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Abstract. Let (R,m) be a Cohen-Macaulay local ring and let F = {Fi}i∈Z

be an F1-good filtration of ideals in R. If F1 is m-primary we obtain sufficient
conditions in order that the associated graded ring G(F) be Cohen-Macaulay. In
the case where R is Gorenstein, we use the Cohen-Macaulay result to establish
necessary and sufficient conditions for G(F) to be Gorenstein. We apply this
result to the integral closure filtration F associated to a monomial parameter
ideal of a polynomial ring to give necessary and sufficient conditions for G(F)
to be Gorenstein. Let (R,m) be a Gorenstein local ring and let F1 be an ideal
with ht(F1) = g > 0. If there exists a reduction J of F with µ(J) = g and

reduction number u := rJ (F), we prove that the extended Rees algebra R
′
(F)

is quasi-Gorenstein with a-invariant b if and only if Jn : Fu = Fn+b−u+g−1 for
every n ∈ Z. Furthermore, if G(F) is Cohen-Macaulay, then the maximal degree
of a homogeneous minimal generator of the canonical module ωG(F) is at most

g and that of the canonical module ωR
′
(F) is at most g − 1; moreover, R

′
(F) is

Gorenstein if and only if Ju : Fu = Fu. We illustrate with various examples cases
where G(F) is or is not Gorenstein.

1. Introduction

All rings we consider are assumed to be commutative with an identity element.

A filtration F = {Fi}i∈N on a ring R is a descending chain R = F0 ⊃ F1 ⊃ F2 ⊃ · · ·
of ideals such that FiFj ⊆ Fi+j for all i, j ∈ N. It is sometimes convenient to extend

the filtration by defining Fi = R for all integers i ≤ 0.

Let t be an indeterminate over R. Then for each filtration F of ideals in R, several

graded rings naturally associated to F are :

(1) The Rees algebra R(F) =
⊕

i≥0 Fit
i ⊆ R[t],

(2) The extended Rees algebra R
′
(F) =

⊕
i∈Z

Fit
i ⊆ R[t, t−1],

(3) The associated graded ring G(F) = R
′
(F)

(t−1)R′ (F)
=

⊕
i≥0

Fi
Fi+1

.
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If F is an I-adic filtration, that is, F = {Ii}i∈Z for some ideal I in R, we denote

R(F), R
′
(F), and G(F) by R(I), R

′
(I), and G(I), respectively.

In this paper we examine the Cohen-Macaulay and Gorenstein properties of

graded rings associated to filtrations F of ideals. We establish

(1) sufficient conditions for G(F) to be Cohen-Macaulay,

(2) necessary and sufficient conditions for G(F) to be Gorenstein, and

(3) necessary and sufficient conditions for R
′
(F) to be quasi-Gorenstein.

These results extend those given in [HKU] in the case where F is an ideal-adic

filtration.

Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let F = {Fi}i∈Z

be an F1-good filtration, where F1 is m-primary. Assume that J is a reduction of F
with µ(J) = d and let u := rJ(F) denote the reduction number of F with respect to

J . In Theorem 3.12, we prove that G(F ) is Cohen-Macaulay, if J : Fu−i = J + Fi+1

for all i with 0 ≤ i ≤ u− 1. If R is Gorenstein, we prove in Theorem 4.3 that G(F )

is Gorenstein ⇐⇒ J : Fu−i = J + Fi+1 for 0 ≤ i ≤ u− 1 ⇐⇒ J : Fu−i = J + Fi+1

for 0 ≤ i ≤ bu−1
2 c. If R is regular with d ≥ 2 and G(F) is Cohen-Macaulay, we prove

in Theorem 4.7 that G(F /J) has a nonzero socle element of degree ≤ d − 2. We

deduce in Corollary 4.9 that if G(F) is Gorenstein and Fi+1 ⊆ mFi for all i ≥ d−1,

then rJ(F) ≤ d − 2.

Let J be a monomial parameter ideal of a polynomial ring R = k[x1, . . . , xd] over

a field k. In Section 5 we consider the integral closure filtration F := {Jn}n≥0

associated to J . If J = (xa1
1 , . . . , xad

d )R and L is the least common multiple of

a1, . . . , ad, Theorem 5.6 states that G(F ) is Gorenstein if and only if
∑d

i=1
L
ai

≡ 1

mod L. Corollary 5.7 asserts that the following three conditions are equivalent:

(i)
∑d

i=1
L
ai

= L + 1, (ii) G(F) is Gorenstein and rJ(F) = d − 2, (iii) the Rees

algebra R(F) is Gorenstein. Example 5.13 demonstrates the existence of monomial

parameter ideals for which the associated integral closure filtration E is such that

G(E) and R(E) are Gorenstein and E is not an ideal-adic filtration.

In Section 6 we consider a d-dimensional Gorenstein local ring (R,m) and an

F1-good filtration F = {Fi}i∈Z of ideals in R, where ht(F1) = g > 0. Assume there

exists a reduction J of F with µ(J) = g and reduction number u := rJ(F). In

Theorem 6.1, we prove that the extended Rees algebra R
′
(F) is quasi-Gorenstein

with a-invariant b if and only if (Jn : Fu) = Fn+b−u+g−1 for every n ∈ Z. If

G(F) is Cohen-Macaulay, we prove in Theorem 6.2 that the maximal degree of a
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homogeneous minimal generator of the canonical module ωG(F) is at most g and

that of the canonical module ωR
′
(F) is at most g− 1. With the same hypothesis, we

prove in Theorem 6.3 that R
′
(F) is Gorenstein if and only if Ju : Fu = Fu.

In Section 7 we present and compare properties of various filtrations.

2. Preliminaries

Definition 2.1. Let F = {Fi}i∈Z be a filtration of ideals in R and let I be an ideal

of R.

(1) The filtration F is called Noetherian if the Rees ring R(F) is Noetherian.

(2) The filtration F is called an I-good filtration if IFi ⊆ Fi+1 for all i ∈ Z and

Fn+1 = IFn for all n >> 0. The filtration F is called a good filtration if it is

an I-good filtration for some ideal I in R.

(3) A reduction of a filtration F is an ideal J ⊆ F1 such that JFn = Fn+1 for

all large n. A minimal reduction of F is a reduction of F minimal with

respect to inclusion.

(4) If J ⊆ F1 is a reduction of F , then

rJ(F) = min{r | Fn+1 = JFn for all n ≥ r}

is the reduction number of F with respect to J .

(5) If L is an ideal of R, then F /L denotes the filtration {(Fi + L)/L}i∈Z on

R/L. The filtration F /L is Noetherian, resp. good, if F is Noetherian, resp.

good.

Remark 2.2. If the filtration F is Noetherian, then R is Noetherian and R′(F) is

finitely generated over R [BH, Propositon 4.5.3]. Moreover, dim R′(F) = dim R + 1

and dim G(F) ≤ dim R, with dim G(F) = dim R if F1 is contained in all the maximal

ideals of R [BH, Theorem 4.5.6]. Furthermore, one has dimR(F) = dim R + 1, if

F1 is not contained in any minimal prime ideal p in R with dim(R/p) = dim(R)

(cf. [Va]). Assume the ring R is Noetherian, then the filtration F = {Fi}i∈Z is a

good filtration ⇐⇒ it is an F1-good filtration, and F is an F1-good filtration ⇐⇒
there exists an integer k such that Fn ⊆ (F1)n−k for all n ⇐⇒ the Rees algebra

R(F) is a finite R(F1)-module [B, Theorem III.3.1.1 and Corollary III.3.1.4].

If F = {Fi}i∈Z is a filtration on R, then we have

R(F1) =
⊕
n≥0

Fn
1 tn ⊆ R(F) =

⊕
n≥0

Fntn ⊆ R[t].



4 WILLIAM HEINZER, MEE-KYOUNG KIM, AND BERND ULRICH

If R is Noetherian and F = {Fi}i∈Z is an F1-good filtration, then R(F) is a finite

R(F1)-module, and hence R(F) is integral over R(F1). Thus, in this case, we have

Fn
1 ⊆ Fn ⊆ Fn

1 , for all n ≥ 0, where Fn
1 denotes the integral closure of Fn

1 . Notice

also that if F is an F1-good filtration, then J is a reduction of F ⇐⇒ J is a

reduction of F1.

The proof of Remark 2.3 is straightforward using the definition of an F1-good

filtration.

Remark 2.3. Let (R,m) be a Noetherian local ring and let F = {Fi}i∈Z be a

F1-good filtration of R. Set

R(F)+ =
⊕
i≥1

Fit
i,

R(F)+(1) =
⊕
i≥0

Fi+1t
i,

G(F)+ =
⊕
i≥1

Gi, where Gi = Fi/Fi+1 i ≥ 0.

Then we have the following:

(1)
√

F1 · R(F) =
√

R(F)+(1).

(2)
√

Fiti · R(F) =
√

R(F)+ for each i ≥ 1.

(3)
√

Gi · G(F) =
√

G(F)+ for each i ≥ 1.

(4) (G(F)+)n ⊆ ⊕
i≥n Gi = Gn · G(F) for all n >> 0.

We use Lemma 2.4 in Section 6.

Lemma 2.4. Let (R,m) be a Noetherian local ring and let F = {Fi}i∈Z be an

F1-good filtration of ideals in R. Let G := G(F) =
⊕

i≥0 Fi/Fi+1 =
⊕

i≥0 Gi and

G+ :=
⊕

i≥1 Fi/Fi+1. If gradeG+ ≥ 1, then for each integer n ≥ 1 we have:

(1) Fn+i : Fi = Fn for all i ≥ 1.

(2) Fn = ∩j≥1(Fn+j : Fj) = ∪j≥1(Fn+j : Fj).

Proof. (1) For a fixed i ≥ 1 we have Gm
+ ⊆ GiG for some m >> 0 by Remark 2.3.

Therefore gradeGiG ≥ 1. It is clear that Fn ⊆ Fn+i : Fi. Assume there exists

b ∈ (Fn+i : Fi) \ Fn. Then b ∈ Fj \ Fj+1 for some j with 0 ≤ j ≤ n − 1, and

0 6= b∗ = b + Fj+1 ∈ Fj/Fj+1 = Gj . Since b ∈ (Fn+i : Fi), we have b∗Gi = 0, and so

b∗GiG = 0. This is a contradiction.

(2) Item (2) is immediate from item (1). �
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The I-adic filtration F = {Ii}i∈Z is an I-good filtration. We describe in Exam-

ples 2.5 and 2.6 other examples of good filtrations.

Example 2.5. Let I be a proper ideal of a Noetherian ring R. If I contains a non-

zero-divisor, then Ratliff and Rush consider in [RR] the following ideal associated

to I :

Ĩ =
⋃
i≥1

(Ii+1 : Ii).

The ideal Ĩ is now called the Ratiliff-Rush ideal associated to I, or the Ratliff-

Rush closure of I. It is characterized as the largest ideal having the property that

(Ĩ)n = In for all sufficiently large positive integers n. Moreover, for each positive

integer s

Ĩs =
⋃
i≥1

(Ii+s : Ii),

and there exists a positive integer n such that Ĩk = Ik for all integers k ≥ n [RR,

(2.3.2)]. Consequently, F = {Ĩi}i∈N is a Noetherian I-good filtration.

