff–Rush M -primary ideal and

if e2(I) = 0, then I is a first coefficient ideal, i.e., an e1-ideal.

The converse is not true in general in a 2-dimensional Cohen–Macaulay

local domain (R,M), for it can happen for example that e2(M) > 0 [HJLS,

Example 3.5]. We would like, however, to raise the following:

Question. Let I be a Ratliff–Rush M -primary ideal in a two-dimensional

regular local ring (R,M), and write

PI(n) = e0

(
n+ 1

2

)
− e1n+ e2 .

If e2 > 0, must there be an ideal J containing I for which

PJ(n) = e0

(
n+ 1

2

)
− e1n+ f2
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where f2 < e2? In other words, if I is an e1-ideal, does it follow that the

constant term e2(I) of the Hilbert polynomial of I is 0?

It follows from [Sh1, Theorem 4] that if I is an M -primary ideal in a

2-dimensional Cohen–Macaulay local ring (R,M), then all the powers of I

are e1-ideals iff G(I) is unmixed. It is shown in [H1, Theorem 2.1] that if I

has reduction number one, then e2 = 0; and it is observed in several places

that if I is an M -primary ideal in a 2-dimensional regular local ring (R,M),

then I has reduction number at most one iff the associated graded ring

G(I) is Cohen–Macaulay, or equivalently iff the Rees algebra R[It] is Cohen–

Macaulay [HM, Propostion 2.6], [JV, Theorem 4.1], [Sh2, Corollary 4(f)]. So

the question of whether an M -primary ideal I in a 2-dimensional regular

local ring (R,M) can have the property that all its powers are e1-ideals and

also have e2(I) > 0 is equivalent to asking whether there can exist such an

I for which G(I) is unmixed and not Cohen–Macaulay.

6. The Ratliff–Rush concept for modules. We close with some com-

ments about possible extensions of the Ratliff–Rush construction to modules.

If E is a module over a commutative ring R, then to each ideal I of R one

can associate the submodule of E,

ĨE =

∞⋃
n=1

(In+1E : In) = { a ∈ E : Ina ⊆ In+1E for some n }.

If E = R and I is a regular ideal in R, then the definition reduces to that of

the usual Ratliff–Rush ideal associated to I in R. In general, we have that

ĨE is a submodule of E and IE ⊆ ĨE . Perhaps with certain hypotheses on E

and I, it might be of interest to consider those ideals I of R that are Ratliff–

Rush with respect to E, where I is tentatively defined to be Ratliff–Rush

with respect to E if IE = ĨE .



12

Assume that R is a Noetherian ring and E is a finitely generated R-

module. In considering the Ratliff–Rush concept on E, there are some natu-

ral connections that can be made with the graded ring G(I) = R/I⊕ I/I2⊕
. . . and the graded G(I)-module

G(I)⊗E = E/IE ⊕ IE/I2E ⊕ I2E/I3E ⊕ . . . .

For example, an element a ∈ E − IE is in ĨE iff the image a∗ of a in E/IE

is annihilated by some power of G(I)+. Thus, IE = ĨE iff there fails to

exist such an element a in E − IE. Moreover, in analogy with the material

in Section 2, if IE = ĨE , then I2E is properly contained in Ĩ2
E iff there

exists a ∈ IE − I2E such that a∗ in IE/I2E is annihilated by some power

of G(I)+, and in general one has:

Fact 9. There exists an element in G(I)+ that is a nonzerodivisor on the

module G(I)⊗E iff InE = ĨnE for all positive integers n (i.e., all the powers

of I are Ratliff–Rush with respect to E).

Question. What conditions ensure that all suitably high powers of I are

Ratliff–Rush with respect to E

BIBLIOGRAPHY

[HLS] William Heinzer, David Lantz, and Kishor Shah, “The Ratliff–

Rush ideals in a Noetherian Ring”, Comm. in Algebra 20(2), 1992, 591–622.

[HJLS] William Heinzer, Bernard Johnston, David Lantz, and Kishor

Shah, “Coefficient ideals in and blowups of a commutative Noetherian do-

main”, J. Algebra, to appear.



13

[HM] Sam Huckaba and Tom Marley, “Depth properties of Rees algebras

and associated graded rings”, preprint.

[H1] Craig Huneke, “Hilbert Functions and symbolic powers”, Michigan

J. Math. 35, 1987, 293–318.

[H2] Craig Huneke, “Complete ideals in two-dimensional regular local

rings”, in Commutative Algebra: Proceedings of a Microprogram Held June 15–

July 2, 1987, Springer-Verlag, New York, 1989.

[JV] Bernard Johnston and Jugal Verma, “On the length formula of

Hoskin and Deligne and associated graded rings of two-dimensional regu-

lar local rings”, Proc. Camb. Phil. Soc., to appear.

[L] Joseph Lipman,“Stable ideals and Arf rings”, Amer. J. Math., 93,

1971, 649–685.

[Mc] Stephen McAdam, “Asymptotic Prime Divisors”, Lecture Notes in

Mathematics (Volume 1023), Springer-Verlag, New York, 1983.

[Nr] M. Narita, “A note on the coefficients of Hilbert characteristic func-

tions in semi-regular local rings”, Proc. Camb. Phil. Soc., 59, 1963, 269–275.

[NR] D. G. Northcott and D. Rees, “Reductions of ideals in local rings”,

Proc. Cambridge Philos. Soc., 50, 1954, 145–158.

[R] David Rush, “Rings with two-generated ideals”, J. Pure Appl. Alg.

73, 1991, 257–275.

[RR] L. J. Ratliff, Jr., and David E. Rush, “Two notes on reductions of

ideals”, Indiana Univ. Math. J., 27, 1978, 929–934.

[Sy1] Judith Sally, “Hilbert coefficients and reduction number 2”, J. Alg.

Geom. and Sing., to appear.

[Sy2] Judith Sally, “Ideals whose Hilbert function and Hilbert polynomial

agree at n = 1”, preprint.



14

[SV1] J. Sally and W. Vasconcelos, “Stable rings and a problem of Bass”,

Bull. Amer. Math. Soc., 79, 1973, 574–576.

[SV2] J. Sally and W. Vasconcelos, “Stable rings”, J. Pure Appl. Algebra,

4, 1974, 319–336.

[Sh1] Kishor Shah, “Coefficient ideals”, Trans. Amer. Math. Soc., 327,

1991, 373–384.

[Sh2] Kishor Shah, “On the Cohen-Macaulayness of the fiber cone of an

ideal”, J. Algebra, 143, 1991, 156–172.

[V] G. Valla, “On form rings which are Cohen–Macaulay”, J. Algebra, 58,

1979, 247–250.