Example 2.6. Let (R,m) be a Noetherian local ring with dim R = d and let I be

an m-primary ideal. The function HI(n) = λ(R/In) is called the Hilbert-Samuel

function of I. For sufficiently large values of n, λ(R/In) is a polynomial PI(n) in n

of degree d, the Hilbert-Samuel polynomial of I. We write this polynomial in terms

of binomial coefficients:

PI(n) = e0(I)
(

n + d − 1
d

)
− e1(I)

(
n + d − 2

d − 1

)
+ · · · + (−1)ded(I).

The coefficients ei(I) are integers and are called the Hilbert coefficients of I. In

particular, the leading coefficient e0(I) is a positive integer called the multiplicity

of I.

As was first shown by Shah in [Sh], if (R,m) is formally equidimensional of

dimension d > 0 with |R/m | = ∞, then for each integer k in {0, 1, . . . , d} there

exists a unique largest ideal I{k} containing I and contained in the integral closure

I such that

ei(I{k}) = ei(I) for i = 0, 1, . . . , k.

We then have the chain of ideals

(1) I = I{d+1} ⊆ I{d} ⊆ · · · ⊆ I{1} ⊆ I{0} = I.
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The ideal I{k} is called the kth coefficient ideal of I, or the ek-ideal associated to I.

The ideal I{0} is the integral closure I of I, and if I contains a regular element, then

I{d} is the Ratliff-Rush closure of I.

Associated to I and the chain of coefficient ideals given in (1), we have a chain of

filtrations

(2) Fd+1 ⊆ Fd ⊆ · · · ⊆ F1 ⊆ F0,

where the filtration Fk :=
{
(In){k}

}
n∈Z

, for each k such that 0 ≤ k ≤ d+1. In par-

ticular, Fd+1 = {In}n∈Z is the I-adic filtration, and F0 = {In}n∈Z is the filtration

given by the integral closures of the powers of I. If I contains a non-zero-divisor,

then Fd = {Ĩn}n∈Z is the filtration given by the Ratliff-Rush ideals associated to

the powers of I. The filtration F1 =
{
(In){1}

}
n∈Z

is called the e1-closure filtration.

In this connection, see also [C1], [C2] and [CPV]. If R is also assumed to be ana-

lytically unramified, then each of the filtrations Fk :=
{
(In){k}

}
n∈Z

is an I-good

filtration. This follows because the integral closure of the Rees ring R(I) = R[It] in

the polynomial ring R[t] is the graded ring
⊕

n≥0 Intn, and a well-known result of

Rees [R], [SH, Theorem 9.1.2] implies that
⊕

n≥0 Intn is a finite R(I)-module. Thus

{In}n∈Z is a Noetherian I-good filtration. Moreover, if R is analytically unramified

and contains a field and if (In)∗ denotes the tight closure of In, then F =
{
(In)∗

}
n∈Z

is an I-good filtration.

3. The Cohen-Macaulay property for G(F)

Let (R,m) be a Noetherian local ring and let F = {Fi}i∈Z be a Noetherian

filtration on R. For an element x ∈ F1, let x∗ denote the image of x in G(F)1 =

F1/F2. The element x is called superficial for F if there exists a positive integer

c such that (Fn+1 : x) ∩ Fc = Fn for all n ≥ c. In terms of the associated graded

ring G(F), the element x is superficial for F if and only if the n-th homogeneous

component [0 :G(F) x∗]n of the annihilator of x∗ in G(F) is zero for all n >> 0. If

grade F1 ≥ 1 and x is superficial for F , then x is a regular element of R. For if

u ∈ R and ux = 0, then (F1)cu ⊆ ⋂
n(Fn+1 : x) ∩ Fc =

⋂
n Fn = 0. Since F is a

Noetherian filtration, it follows that u = 0. A sequence x1, . . . , xk of elements of F1

is called a superficial sequence for F if x1 is superficial for F , and xi is superficial

for F /(x1, . . . , xi−1) for 2 ≤ i ≤ k.

The following well-known fact is useful in working with filtrations.
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Fact 3.1. If x∗ is a regular element of G(F), then x is a regular element of R and

G( F
(x))

∼= G(F)/(x∗).

We record in Proposition 3.2 a result of Huckaba and Marley that involves what

is now called Sally’s machine, cf. [RV, Lemma 1.8].

Proposition 3.2. ([HM, Lemma 2.1 and Lemma 2.2]) Let (R,m) be a Noetherian

local ring, let F = {Fi}i∈Z be a Noetherian filtration on R, and let x1, . . . , xk be a

superficial sequence for F . Then the following assertions are true:

(1) If grade
(
G(F )+

) ≥ k, then x∗
1, . . . , x

∗
k is a G(F)-regular sequence.

(2) If grade
(
G

( F
x1,...,xk

)
+

) ≥ 1, then grade
(
G(F )+

) ≥ k + 1.

The following result of Huckaba and Marley generalizes to filtrations a result of

Valabrega and Valla [VV, Corollary 2.7].

Proposition 3.3. ([HM, Proposition 3.5]) Let (R,m) be a Noetherian local ring,

let F = {Fi}i∈Z be a Noetherian filtration on R, and let x1, · · · , xk be elements of

F1. The following two conditions are equivalent:

(1) x∗
1, . . . , x

∗
k is a G(F)-regular sequence.

(2) (i) x1, . . . , xk is an R-regular sequence, and

(ii) (x1, . . . , xk)R ∩ Fi = (x1, . . . , xk)Fi−1 for all i ≥ 1.

Remark 3.4. Let (R,m) be a Noetherian local ring and let F = {Fi}i∈Z be a

filtration on R. If there exists a reduction J of F such that JFn = Fn+1 for all

n ≥ 1, then Fn = Fn
1 for all n, that is, F is the F1-adic filtration.

Proof. For every n ≥ 2 we have Fn = JFn−1 = J2Fn−2 = · · · = Jn−1F1 ⊆ Fn
1 . �

Corollary 3.5. Let (R,m) be a Cohen-Macaulay local ring and let F = {Fi}i∈Z be

an F1-good filtration on R, where F1 is m-primary. If there exists a reduction J of

F with µ(J) = dim R and JFn = Fn+1 for all n ≥ 1, then the associated graded ring

G(F) is Cohen-Macaulay.

Proof. Remark 3.4 implies that F is the F1-adic filtration. Hence G(F ) is Cohen-

Macaulay by [S1, Theorem 2.2] or [VV, Proposition 3.1]. �

Proposition 3.6 is a result proved by D.Q. Viet([Vi, Corollary 2.1]). It generalizes

to filtrations a result of Trung and Ikeda ([TI, Theorem 1.1]), and is in the nature

of the well-known result of Goto-Shimoda ([GS]).
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Let a(G(F )) = max{n | [Hd
M(G(F ))]n 6= 0} denote the a-invariant of G(F) ([GW,

(3.1.4)]), where M is the maximal homogeneous ideal of R(F) and Hi
M(G(F )) is the

i-th graded local cohomology module of G(F ) with respect to M.

Proposition 3.6. ([Vi, Corollary 2.1]) Let (R,m) be a d-dimensional Cohen-

Macaulay local ring and let F = {Fi}i∈Z be an F1-good filtration on R, where F1 is

m-primary. Then the following conditions are equivalent:

(1) R(F) is Cohen-Macaulay.

(2) G(F) is Cohen-Macaulay with a(G(F )) < 0.

Remark 3.7. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let

F = {Fi}i∈Z be an F1-good filtration on R, where F1 is m-primary. Assume

that there exists a reduction J of F with µ(J) = d. If R(F) is Cohen-Macaulay,

then Proposition 3.6 implies that a(G(F )) < 0. Since rJ(F) = r(0)(F /J) =

a(G(F /J)) = a(G(F )) + d, it follows that rJ(F) < d.

Proposition 3.8. Let (R,m) be a d-dimensional regular local ring and let F =

{Fi}i∈Z be an F1-good filtration on R, where F1 is m-primary. Assume there exists

a reduction J of F with µ(J) = d. If G(F ) is Cohen-Macaulay, then rJ(F) < d.

Proof. We have R(F1) = ⊕n≥0F
n
1 tn ⊆ R(F) = ⊕n≥0Fntn ⊆ R[t]. Since F = {Fi}i∈Z

is an F1-good filtration, R(F) is a finite R(F1)-module, and thus R(F) is integral

over R(F1). Hence we have Fn
1 ⊆ Fn ⊆ Fn

1 , for all n ≥ 0. Since J is a minimal

reduction of F1, it follows that Fn
1 ⊆ J , for every n ≥ d by the Briançon-Skoda

theorem ([LS, Theorem 1]). Therefore we have Fn = Fn∩J for n ≥ d. Since G(F) is

Cohen-Macaulay, Proposition 3.3 shows that Fn ∩J = JFn−1. Thus rJ(F) < d. �

Remark 3.9. Let (R,m) be a 2-dimensional Cohen-Macaulay local ring and let

F = {Fi}i∈Z be an F1-good filtration on R, where F1 is m-primary.

(1) If R(F) is Cohen-Macaulay, then Remark 3.7 and Remark 3.4 imply that

F = {Fi}i∈Z is the F1-adic filtration.

(2) If R is also regular and G(F ) is Cohen-Macaulay, then Proposition 3.8 and

Remark 3.4 imply that F = {Fi}i∈Z is the F1-adic filtration.

Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let F = {Fi}i∈Z be

an F1-good filtration on R, where F1 is m-primary. Assume that J is a reduction of

F with µ(J) = d and let rJ(F) = u denote the reduction number of F with respect
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to J . We determine sufficient conditions for G(F) to be Cohen-Macaulay involving

the reduction number u and residuation with respect to J . The dimension one case

plays a crucial role, so we consider this case first.

Theorem 3.10. Let (R,m) be a one-dimensional Cohen-Macaulay local ring and

let F = {Fi}i∈Z be an F1-good filtration, where F1 is m-primary. Assume there

exists a reduction J = xR of F with reduction number rJ(F) = u such that

J : Fu−i = J + Fi+1 for all i with 0 ≤ i ≤ u − 1.

Then the following two assertions are true :

(1) Fu : Fu−i = Fi for 1 ≤ i ≤ u, and

(2) G(F) is a Cohen-Macaulay ring.

Proof. Notice that JjFu = Fj+u = FjFu for all j ≥ 0. (*)

To establish item (1), we first prove the following claim.

Claim 3.11. Fi ⊆ Fu : Fu−i ⊆ J + Fi for 1 ≤ i ≤ u.

Proof of Claim. For 1 ≤ i ≤ u, we have

Fi ⊆ Fu : Fu−i ⊆ FuFu : Fu−iFu

= JuFu : Ju−iFu by (∗)
= J iFu : Fu since J = (x) with x a regular element

⊆ J i : Fu

= (J i+1 : J) : Fu since J = (x) with x regular

= J i+1 : JFu

= J i+1 : Fu+1

⊆ J i+1 : J iFu−(i−1) since J iFu−(i−1) ⊆ Fu+1

= J : Fu−(i−1) since J = (x) with x regular

= J + Fi by assumption.

This establishes Claim 3.11.
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For the proof of (1), we use induction on i. If i = 1, the assertion is clear in view

of Claim 3.11. Assume that i ≥ 2. Then we have

Fu : Fu−i = (J + Fi) ∩ (Fu : Fu−i) by Claim 3.11

= [J ∩ (Fu : Fu−i)] + [Fi ∩ (Fu : Fu−i)] since Fi ⊆ Fu : Fu−i

= J((Fu : Fu−i) : J) + Fi since J = (x) and Fi ⊆ Fu : Fu−i

= J(Fu : JFu−i) + Fi

⊆ J(FuFu : JFu−iFu) + Fi

= J(JuFu : Fu+u+1−i) + Fi by (∗)
⊆ J(JuFu : JuFu−(i−1)) + Fi since JuFu−(i−1) ⊆ Fu+u+1−i

= J(Fu : Fu−(i−1)) + Fi since J = (x)

= JFi−1 + Fi by the induction hypothesis

= Fi.

This establishes item (1).

For item (2), we show that J ∩ Fi = JFi−1 for 1 ≤ i ≤ u. It is clear that

J ∩ Fi ⊇ JFi−1. We prove that J ∩ Fi ⊆ JFi−1. For 1 ≤ i ≤ u, we have

J ∩ Fi = J(Fi : J) since J = (x) with x regular

⊆ J(FiFu : JFu)

= J(J iFu : JFu) by (∗)
⊆ J(J iFu : J iFu−(i−1)) since J iFu−(i−1) ⊆ JFu

= J(Fu : Fu−(i−1)) since J = (x) with x regular

= JFi−1 by item (1).

By Proposition 3.3, G(F) is Cohen-Macaulay. �

Theorem 3.12 is the main result of this section.

Theorem 3.12. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let

F = {Fi}i∈Z be an F1-good filtration, where F1 is m-primary. Assume that J is a

reduction of F with µ(J) = d, and let u := rJ(F) denote the reduction number of F
with respect to J . If

J : Fu−i = J + Fi+1 for all i with 0 ≤ i ≤ u − 1,

then the associated graded ring G(F) is Cohen-Macaulay.
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Proof. We may assume that R/m is infinite. There is nothing to prove if d = 0.

If d = 1, then G(F) is Cohen-Macaulay by Theorem 3.10. Assume that d ≥ 2.

There exists elements x1, . . . , xd that form a minimal generating set for J and a

superficial sequence for F . Set R := R/(x1, . . . , xd−1), m := m /(x1, . . . , xd−1), and

F := F /(x1, . . . , xd−1) = {Fi}i∈Z where Fi = FiR for all i ∈ Z. Then (R,m) is a

1-dimensional Cohen-Macaulay local ring and F = {Fi}i∈Z is an F1-good filtration,

where F1 is m-primary. Since J is a minimal reduction of F with u := rJ(F),

J · Fn = Fn+1 for all n ≥ u, and hence J = (xd) is a minimal reduction of F and

u := rJ̄(F) ≤ u. Finally, we need to check that J : Fu−i = J +Fi+1 for 0 ≤ i ≤ u−1.

Since u ≤ u, we have

J : Fu−i ⊆ J : Fu−i ⊆ J : Fu−i = J + Fi+1 = J + Fi+1.

The other inclusion is shown as follows:

(J + Fi+1) · Fu−i = J · Fu−i + Fi+1 · Fu−i ⊆ J · Fu−i + Fu+1 ⊆ J,

and hence J + Fi+1 ⊆ J : Fu−i. By Theorem 3.10, G(F) is Cohen-Macaulay. Since

dim(G(F)) = 1, we have grade
(
G( F

(x1,··· ,xd−1)
)+

)
= 1, and thus by Proposition 3.2

(2), grade(G(F )+) = d. Therefore G(F) is Cohen-Macaulay. �

Remark 3.13. The sufficient conditions given in Theorem 3.12 in order that G(F )

be Cohen-Macaulay are not necessary conditions. For example, with R = k[[t5, t6, t9]]

and m = (t5, t6, t9)R as in [HKU, Example 3.6], then G(m) is Cohen-Macaulay and

the ideal J = t5R is a minimal reduction of m with reduction number rJ(m) = 3.

However, t9 ∈ (J : m2) \ J + m2.

4. The Gorenstein property for G(F)

In this section, we give a necessary and sufficient condition for G(F) to be Goren-

stein. We first state this in dimension zero. Among the equivalences in Theorem

4.2, the equivalence of (1) and (3) are due to Goto and Iai [GI, Proposition, 2.4].

We include elementary direct arguments in the proof. We use the floor function bxc
to denote the largest integer that is less than or equal to x.

Lemma 4.1. Let (R,m) be a zero-dimensional Gorenstein local ring and let F =

{Fi}i∈Z be an F1-good filtration. Assume that Fu 6= 0 and Fu+1 = 0, that is, u =

r(0)(F). Let G := G(F) =
⊕u

i=0 Fi/Fi+1 =
⊕u

i=0 Gi and let S := Soc(G) =
⊕u

i=0 Si

denote the socle of G. Then the following hold:
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(1) Si = Fi∩(Fi+1:m)∩(Fi+2:F1)∩···∩(Fi+u+1:Fu)
Fi+1

for 0 ≤ i ≤ u.

(2) Su = (0 : m) ∩ Fu.

(3) Su
∼= R/m.

Proof. (1): We may assume that u > 0. Let k := R/m and write M := m /F1
⊕

G+

for the unique maximal homogeneous ideal of G. For 0 ≤ i ≤ u we have
Si = 0 :Gi M

= (0 :Fi/Fi+1
m /F1) ∩ (0 :Fi/Fi+1

F1/F2) ∩ · · · ∩ (0 :Fi/Fi+1
Fu/Fu+1)

=
Fi

Fi+1
∩ (Fi+1 : m)

Fi+1
∩ (Fi+2 : F1)

Fi+1
∩ · · · ∩ (Fi+u+1 : Fu)

Fi+1
.

(2): Su = Fu∩ (0 : m), because Fu+i = 0 for i ≥ 1 and 0 : m ⊆ 0 : F1 ⊆ · · · ⊆ 0 : Fu.

(3): Since Su = 0 :Fu m ⊆ 0 :Fu F1 = Fu 6= 0 and (R,m) is a zero-dimensional

Gorenstein local ring, we have Su
∼= k. �

Theorem 4.2. Let (R,m) be a zero-dimensional Gorenstein local ring and let F =

{Fi}i∈Z be an F1-good filtration. Assume that Fu 6= 0 and Fu+1 = 0, that is, u =

r(0)(F). Let G := G(F) =
⊕u

i=0 Fi/Fi+1 =
⊕u

i=0 Gi and let S := Soc(G) =
⊕u

i=0 Si

denote the socle of G. The following are equivalent:

(1) G(F) is Gorenstein.

(2) Si = 0 for 0 ≤ i ≤ u − 1.

(3) 0 : Fu−i = Fi+1 for 0 ≤ i ≤ u − 1.

(4) 0 : Fu−i = Fi+1 for 0 ≤ i ≤ bu−1
2 c.

(5) λ(Gi) = λ(Gu−i) for 0 ≤ i ≤ bu−1
2 c.

Proof. (1) ⇐⇒ (2): G(F ) is Gorenstein if and only if dimk S = 1 if and only if

Si = 0 for 0 ≤ i ≤ u − i, by Lemma 4.1.(3).

(2) =⇒ (3): Suppose that Si = 0 for 0 ≤ i ≤ u − 1. Then S = Su
∼= k, by Lemma

4.1.(3). Hence there exists 0 6= s∗ ∈ Su such that S = s∗k. Let 0 ≤ i ≤ u − 1. The

containment ” ⊇ ” is clear, because Fu+1 = 0. To see the other containment, we

assume that 0 : Fu−j * Fj+1 for some j with 0 ≤ j ≤ u−1. In this case there exists

an element β ∈ 0 : Fu−j , but β /∈ Fj+1, and hence we can choose an integer υ with

0 ≤ υ ≤ j such that β ∈ Fυ \Fυ+1. Hence 0 6= β∗ = β + Fυ+1 ∈ Fυ/Fυ+1. Since the

graded ring G is an essential extension of Soc(G), we have β∗G∩ Soc(G) 6= 0. Then

there exists a non-zero element ξ such that ξ ∈ β∗G ∩ Soc(G). Since S = Su = s∗k,

we can express s∗ = β∗ω∗ = βω + Fu+1, for some ω ∈ Fu−υ. Then βω 6= 0, because

s∗ 6= 0. This is impossible, because β ∈ 0 : Fu−j and ω ∈ Fu−υ ⊆ Fu−j , as υ ≤ j.
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(3) =⇒ (4): This is clear.

(4) =⇒ (5): For 0 ≤ i ≤ bu−1
2 c, we have

λ(Gu−i) = λ(Fu−i/Fu−i+1)

= λ(R/Fu−i+1) − λ(R/Fu−i)

= λ(0 : Fu−i+1) − λ(0 : Fu−i) by [BH, Proposition 3.2.12]

= λ(Fi) − λ(Fi+1) by condition (4)

= λ(Fi/Fi+1) = λ(Gi).

(5) =⇒ (3): For 0 ≤ i ≤ u − 1, we have

λ(Fi+1) = λ(Fi+1/Fu+1) since Fu+1 = 0

= λ(Gi+1) + λ(Gi+2) + · · · + λ(Gu)

= λ(Gu−(i+1)) + λ(Gu−(i+2)) + · · · + λ(Gu−u) by condition (5)

= λ(R/Fu−i) = λ(0 : Fu−i) by [BH, Proposition 3.2.12].

Since Fu+1 = 0, we have Fi+1 ⊆ 0 : Fu−i for 0 ≤ i ≤ u − 1. We conclude that

Fi+1 = 0 : Fu−i, because these two ideals have the same length.

(3) =⇒ (2): Let 0 ≤ i ≤ u − 1. By Lemma 4.1.(1), we have

Si =
Fi ∩ (Fi+1 : m) ∩ (Fi+2 : F1) ∩ · · · ∩ (Fu : Fu−(i+1)) ∩ (Fu+1 : Fu−i) ∩ · · · ∩ (Fi+u+1 : Fu)

Fi+1

⊆ Fu+1 : Fu−i

Fi+1

=
0 : Fu−i

Fi+1
since Fu+1 = 0

=
Fi+1

Fi+1
by condition (3).

Hence Si = 0 for 0 ≤ i ≤ u − 1. �

Theorem 4.3. Let (R,m) be a d-dimensional Gorenstein local ring and let F =

{Fi}i∈Z be an F1-good filtration, where F1 is m-primary. Assume there exists a

minimal reduction J of F such that µ(J) = d, and let u := rJ(F) denote the

reduction number of F with respect to J . The following are equivalent:

(1) G(F) is Gorenstein.

(2) J : Fu−i = J + Fi+1 for 0 ≤ i ≤ u − 1.

(3) J : Fu−i = J + Fi+1 for 0 ≤ i ≤ bu−1
2 c.

Proof. The equivalence of items (2) and (3) follows from the double annihilator

property in the zero-dimensional Gorenstein local ring R/J , see, for example [BH,
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(3.2.15), p.107]. To prove the equivalence of (1) and (2), by Theorem 3.12, we

may assume that G(F) is Cohen-Macaulay. Choose x1, . . . , xd in F1 such that

J = (x1, . . . , xd)R and x1, . . . , xd is a superficial sequence for F . Since G(F) is

Cohen-Macaulay, the leading forms x∗
1, . . . , x

∗
d in F1/F2 are a G(F)-regular sequence

by Proposition 3.2, and hence we have the isomorphism

G(F)/(x∗
1, . . . , x

∗
d) ∼= G(F /J)

as graded R-algebras. Set R := R/J , m := m /J , and F := F /J = {Fi}i∈Z, where

Fi = FiR for all i ∈ Z. Then (R,m) is a zero-dimensional Gorenstein local ring

and F is a F1-good filtration with Fu+1 = 0 and Fu 6= 0. To show the last equality

suppose that Fu = 0. In this case Fu ⊆ J , and hence Fu = Fu ∩ J = JFu−1, as

G(F) is Cohen-Macaulay. This is impossible since u := rJ(F). Now we have

G(F ) is Gorenstein ⇐⇒ G(F) is Gorenstein

⇐⇒ 0 : Fu−i = Fi+1 for 0 ≤ i ≤ u − 1 by Theorem 4.2

⇐⇒ J : Fu−i = J + Fi+1 for 0 ≤ i ≤ u − 1.

This completes the proof of Theorem 4.3. �

The following is an immediate consequence of Theorem 4.3 for the case of reduc-

tion number two.

Corollary 4.4. Let (R,m) be a d-dimensional Gorenstein local ring and let F =

{Fi}i∈Z be an F1-good filtration, where F1 is m-primary. Assume there exists a

minimal reduction J of F such that µ(J) = d and that rJ(F) = 2. Then:

G(F) is Gorenstein ⇐⇒ J : F2 = F1.

Corollary 4.5 deals with the problem of lifting the Gorenstein property of associ-

ated graded rings. Notice we are not assuming that G(F) is Cohen-Macaulay.

Corollary 4.5. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let

F = {Fi}i∈Z be an F1-good filtration, where F1 is m-primary. Assume there exists

a minimal reduction J of F such that µ(J) = d and that Fu * J for u := rJ(F).

Set R := R/J and F := F /J = {FiR}i∈Z. If G(F ) is Gorenstein, then G(F) is

Gorenstein.

Proof. If G(F) is Gorenstein, then R is Gorenstein, and hence R is also Gorenstein,

because (R,m) is Cohen-Macaulay. The condition Fu * J implies that Fu 6= 0 and
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Fu+1 = 0. Hence rJ(F) = r(0)(F). The assertion now follows from Theorem 4.2

and Theorem 4.3. �

The following theorem is a special case of a result of Goto and Nishida that

characterizes the Gorenstein property of the Rees algebra R(F).

Theorem 4.6. (Goto and Nishida [GN]) Let (R,m) be a Gorenstein local ring

of dimension d ≥ 2 and let F = {Fi}i∈Z be an F1-good filtration, where F1 is m-

primary. Let J be a reduction of F with µ(J) = d. The following are equivalent:

(1) The Rees algebra R(F) is Gorenstein.

(2) The associated graded ring G(F) is Gorenstein and a(G(F )) = −2.

(3) The associated graded ring G(F) is Gorenstein and rJ(F) = d − 2.

In Theorem 4.7 and Corollary 4.9, we generalize to the case of filtrations results

of Herrmann-Huneke-Ribbe [HHR, Theorem 2.5]

Theorem 4.7. Let (R,m) be a regular local ring of dimension d ≥ 2 and let F =

{Fi}i∈Z be an F1-good filtration, where F1 is m-primary. Let J be a reduction of

F with µ(J) = d and rJ(F) = u. If G(F) is Cohen-Macaulay, then G(F /J) has a

nonzero homogeneous socle element of degree ≤ d − 2.

Proof. We have

(3) Fj ⊆ Fj : m ⊆ Fj : F1 = Fj−1 for all integers j,

where the last equality holds by Lemma 2.4(1) because G(F) is Cohen-Macaulay.

Since J is a reduction of F with rJ(F) = u, we have Fj ⊆ Jj−u for all j ≥ u, hence

Fj : m ⊆ Jj−u : m ⊆ Jj−u : J = Jj−u−1 ⊆ J,

whenever j ≥ u + 1. Thus there exists an integer k ≥ 1 such that

(4) Fk : m * Fk + J and Fj : m ⊆ Fj + J, for all j ≥ k + 1.

Let v ∈ (Fk : m)+J \ Fk +J , then v ∈ Fk−1 +J \ Fk +J by (3). Thus the image

v of v in R/J has the property that its leading form v∗ ∈ G(F /J) is a nonzero

element in
[
G(F /J)

]
k−1

.

Claim 4.8. : v∗ ∈ Soc
(
G(F /J)

)
.

Proof of Claim. Let α be any homogeneous element in N, where N is the unique

maximal (homogeneous) ideal of the zero-dimensional graded ring G(F /J). We
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show that α · v∗ = 0. We have two cases :

(Case i) : Assume that deg α = n ≥ 1. Write α = y + (Fn+1 + J), where y ∈ Fn.

Then we have
α · v∗ = yv + (Fn+k + J)

= 0,

since yv ∈ Fn((Fk : m)+ J) ⊆ (FnFk : m)+ J ⊆ (Fn+k : m)+ J ⊆ Fn+k + J , where

the last inequality holds by (4).

(Case ii) : Assume that deg α = 0. Then α = z + (F1 + J), where z ∈ m, and we

have
α · v∗ = zv + (Fk + J)

= 0,

where the last equality holds because v ∈ (Fk : m) + J and z ∈ m. This completes

the proof of Claim 4.8.

Since F is an F1- good filtration, we have Fn
1 ⊆ Fn ⊆ Fn

1 for all n ≥ 0, where Fn
1

denotes the integral closure of Fn
1 . Hence Fn ⊆ Fn

1 for all n ≥ 0. We have

Fd : m ⊆ Fd : md−1 ⊆ Fd : md−1 ⊆ F d
1 : md−1 ⊆ J,

where the last inclusion follows from a result of Lipman [L, Corollary 1.4.4]. Hence

we have

Fj : m ⊆ Fd : m ⊆ J for all j ≥ d.

Thus by (4), we have k ≤ d − 1. Therefore deg v∗ = k − 1 ≤ d − 2. Since v∗ ∈
Soc(G(F)) by Claim 4.8, the proof of Theorem 4.7 is complete. �

Corollary 4.9. Let (R,m) be a regular local ring of dimension d ≥ 2 and let

F = {Fi}i∈Z be an F1-good filtration, where F1 is m-primary. Let J be a reduction

of F with µ(J) = d. If Fi+1 ⊆ mFi for each i ≥ d − 1 and G(F) is Gorenstein,

then rJ(F) ≤ d − 2.

Proof. Since G(F) is Gorenstein, Proposition 3.3 shows that G(F /J) is Gorenstein,

as well. Hence Theorem 4.7 implies that [G(F /J)]i = 0 for all i ≥ d − 1. Thus for

i ≥ d − 1 we have

0 = [G(F /J)]i =
Fi + J

Fi+1 + J
∼= Fi

Fi+1 + (J ∩ Fi)
=

Fi

Fi+1 + JFi−1
,

where the last equality holds again by Proposition 3.3. Thus for all i ≥ d − 1, we

have

(5) Fi = Fi+1 + JFi−1,
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and hence by Nakayama’s Lemma, Fi = JFi−1 since Fi+1 ⊆ mFi. Therefore

rJ(F) ≤ d − 2. �

5. Integral closure filtrations of monomial parameter ideals

In this section we examine the integral closure filtration F associated to a mono-

mial parameter ideal in a polynomial ring. We use Theorem 4.3 to give necessary

and sufficient conditions in order that G(F) be Gorenstein. We demonstrate that

G(F) and even R(F) may be Gorenstein and yet F is not an ideal-adic filtration.

Setting 5.1. Let R := k[x1, . . . , xd] be a polynomial ring in d ≥ 1 variables over

the field k. Let a1, . . . , ad be positive integers and let J := (xa1
1 , . . . , xad

d )R be a

monomial parameter ideal. Let L := LCM{a1, . . . , ad} denote the least common

multiple of the integers a1, . . . , ad, and let F := {Jn}n∈Z be the integral closure

filtration associated to J . The ideal J has a unique Rees valuation v that is defined

as follows: v(xi) := L/ai for each i with 1 ≤ i ≤ d. Then for every polynomial f ∈ R

one defines v(f) to be the minimum of the v-value of a nonzero monomial occuring

in f (cf. [SH, (10.18), p. 209]). The Rees valuation v determines the integral closure

Jn of every power Jn of J . We have Jn = {f ∈ R | v(f) ≥ nL}. Each of the ideals

Jn is again a monomial ideal. Let m := (x1, . . . , xd)R denote the graded maximal

ideal of R. Notice that s := xa1−1
1 · · · xad−1

d ∈ (J : m) \ J is a socle element modulo

J . Since R is Gorenstein and J is a parameter ideal, we have (J, s)R = J : m, and

s ∈ K for each ideal K of R that properly contains J .

Remark 5.2. The filtrations F = {Jn}n≥0 of Setting 5.1 may also be described

as the integral closure filtrations associated to zero-dimensional monomial ideals

having precisely one Rees valuation [SH, Theorem 10.3.5].

Lemma 5.3. Let the notation be as in Setting 5.1. For each integer k, let Ik :=

{f ∈ R | v(f) ≥ k }. We have :

(1) Let α ∈ R be a monomial, then α 6∈ J ⇐⇒ s ∈ αR.

(2) Let K be a monomial ideal, then K ⊆ J ⇐⇒ s 6∈ K.

(3) Each Ik is a monomial ideal, and Ik ⊆ J ⇐⇒ k ≥ v(s) + 1.

(4) The reduction number rJ(F) satisfies rJ(F) = u ⇐⇒ s ∈ Ju \ Ju+1.

Proof. For item (1), let K = (J, α)R. If α 6∈ J then s ∈ K. Since K is a monomial

ideal, s is a multiple of some monomial generator of K. Since s 6∈ J , we must have
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s is a multiple of α. Conversely, if s ∈ αR then α 6∈ J because s 6∈ J . Items

(2) and (3) follow from item (1). For item (4), a theorem of Hochster implies that

R(F) is Cohen-Macaulay [H, Theorem 1], [BH, Theorem 6.3.5(a)]. Therefore G(F )

is Cohen-Macaulay, which gives rJ(F) = sJ(F) := min{n | Jn+1 ⊆ J}. Hence by

item (2), we have item (4). �

Proposition 5.4. Let the notation be as in Setting 5.1. Write

v(x1) + v(x2) + · · · + v(xd) = jL + p, where j ≥ 0 and 1 ≤ p ≤ L.

Then the reduction number satisfies rJ(F) = d − (j + 1).

Proof. Observe that
v(s) = dL − (v(x1) + v(x2) + · · · + v(xd))

= dL − (jL + p) by hypothesis

= (d − j)L − p.

Therefore (d − (j + 1))L ≤ v(s) < (d − j)L and hence s ∈ Jd−(j+1) \ Jd−j . Thus

rJ(F) = d − (j + 1) by Lemma 5.3(4). �

Lemma 5.5. Let the notation be as in Setting 5.1 and let
∑d

k=1 v(xk) = jL + p,

where j ≥ 0 and 1 ≤ p ≤ L. The following are equivalent :

(1) The associated graded ring G(F) is Gorenstein.

(2) For every integer i ≥ 0 and every monomial α ∈ R with s ∈ αR one has

v(α) ≤ (i + 1)L − 1 ⇐⇒ v(α) ≤ (i + 1)L − p.

Proof. Let u := rJ(F). Proposition 5.4 shows that v(s) = (u + 1)L − p. For any

monomial α ∈ R one has

α 6∈ J + J i+1 ⇐⇒ α 6∈ J and α 6∈ J i+1

⇐⇒ s ∈ αR and v(α) ≤ (i + 1)L − 1.

Here we have used Lemma 5.3(1) and the fact that J i+1 is a monomial ideal.

Likewise,

α 6∈ J : Ju−i ⇐⇒ αJu−i * J

⇐⇒ s ∈ αJu−i

⇐⇒ s ∈ αR and
s

α
∈ Ju−i

⇐⇒ s ∈ αR and v(s) − v(α) ≥ (u − i)L

⇐⇒ s ∈ αR and v(α) ≤ (i + 1)L − p.
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Thus, item (2) above holds if and only if J + J i+1 = J : Ju−i for every i ≥ 0 or,

equivalently, for 0 ≤ i ≤ u − 1. But this means that G(F) is Gorenstein according

to Theorem 4.3. �

We thank Paolo Mantero for showing us that G(F) is Gorenstein implies
∑d

k=1 v(xk) ≡
1 mod L as stated in Theorem 5.6.

Theorem 5.6. Let the notation be as in Setting 5.1. Then we have

G(F) is Gorenstein ⇐⇒
d∑

k=1

v(xk) ≡ 1 mod L.

Proof. If p = 1, then G(F) is Gorenstein according to Lemma 5.5. To show the

converse notice that for i >> 0, (i+1)L−1 is in the numerical semigroup generated

by the relatively prime integers v(x1), . . . , v(xd). As L = akv(xk), we may subtract

a multiple of L to obtain (i + 1)L − 1 = c1v(x1) + · · · + cdv(xd) for some integer i

and ck integers with 0 ≤ ck ≤ ak − 1. Clearly i ≥ 0. Write α := xc1
1 · · · xcd

d . Now

α ∈ R is a monomial with s ∈ αR and v(α) = (i + 1)L − 1. If G(F ) is Gorenstein

then by Lemma 5.5, v(α) ≤ (i + 1)L − p. Therefore p ≤ 1, which gives p = 1. �

Corollary 5.7. Let the notation be as in Setting 5.1 and assume that d ≥ 2. The

following are equivalent :

(1)
∑d

k=1 v(xk) = L + 1.

(2) G(F) is Gorenstein and rJ(F) = d − 2.

(3) The Rees algebra R(F) is Gorenstein.

Proof. The equivalence of items (1) and (2) follows from Proposition 5.4 and The-

orem 5.6, whereas the equivalence of items (2) and (3) is a consequence of Theo-

rem 4.6. �

Remark 5.8. Assume notation as in Setting 5.1. Since G(F) is Cohen-Macaulay,

Proposition 3.8 implies that the maximal value of the reduction number rJ(F) is

d − 1. For every dimension d, the minimal value of rJ(F) is zero as can be seen by

taking a1 = · · · = ad−1 = 1. If d ≥ 2 and all the exponents ak are assumed to be

greater than or equal to 2, then the inequalities L/2 ≥ L/ak along with Lemma 5.3

imply that the possible values of the reduction number u := rJ(F) are all integers

u such that bd
2c ≤ u ≤ d − 1.
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Setting 5.9. Let the notation be as in Setting 5.1. Let e be a positive integer and

let y1, . . . , ye be indeterminates over R. Let S := R[y1, . . . , ye]. Let b1, . . . , be be

positive integers and let K := (J, yb1
1 , . . . , ybe

e )S be a monomial parameter ideal of

S. Let E := {Kn}n≥0 denote the integral closure filtration associated to the ideal

K. Let w denote the Rees valuation of K, and let t := xa1−1
1 · · · xad−1

d yb1−1
1 · · · ybe−1

e

denote the socle element modulo the ideal K.

Remark 5.10 records several basic properties relating to the filtrations F and E .

Remark 5.10. Assume notation as in Setting 5.1 and 5.9. Then the following hold:

(1) For each positive integer n we have

Jn = Kn ∩ R (J)n = (K)n ∩ R Jn = Kn ∩ R.

(2) If E is an ideal-adic filtration, then F is an ideal-adic filtration.

(3) The reduction numbers satisfy the inequality rJ(F) ≤ rK(E).

(4) The Rees valuation w restricted to R defines a valuation that is equivalent

to the Rees valuation v, that is, these two valuations determine the same

valuation ring.

Corollary 5.11. Assume notation as in Setting 5.1 and 5.9. For each monomial

parameter ideal J of R there exists an extension S = R[y1, . . . , ye] and a monomial

parameter ideal K = (J, yb1
1 , . . . , ybe

e )S such that G(E) is Gorenstein where E =

{Kn}n≥0 is the integral closure filtration associated to K.

Proof. Let J = (xa1
1 , . . . , xad

d )R, let L be the least common multiple of a1, . . . , ad

and let v denote the Rees valuation of J . Write
∑d

k=1 v(xk) = jL + p, where j ≥ 0

and 1 ≤ p ≤ L. If p = 1, then G(F) is Gorenstein by Theorem 5.6 and we can take

S = R. If p > 1, let e = L−p+1 and let S = R[y1, . . . , ye] and K = (J, yL
1 , . . . , yL

e )S.

Then w(yk) = 1 for each k with 1 ≤ k ≤ e. Also w restricted to R is equal to v and

we have
d∑

k=1

w(xk) +
e∑

k=1

w(yk) = jL + p + L − p + 1 = (j + 1)L + 1.

Therefore G(E) is Gorenstein by Theorem 5.6. �

Remark 5.12. With the notation of Corollary 5.11, we have :

(1) If
∑d

k=1 v(xk) = jL + p, where 1 ≤ p ≤ L, then from the construction

used in the proof of Corollary 5.11 one may obtain for each positive m a
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polynomial extension S and a monomial parameter ideal K of S such that

rK(E) = dim S − (j + m), where E = {Kn}n≥0.

(2) If
∑d

k=1 v(xk) ≤ L, then by Corollary 5.7 there exists a monomial parameter

ideal K = (J, yb1
1 , . . . , ybe

e )S such that the Rees algebra R(E) is Gorenstein.

Example 5.13 demonstrates the existence of monomial parameter ideals K such

that the integral closure filtration E = {Kn}n≥0 has the following properties:

(1) The reduction number satisfies rK(E) = d − 2.

(2) The associated graded ring G(E) and the Rees algebra R(E) are Gorenstein.

(3) The filtration E is not an ideal-adic filtration.

Example 5.13. Let R = k[x1, x2, x3] and let J = (x2
2, x

3
2, x

7
3)R. Then L = 42 and

v(x1) = 21, v(x2) = 14 and v(x3) = 6. Thus
∑3

i=1 v(xi) = 41 = L − 1. Hence G(F )

is not Gorenstein. Notice that rJ(F) = 2 and

J = (J, x1x
4
3, x1x2x

2
3, x1x

2
2, x2x

5
3, x2

2x
3
3)R.

The element x1x
2
2x

6
3 ∈ J2 \ (J)2. Hence the filtration F = {Jn}n≥0 is not an

ideal-adic filtration. Let S = R[y1, y2] and let K = (J, y42
1 , y42

2 )S. Then we have

w(y1) = w(y2) = 1 and w(xi) = v(xi) for each i. Hence the sum of the w-values of

the variables is equal to L + 1. Therefore G(E) is Gorenstein. Notice that also the

Rees algebra R(E) is Gorenstein by Corollary 5.7.

Alternatively, one could let S = R[y1] and let K = (J, y21
1 )S. Again the sum of

the w-values of the variables is L + 1, so R(E) and G(E) are Gorenstein. In both

cases rK(E) is the dimension of S minus two. In the previous case rK(E) = 3 and

in this case rK(E) = 2.

6. The Quasi-Gorenstein Property for R
′
(F)

Let (R,m) be a d-dimensional Gorenstein local ring and let F = {Fi}i∈Z be an

F1-good filtration in R, where ht(F1) = g > 0. Assume there exists a reduction J

of F with µ(J) = g and reduction number u := rJ(F). In Theorem 6.1, we prove

that the extended Rees algebra R
′
(F) is quasi-Gorenstein with a-invariant b if and

only if Jn : Fu = Fn+b−u+g−1 for every n ∈ Z. If G(F) is Cohen-Macaulay, we prove

in Theorem 6.2 that the maximal degree of a homogeneous minimal generator of

the canonical module ωG(F) is at most g and that of the canonical module ωR′ (F) is



22 WILLIAM HEINZER, MEE-KYOUNG KIM, AND BERND ULRICH

at most g − 1. With the same hypothesis, we prove in Theorem 6.3 that R
′
(F) is

Gorenstein if and only if Ju : Fu = Fu.

Theorem 6.1. Let (R,m) be a d-dimensional Gorenstein local ring and let F =

{Fi}i∈Z be an F1-good filtration of ideals in R. Let F1 be an equimultiple ideal of R

with htF1 = g > 0 and J = (x1, x2, · · · , xg)R ⊆ F1 be a minimal reduction of F .

Let R
′
(F) =

⊕
i∈Z

Fit
i. Then the following assertions are true.

(1) R
′
(F) has the canonical module ωR′(F) =

⊕
i∈Z

(J i+u : Fu)ti+(g−1).

(2) R
′
(F) is quasi-Gorenstein with a-invariant b ⇐⇒ J i : Fu = Fi+b−u+g−1 for

all i ∈ Z.

Proof. (1) Let K := Quot(R) denote the total ring of quotients of R. Let A :=

R[Jt, t−1] ⊆ C := R
′
(F) =

⊕
i∈Z

Fit
i. Notice that G(J) ∼= A/t−1A, where t−1

is a homogeneous A-regular element of degree -1. Since J = (x1, x2, · · · , xg)R

is generated by a regular sequence, G(J) ∼= (R/J)[X1,X2, · · · ,Xg] is a standard

graded polynomial ring in g-variables over a Gorenstein local ring R/J , whence A

is Gorenstein and ωA
∼= A(−g + 1) ∼= Atg−1. Since C is a finite extension of A and

Quot(A) = Quot(C) = K(t) (∵ g > 0), we have that

ωC ∼= Ext0A(C, ωA) = HomA(C, A(−g + 1))

∼= HomA(C, Atg−1)

∼= HomA(C, A)tg−1

∼= (A :K(t) C)tg−1

= (A :R[t,t−1] C)tg−1,

where the last equality holds because

A :K(t) C ⊆ A :K(t) A ⊆ A ⊆ R[t, t−1].

We have
⊕

i∈Z
[ωC ]iti =

⊕
i∈Z

[A :R[t,t−1] C]iti+g−1. Since J is complete intersection

and J i+j+1 : J = J i+j for all i and j, we have

[ωC ]i = [A :R[t,t−1] C]i = ∩j(J i+j : Fj) = J i+u : Fu,
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for all i ∈ Z. Therefore ωC =
⊕

i∈Z
[ωC ]iti =

⊕
i∈Z

(J i+u : Fu)ti+g−1.

(2) C is quasi-Gorenstein with b := a(C) if and only if

ωC ∼= C(b) ⇐⇒
⊕
i∈Z

[ωC ]iti =
⊕
i∈Z

[C]i+bt
i

⇐⇒
⊕
i∈Z

(J i+u : Fu)ti+g−1 =
⊕
i∈Z

Fi+bt
i

⇐⇒
⊕
i∈Z

(J i : Fu)ti+(g−1)−u =
⊕
i∈Z

Fit
i−b

⇐⇒ J i : Fu = Fi+b+(g−1)−u for all i ∈ Z .

This completes the proof of Theorem 6.1. �

Theorem 6.2. Let (R,m) be a d-dimensional Gorenstein local ring and let F =

{Fi}i∈Z be an F1-good filtration of ideals in R, where F1 is an equimultiple ideal with

htF1 = g > 0 and J = (x1, x2, · · · , xg)R ⊆ F1 is a minimal reduction of F . Assume

that the associated graded ring G(F) is Cohen-Macaulay. Then :

(1) The maximal degree of a homogeneous minimal generator of ωG(F) is ≤ g.

(2) The maximal degree of a homogeneous minimal generator of ωR′ (F) is ≤ g−1.

Proof. (1) Since J = (x1, x2, · · · , xg)R is an R-regular sequence, (R/J,m /J) is

a Gorenstein local ring of dimension d − g. We may assume that (R/J,m /J) is

complete. By Cohen’s Structure Theorem [BH, Theorem A.21, page 373], there

exists a regular local ring T that maps surjectively onto R/J , say T
φ−→ R/J , and

hence R/J ∼= T/K, where K = ker φ. Let

c := codim K = dim T − dimT/K = dim T − dim R/J.

Then dim T = (d−g)+c. Notice that G(J) =
⊕

i≥0 Ji/Ji+1
∼= (R/J)[X1,X2, · · · ,Xg]

is a polynimial ring in g-variables over R/J . Let S = T [X1,X2, · · · ,Xg]. Then we

have

S −→ G(J) −→ G(F).

Since G(F ) is a finite G(J)-module, G(F) is a finite S-module and by assumption

G(F) is Cohen-Macaulay. The graded version of the Auslander-Buchbaum formula

implies that pdS G(F) = c. Let H• be a homogeneous minimal free resolution of

G(F) over S

H• : 0 −→ Hc −→ Hc−1 −→ · · · −→ H1 −→ H0 −→ G(F) −→ 0.
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Notice that Hc 6= 0. Let E• := HomS(H•, ωS) = HomS(H•, S(−g)). It follows [BH,

Corollary 3.3.9] that

E• : 0 −→ Ec −→ Ec−1 −→ · · · −→ E1 −→ E0 −→ ωG(F) −→ 0.

is a homogeneous minimal free resolution of ωG(F) over S, where

Ei = HomS(Hc−i, ωS) = HomS(Hc−i, S(−g))

for 0 ≤ i ≤ c. Since Hc =
⊕finite

j S(−j)βcj (6= 0), we have

E0 = HomS(Hc, S(−g)) =
finite⊕

j

HomS(S, S)(j − g)βcj =
finite⊕

j

S(j − g)βcj .

Thus the maximal degree of a homogeneous minimal generator of ωG(F) is ≤ g − j

and this is ≤ g since j ≥ 0.

(2) Let C = R
′
(F). Since G(F) ∼= C /t−1 C and t−1 is a non-zero-divisor of C, we

have

G(F ) is Cohen-Macaulay ⇐⇒ C is Cohen-Macaulay.

By [BH, Corollary 3.6.14], we have

ωG(F) = ωC /t−1 C ∼=
(
ωC/t−1ωC

)
(deg t−1) =

(
ωC/t−1ωC

)
(−1).

That is, we have⊕
i∈Z

[ωG(F)]i =
(
ωC/t−1ωC

)
(−1) =

⊕
i∈Z

[
(ωC/t−1ωC)(−1)

]
i
=

⊕
i∈Z

[
ωC/t−1ωC

]
i−1

.

Letting %(−) denote maximal degree of a minimal homogeneous generator, by (1),

we have

%(ωG(F)) ≤ g ⇐⇒ %
(
ωC/t−1ωC

)
≤ g − 1.

Since t−1 is a non-zero-divisor on ωC , the graded version of Nakayama’s lemma ([BH,

Exercise 1.5.24])implies that % (ωC) ≤ g − 1. �

Theorem 6.3. Let (R,m) be a d-dimensional Gorenstein local ring and let F =

{Fi}i∈Z be an F1-good filtration of ideals in R. Let F1 be an equimultiple ideal of R

with htF1 = g > 0, let J = (x1, · · · , xg)R ⊆ F1 be a minimal reduction of F , and

let u := rJ(F) be the reduction number of the filtration F with respect to J . Let

C := R
′
(F) =

⊕
i∈Z

Fit
i. If G(F) is Cohen-Macaulay, then the following conditions

are equivalent.

(1) R
′
(F) is quasi-Gorenstein.

(2) R
′
(F) is Gorenstein.

(3) Ju : Fu = Fu.
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Proof. Since G(F) is Cohen-Macaulay, items (1) and (2) are equivalent.

(1) =⇒ (3) : Since G(F) is Cohen-Macaulay and G(F) = C /t−1 C, we have

a(G(F )) = a(C) + deg(t−1) = b− 1. By [HZ, Theorem 3.8], u = rJ(F) = a(G(F )) +

`(F) = b − 1 + g, where `(F) is analytic spread of F . By Theorem 6.1 (2), we have

that J i : Fu = Fi for all i ∈ Z. In particular, Ju : Fu = Fu.

(3) =⇒ (1) : Suppose that Ju : Fu = Fu. Let b = a(C). Then we have

C(b) =
⊕
i∈Z

[C]i+bt
i =

⊕
i∈Z

[C]i+b+(g−1)t
i+(g−1) =

⊕
i∈Z

[C]i+uti+(g−1) =
⊕
i∈Z

Fi+uti+(g−1).

By Theorem 6.1 (1), we have

ωC =
⊕
i∈Z

(J i+u : Fu)ti+(g−1).

To see ωC ∼= C(b), we use :

Claim 6.4. : J i+u : Fu = Fi+u for all i ∈ Z.

Proof of Claim. ⊇ : For all i ∈ Z, we have Fi+u · Fu ⊆ Fi+u+u = J i+uFu ⊆ J i+u,

and hence Fi+u ⊆ J i+u : Fu.

⊆ : We have three cases : (Case i) i ≤ −u, (Case ii) −u + 1 ≤ i ≤ −1, and (Case

iii) i ≥ 0.

Case i : Suppose that i ≤ −u. Then we have J i+u : Fu = R : Fu = R = Fi+u.

Case ii : Suppose that −u+1 ≤ i ≤ −1. It is enough to show that Ju−j : Fu ⊆ Fu−j

for 1 ≤ j ≤ u − 1. In fact, let α ∈ Ju−j : Fu for some j with 1 ≤ j ≤ u − 1.

Then we have αFu ⊆ Ju−j , and hence αJjFu ⊆ JjJu−j = Ju. Thus we have

αJj ⊆ Ju : Fu = Fu, by assumption (3). Therefore we have

α ∈ Fu : Jj

⊆ Fu · Fn : JjFn for n >> u (∵ JjFu = Fu+j for all j ≥ 0)

⊆ Fu+n : Fj+n

⊆ Fu−j by Lemma 2.4.

Case iii : Suppose that i ≥ 0. It is clear for the case where i = 0, by assumption.

To complete the case (iii), we use :

Claim 6.5. : J i+u : Fu ⊆ J i(Ju : Fu) for all i ≥ 1.

Proof of Claim. Since ωC is a finite C-module and C is a finite A := R[Jt, t−1]-

module, we have that ωC is a finite A-module. Let {α1, α2, · · · , αh} be a minimal

set of homogeneous generator of ωC over A and let deg αj = nj for 1 ≤ j ≤ h. By
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Theorem 6.2 (2), deg αj ≤ g − 1 for 1 ≤ j ≤ h. That is, (g − 1) − nj ≥ 0 for

1 ≤ j ≤ h. Hence we have

[ωC ]g−1 =
h∑

j=1

[A](g−1)−nj
αj =

h∑
j=1

J (g−1)−njαj ,

[ωC ]g =
h∑

j=1

[A]g−njαj =
h∑

j=1

J (g−1)−njJαj = J

h∑
j=1

J (g−1)−njαj = J [ωC ]g−1,

· · · · · · · · · · · · · · ·

[ωC ]g+i =
h∑

j=1

[A](g+i)−nj
αj =

h∑
j=1

J (g−1)−nj J i+1αj = J i+1
h∑

j=1

J (g−1)−nj αj = J i+1[ωC ]g−1.

Thus [ωC ](g−1)+i = J i[ωC ]g−1 for all i ≥ 0, and hence J i+u : Fu = J i(Ju : Fu), which

completes the proof of Claim 6.5. The Claim 6.4 implies that⊕
i∈Z

(J i+u : Fu)ti+(g−1) =
⊕
i∈Z

Fi+bt
i.

Thus ωC ∼= C(b), where b = a(C). This completes the proof of Theorem 6.3.

�

Corollary 6.6. Let (R,m) be a d-dimensional Gorenstein local ring and let F =

{Fi}i∈Z be an F1-good filtration of ideals in R such that F1 is an equimultiple ideal

with ht F1 = g > 0 and J = (x1, · · · , xg)R ⊆ F1 is a minimal reduction of F
with u := rJ(F). Let C := R

′
(F) =

⊕
i∈Z

Fit
i. Then the following conditions are

equivalent.

(1) G(F) is Gorenstein.

(2) R
′
(F) is Gorenstein.

(3) G(F) is Cohen-Macaulay and Ju : Fu = Fu.

Proof. Since G(F) ∼= C /t−1 C and t−1 is a non-zero-divizor of C, we have (1) ⇐⇒ (2),

and Theorem 6.3 implies (2) ⇐⇒ (3). �

Taking the I-adic fitration F = {Ii}i∈Z, we get the usual definition of reduction

number with respect to a minimal reduction of the ideal( i.e., rJ(I) = rJ(F)). As

another consequence of Theorem 6.3, we obtain a result of Goto and Iai.

Corollary 6.7. ([GI, Theorem 1.4]) Assume that (R,m) is a Gorenstein local ring

and let I be an equmultiple ideal with ht I ≥ 1. Let r = rJ(I) be a reduction number

with respect to a minimal reduction J of I. Then the following two conditions are

equvalent.
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(1) G(I) is a Gorenstein ring.

(2) G(I) is a Cohen-Macaulay ring and Jr : Ir = Ir.

Remark 6.8. Let (R,m) be a Cohen-Macaulay local ring with dim R = 1 and let I

be an m-primary ideal. As described in Example 2.5, the Ratliff-Rush filtration F =

{Ĩi}i∈Z is an I (and Ĩ)-good filtration. Since the ideals Ĩi are Ratiliff-Rush ideals,

G(F)+ =
⊕

i≥1 Ĩi/Ĩi+1 contains a non-zero-divisor, and hence, since dim G(F) = 1,

G(F) is Cohen-Macaulay. Let J = xR be a principal reduction of I. The reduction

number rJ(F) is independent of the principal reduction J by [HZ, Proposition 3.6].

Let sJ(I) = min{i | Ii+1 ⊆ J} denote the index of nilpotency of I with respect to

J . An easy computation shows that rJ(I) ≥ rJ(F) ≥ sJ(I).

For R of dimension one, we have the following corollary to Theorem 6.3.

Corollary 6.9. Let (R,m) be a Gorenstein local ring with dim R = 1 , let I be an

m-primary ideal, and let F = {Ĩi}i∈Z denote the Ratliff-Rush filtration associated

to I. Let J = xR be a principal reduction of I and set r = rJ(I) and u = rJ(F).

Then the following conditions are equivalent.

(1) G(F) =
⊕

i≥0 Ĩi/Ĩi+1 is Gorenstein.

(2) C := R
′
(F) =

⊕
i∈Z

Ĩiti is Gorenstein.

(3) Jr : Ĩu = Ĩu.

(4) Jr : Ir = Ĩu.

Proof. (1) ⇐⇒ (2) : Notice that G(F) ∼= C /t−1 C and t−1 is a non-zero-divisor of C.

(2) ⇐⇒ (3) : Apply Corollary 6.6.

(2) =⇒ (4) : Suppose that C =
⊕

i∈Z
Ĩiti is Gorenstein. Then C is quasi-Gorenstein

with a(C) = rJ(F) = u. We have that

ωC ∼=
⊕
i∈Z

(J i+r : Ĩr)ti =
⊕
i∈Z

(J i+r : Ir)ti,

since Ii = Ĩi for all i ≥ r. Hence Jr : Ir = Ĩr+b−r = Ĩu, where u = a(C) = b.

(4) =⇒ (2) : Suppose that Jr : Ir = Ĩu. We have that

ωC ∼=
⊕
i∈Z

(J i+r : Ĩr)ti =
⊕
i∈Z

(J i+r : Ir)ti.

To see that C is Gorenstein, it suffices to show that ωC ∼= C(u). That is, we need to

prove the following claim :

Claim 6.10. : J i+r : Ir = Ĩi+u for all i ∈ Z.
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Proof of Claim : Notice that r := rJ(I) ≥ u := rJ(F). There is nothing to show in

the case where r = u, and hence we consider only the case where r > u.

⊇ : Since Ĩi+uIr = Ĩi+uĨr ⊆ Ĩi+u+r = Ii+u+r = J i+rIu ⊆ J i+r, we have Ĩi+u ⊆
J i+r : Ir for all i ∈ Z.

⊆ : Let p := r − u ≥ 1. We have four cases : (Case i) i ≤ −r, (Case ii)

−r + 1 ≤ i ≤ −r + p(= −u), (Case iii) −u + 1 ≤ i ≤ −1, and (Case iv) i ≥ 0.

Case i : Suppose that i ≤ −r. Then J i+r : Ir = R : Ir = R = Ii+u, since r > u.

Case ii : Suppose that −r+1 ≤ i ≤ −r+p. It is enough to show that Jj : Ir ⊆ Ĩj+u−r

for all 1 ≤ j ≤ p. In fact, let α ∈ Jj : Ir for all 1 ≤ j ≤ p. Then αIr ⊆ Jj, and

hence αJr−jIr ⊆ Jr−jJj = Jr. Thus we have αJr−j ⊆ Jr : Ir = Ĩu, by assumption

(4). Therefore

α ∈ Ĩu : Jr−j ⊆ ĨuIr : Jr−jIr

⊆ Ĩu+r : Jr−jIr

= Iu+r : I2r−j

⊆ Ĩj+u−r by the fact : Ĩk = ∪n≥1(In+k : In).

Case iii : Suppose that −u+1 ≤ i ≤ −1. It is enough to show that Jr−j : Ir ⊆ Ĩu−j

for all 1 ≤ j ≤ u − 1. In fact, let α ∈ Jr−j : Ir for all 1 ≤ j ≤ u − 1. Then

αIr ⊆ Jr−j, and hence αJjIr ⊆ JjJr−j = Jr. Thus we have αJj ⊆ Jr : Ir = Ĩu,

by assumption (4). Therefore

α ∈ Ĩu : Jj ⊆ ĨuIr : JjIr

⊆ Ĩu+r : JjIr

= Iu+r : Ir+j

⊆ Ĩu−j by the fact : Ĩk = ∪n≥1(In+k : In).

Case iv : Suppose that i ≥ 0. The claim is clear in the case where i = 0. For i > 0,

we have
J i+r : Ir = J i(Jr : Ir)

= J iĨu by assumption (4)

= Ĩi+u.

This completes the proof of Claim 6.10.

By Claim 6.10, we have

ωC =
⊕
I∈Z

(J i+r : Ir)ti =
⊕
I∈Z

Ĩi+uti ∼=
⊕
i∈Z

[C]i+uti = C(u).
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Thus C =
⊕

I∈Z
Ĩiti is quasi-Gorenstein with a(C) = u. This completes the proof of

Corollary 6.9. �

7. Examples of filtrations

We first present three examples of one-dimensional Gorenstein local domains con-

structed as follows. Let k be a field and let 0 < n1 < n2 < n3 be integers with

GCD(n1, n2, n3) = 1. Consider the subring R = k[[sn1 , sn2 , sn3]] of the formal

power series ring k[[s]]. Notice that R is a numerical semigroup ring associated to

the numerical semigroup H = 〈n1, n2, n3〉. The Frobenius number of a numerical

semigroup H is the largest integer not in H.

We consider the Gorenstein property of the associated graded ring G(F i) for

i = 0, 1, 2, where

(1) F0 := {mi}i≥0 is the integral closure filtration associated to m,

(2) F1 := {m̃i}i≥0 is the Ratliff-Rush filtration associated to m,

(3) F2 := {mi}i≥0 is the m-adic filtration.

The examples below will demonstrate that these filtrations are independent of each

other, as far as the Gorenstein property of their associated graded rings is concerned.

Notice that mi ⊆ m̃i ⊆ mi for all i ≥ 0 and G(F2) = G(m) =
⊕

i≥0 mi /mi+1. In

Examples 7.1, 7.3 and 7.4, we let S = k[[x, y, z]] be the formal power series ring in

three variables x, y, z over a field k and n := (x, y, z)S.

Example 7.1. ([GHK, Example 5.5]) Let R = k[[s3m, s3m+1, s6m+3]], where 2 ≤
m ∈ Z and define a homomorphism of k-algebras

ϕ : S −→ R by ϕ(x) = s3m, ϕ(y) = s3m+1, and ϕ(z) = s6m+3.

Then the ideal I = ker ϕ is generated by f = zx − y3 and g = zm − x2m+1, whence

R is a complete intersection of dimension one. We have G(n) = k[X,Y,Z] and I∗ =

(XZ,Zm, Y 3Zm−1, Y 6Zm−2, · · · , Y 3(m−1)Z, Y 3m)G(n). Since
√

I∗ : Z = (X,Y,Z),

the associated graded ring

G(m) ∼= k[X,Y,Z]/(XZ,Zm, Y 3Zm−1, Y 6Zm−2, · · · , Y 3(m−1)Z, Y 3m)

is not Cohen-Macaulay, see also [GHK, Theorem 5.1], and hence is not Gorenstein.

Thus F2 6= F1, by [HLS, (1.2)]. The reduction number of m = (s3m, s3m+1, s6m+3)R

with respect to the principal reduction J = (s3m)R is 3m − 1 and the blowup

of m is R[ m
s3m ] = m3m−1

s3m(3m−1) ([HLS, Fact 2.1]). Since s = s3m+1/s3m ∈ m
s3m , the
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blowup of m is R = k[[s]], the integral closure of R. Hence F1 = F0, by [HLS,

Corollary 2.7]. Notice that m̃i = (s3m)ik[[s]] ∩ R for all i ≥ 0. We observe that the

reduction number rJ(F1) of F1 with respect to the principal reduction J = (s3m)R

is 2m. For α ∈ k[[s]], we denote by ord(α) the order of α as a power series in s.

Since m̃i = {α ∈ R| ord(α) ≥ (3m)i}, and the Frobenius number of the numerical

semigroup of R is 6m2 − 1, we have m̃i+1 ⊆ J and Jm̃i = m̃i+1 for every i ≥ 2m.

Furthermore, s6m2+3m−1 ∈ m̃2m, but s6m2+3m−1 = s3ms6m2−1 /∈ J , which shows

m̃2m * J . Hence rJ(F1) = 2m.

Claim 7.2. G(F1) is a Gorenstein ring.

Proof of Claim. By Corollary 6.9, it suffices to show that

Ju : m̃u = m̃u, where u := rJ(F1).

Since u := rJ(F1) = 2m, the inclusion “⊇” is clear. To show the reverse inclusion,

it suffices to prove : β ∈ R\m̃2m =⇒ β /∈ (J2m : m̃2m). Let β ∈ R\m̃2m, that is,

β ∈ R with ord(β) < 6m2. Let nβ := ord(β), where 0 ≤ nβ < 6m2. Then σ :=

s6m2+6m2−nβ−1 ∈ m̃2m, since ord(σ) = 6m2 + (6m2 −nβ)− 1 ≥ 6m2 + 1− 1 = 6m2.

Hence βσ = snβ · s6m2+6m2−nβ−1 = s6m2+(6m2−1) = (s3m)2m · s6m2−1 /∈ J2m, since

the Frobenius number of the numerical semigroup of R is 6m2 − 1.

Example 7.3. Let R = k[[s4, s6, s7]] and define a homomorphism of k-algebras

ϕ : S −→ R by ϕ(x) = s4, ϕ(y) = s6, and ϕ(z) = s7.

Then the ideal I = ker ϕ is generated by f = x3 − y2 and g = z2 − x2y, whence R

is a complete intersection of dimension one. We have G(n) = k[X,Y,Z] and I∗ =

(Y 2, Z2). Hence G(m) ∼= k[X,Y,Z]/(Y 2, Z2) is a Gorenstein ring. In particular

F2 = F1 by [HLS, (1.2)]. The reduction number of m = (s4, s6, s7)R with respect

to the principal reduction J = (s4)R is 2 and the blowup of m is R[m
s4 ] = m2

s8 =

k[[s2, s3]], which is not equal to the integral closure R = k[[s]] of R . Hence F1 6= F0,

by [HLS, Corollary 2.7]. Notice that mi = (s4)ik[[s]]∩R for all i ≥ 0. The reduction

number rJ(F0) of F0 with respect to the principal reduction J = (s4)R is 3. Indeed,

since mi = {α ∈ R| ord(α) ≥ 4i} we conclude that mi+1 ⊆ J for every i ≥ 3 and

hence Jmi = mi+1. On the other hand s13 ∈ m3\Jm2. Therefore rJ(F0) = 3.

Since s6 ∈ (J : m2)\(J + m2), we have J : m2 6= J + m2. Thus G(F0) is not

Gorenstein by Theorem 4.3.

We thank YiHuang Shen for suggesting to us Example 7.4.
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Example 7.4. Let R = k[[s6, s11, s27]] and define a homomorphism of k-algebras

ϕ : S −→ R by ϕ(x) = s6, ϕ(y) = s11, and ϕ(z) = s27.

Then the ideal I = ker ϕ is generated by f = z2 − x9 and g = xz − y3, whence

R is a complete intersection of dimension one. We have G(n) = k[X,Y,Z] and

I∗ = (Z2, ZX,ZY 3, Y 6). Since
√

I∗ : X = (X,Y,Z), the associated graded ring

G(m) ∼= k[X,Y,Z]/(Z2, ZX,ZY 3, Y 6)

is not a Cohen-Macaulay ring, also see [GHK, Theorem 5.1], and hence is not a

Gorenstein ring. Furthermore F2 6= F1 by [HLS, (1.2)]. The reduction number of

m = (s6, s11, s27)R with respect to the principal reduction J = (s6)R is 5 and the

blowup of m is R[ms6 ] = m5

s30 = k[[s5, s6]], which is not equal to the integral closure

R = k[[s]] of R. Hence F1 6= F0 by [HLS, Corollary 2.7]. We observe that

m̃2 = ks27 + m2

m̃3 = ks38 + ks49 + m3

m̃4 = ks49 + m4 and

m̃i = mi for every i ≥ 5.

The reduction number rJ(F1) of F1 with respect to the principal reduction J =

(s6)R is 4, since Jm̃i = m̃i+1 for every i ≥ 4, but s49 /∈ m̃4\Jm̃3. We have

that J + m̃2 ⊆ J : m̃3 ⊆ m, where the first inclusion holds since rJ(F1) = 4.

Furthermore λ(m /J + m̃2) = 1, because m = ks11 + J + m̃2. Since the Frobenius

number of the numerical semigroup of R is 43 we have s11s38 = s6s43 /∈ J , and

therefore s11 /∈ J : m̃3. Hence G(F1) is Gorenstein by Theorem 4.3. The reduction

number rJ(F0) of F0 with respect to the principal reduction J = (s6)R is 6, since

Jmi = mi+1 for every i ≥ 6, but s38 ∈ m6\Jm5. As s17 ∈ (J : m4)\(J + m3), we

obtain J : m4 ) J + m3. Therefore G(F0) is not Gorenstein by Theorem 4.3.

YiHuang Shen proves in [S, Theorem 4.12] that if (R,m) is a numerical semigroup

ring with µ(m) = 3 such that rJ(m) = sJ(m), then the associated graded ring G(m)

is Cohen-Macaulay. The following example given by Lance Bryant shows that this

does not hold for one-dimension Gorenstein local rings of embedding dimension

three.

Example 7.5. Let (S,n) be a 3-dimensional regular local ring with n = (x, y, z)S

and S/n = k. Let I = (f, g), where f = x3 + z5 and g = x2y + xz3. Put R := S/I

and m := n /I. Then (R,m) is an 1-dimensional Gorenstein local ring. We have
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G(n) = k[X,Y,Z], f∗ = X3, and g∗ = X2Y . Let h = −yf + xg, ξ4 = z3f − xh, and

ξ5 = z3g − yh. Then h∗ = X2Z3, ξ∗4 = XY Z5, and ξ∗5 = Y 2Z5 + XZ6. let

K = (X3,X2Y,X2Z3,XY Z5, Y 2Z5 + XZ6) ⊆ I∗.

Then the Hilbert series of the graded ring G(n)/K is

1 + 2t + 3t2 + 2t3 + 2t4 + t5 + 2t6

1 − t
= 1+3t+6t2+8t3+10t4+11t5+13t6+13t7+ · · ·

and these values are the same as those in the Hilbert series of G(m) = G(n)/I∗,

so that K = I∗. Since (I∗ : X) is primary to the unique homogeneous maximal

ideal (X,Y,Z)G(n), G(m) is not Cohen-Macaulay and hence not Gorenstein. Thus

F2 6= F1 by [HLS, (1.2)]. Let J = (y − z)R. Then J is a minimal reduction of m .

A computation shows that rJ(F2) = rJ(F1) = sJ(F2) = 6. By Corollary 6.9, to see

that G(F1) is Gorenstein, it suffices to show that (J6 : m6) = m6 . To check this, it

is enough to show that λ(R/m6) = 39 = (6)(13)
2 , where 13 = e(R) is the multiplicity

of R.

Since R is not reduced, the filtration F0 is not a good filtration ([SH, Theo-

rem 9.1.2]) so, in particular, F0 6= F1.

We present examples of 2-dimensonal Gorenstein local rings (R,m) and consider

the Gorenstein property of the associated graded rings G(F i) for i = 0, 1, 2, 3, where

(1) F0 := {mi}i≥0 is the integral closure filtration associated to m,

(2) F1 := {(mi){1}}i≥0 is the e1-closure filtration associated to m,

(3) F2 := {m̃i}i≥0 is the Ratliff-Rush filtration associated to m,

(4) F3 := {mi}i≥0 is the m-adic filtration.

Notice that mi ⊆ m̃i ⊆ (mi){1} ⊆ mi for all i ≥ 0 and G(F3) = G(m) =⊕
i≥0 mi /mi+1.

Lemma 7.6 is useful in considering the e1-closure filtration in a 2-dimensional

Noetherian local ring (R,m). For an m-primary ideal F of R, let PF (s) denote

the Hilbert-Samuel polynomial having the property that λ(R/F s) = PF (s) for all

s >> 0. We write

PF (s) = e0(F )
(

s + 1
2

)
− e1(F )

(
s

1

)
+ e2(F ).

Lemma 7.6. Let (R,m) be a 2-dimensional Noetherian local ring and let F =

{Fi}i∈Z be an F1-good filtration, where F1 is an m-primary ideal. If there exists a

positive integer c such that λ(Fi/F
i
1) < c for all i ≥ 0, then the Hilbert coefficients
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of the polynomials PF i
1
(s) and PFi(s) satisfy

e0(F i
1) = e0(Fi) and e1(F i

1) = e1(Fi) for all i ≥ 0.

Therefore (F i
1){1} = (Fi){1} for all i ≥ 0.

Proof. Fix i ≥ 1, we have (F i
1)

s ⊆ (Fi)s ⊆ Fis for all s ≥ 1. Our hypothesis implies

c > λ(Fis/(F i
1)

s) ≥ λ((Fi)s/(F i
1)

s) ≥ 0 for all s ≥ 1.

For all sufficiently large s, we have

c > λ((Fi)s/(F i
1)

s) = λ(R/(F i
1)

s) − λ(R/(Fi)s)

= PF i
1
(s) − PFi(s).

Thus PF i
1
(s) − PFi(s) is a constant polynomial, which implies e0(F i

1) = e0(Fi) and

e1(F i
1) = e1(Fi). �

Example 7.7. Let k be a field of characteristic other than 2 and set S = k[[x, y, z, w]]

and n = (x, y, z, w)S, where x, y, z, w are indeterminates over k. Let

f = x2 − w4,

g = xy − z3.

Let I = (f, g)S, R = S/I, and m = n /I. Since f, g is a regular sequence, R is a

2-dimensional Gorenstein local ring. We have:

(1) F3 = F2 6= F1 = F0.

(2) G(F3) is not Gorenstein and rJ(F3) = 5, where J = (y,w)R.

(3) G(F0) is Gorenstein and rJ(F0) = 4, where J = (y,w)R.

Proof. The associated graded ring G := grn(S) = k[X,Y,Z,W ] is a polynomial ring

in 4 variables over the field k, and G(F3) = G(m) = G/I∗, where I∗ is the leading

form ideal of I in G = grn(S). One computes that

I∗ = (X2,XY,XZ3, Z6 + Y 2W 4)G.

Thus G/I∗ = G(m) is a 2-dimensional standard graded ring of depth one. Notice

that W is G(m)-regular. The ring G(m) is not Cohen-Macaulay, and hence G(m)

is not Gorenstein. We also have F3 = F2 by [HLS, (1.2)], and rJ(m) = 5, where

J = (y,w)R.
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Set

T =
k[x, y, z, w]

(x2 − w4, xy − z3)
,

L1 = ((y, z, w) + (x))T,

L2 = ((y, z, w)2 + (x))T,

L3 = ((y, z, w)3 + x(z,w))T,

Ln = ((y, z, w)n + xwn−4(z,w)2)T, for all n ≥ 4.

Then T is 2-dimensional, Gorenstein, excellent and reduced, since the characteristic

of the field k is other than 2. The ring T becomes a positively graded k-algebra if

we set

deg(x) = 2, deg(y) = deg(z) = deg(w) = 1.

With this grading it turns out that Ln =
⊕

i≥n[T ]i, for all n ≥ 1. In particular

Ln
1 ⊆ Ln, and since the image in T of x is integral over L2

2 it follows that Ln is

integral over Ln
1 . As T is reduced, the ideal Ln =

⊕
i≥n[T ]i is integrally closed, and

since T is excellent, LnR remains integrally closed in R, the completion of T with

respect to the homogeneous maximal ideal. We conclude that mn = Ln
1R = LnR

for every n ≥ 1

The reduction number rJ(F0) of F0 with respect to J = (y,w)R is 4, since

Jmi = mi+1 for all i ≥ 4, whereas xz2 ∈ m4\Jm3. We have that J+m2 ⊆ J : m3 ⊆
J + m, where the first inclusion holds because rJ(F0) = 4. Notice that J + m2 =

(x, y,w, z2)R and J + m = (x, y,w, z)R. This implies that λ(J + m/J + m2) = 1.

Since z ·xz /∈ J and xz ∈ m3, z /∈ J : m3 and hence J : m3 = J +m2. Thus G(F 0) is

a Gorenstein ring, by Theorem 4.3. One computes that λ(mi/mi) ≤ 3 for all i ≥ 0.

By Lemma 7.6, we have (mi){1} = (mi){1} for all i ≥ 1. Since mi ⊆ (mi){1} ⊆ mi,

it follows that (mi){1} = mi for all i ≥ 1. That is, F1 = F0. Since G(F0) is

Gorenstein, but G(F3) is not, we also deduce that F0 6= F3. �

Example 7.8. Let S = k[[x, y, z, w]] be a formal power series ring over a field k

and n = (x, y, z, w)S, where x, y, z, w are indeterminates over k. Let

f = x2 − w5,

g = xy − z3.
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Let I = (f, g)S, R = S/I, and m = n /I. Since f, g is a regular sequence, R is a

2-dimensional Gorenstein local ring. Set F = {Fi}i≥0, where

F0 = R,

F1 = m,

F2 = ((y, z, w)2 + (x))R,

F3 = ((y, z, w)3 + x(z,w))R,

Fi = ((y, z, w)i + xwi−4(z,w)2)R, for all i ≥ 4.

Then :

(1) F is a F1-good filtration.

(2) G(m) is not Gorenstein and rJ(m) = 5, where J = (y,w)R.

(3) G(F) is Gorenstein and rJ(F ) = 4, where J = (y,w)R and G(F ) is not

reduced.

(4) F = {(mi){1}}i≥0 is the e1-closure filtration associated to m.

Proof. The associated graded ring G := grn(S) = k[X,Y,Z,W ] is a polynomial ring

in 4 variables over the field k, and G(m) = G/I∗, where I∗ is the leading form ideal

of I in G = grn(S). One computes that

I∗ = (X2,XY,XZ3, Z6)G.

Thus G/I∗ = G(m) is a 2-dimensional standard graded ring of depth one. Notice

that W is G(m)-regular. The ring G(m) is not Cohen-Macaulay, and hence G(m) is

not Gorenstein. Also we have mi = m̃i for all i ≥ 1, by [HLS, (1.2)] and rJ(m) = 5,

where J = (y,w)R. One computes that F1F1 ( F2 and FiFj = Fi+j for all i, j ≥ 1

with i + j ≥ 3, by using the relations x2 = w5 and xy = z3 in R. Hence F is a

F1-good filtration. The reduction number rJ(F) of F with respect to J = (y,w)R

is 4 and G(F) is a Gorenstein ring, by the same argument in the proof of Example

7.7. G(F ) is not reduced, since x∗ ∈ F2/F3 is a non-zero nilpotent element in G(F).

For x ∈ F2\F3, (x∗)2 = x2 + F5 = w5 + F5 = 0, since w5 ∈ F5. One computes

that λ(Fi/F
i
1) ≤ 3 for all i ≥ 0. By Lemma 7.6, we have (F i

1){1} = (Fi){1} for all

i ≥ 1. Since G(F) is Cohen-Macaulay, the extended Rees ring R′(F) is Cohen-

Macaulay and hence satisfies (S2). Therefore by [CPV, Theorem 4.2], we have

Fi = (Fi){1} = (F i
1){1} = (mi){1} for all i ≥ 1. �
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Example 7.9. ([CHRR, Example 5.1]) Let k be a field of characteristic other than

2 or 3 and set S = k[[x, y, z, w]] and n = (x, y, z, w)S, where x, y, z, w are indeter-

minates over k. Let
f = z2 − (x3 + y3),

g = w2 − (x3 − y3).

Let I = (f, g)S, R = S/I, and m = n /I. Since f, g is a regular sequence, R is a

2-dimensional Gorenstein local ring. Notice that R is also a normal domain. We

have:

(1) F3 = F2 = F1 6= F0.

(2) G(F3) is Gorenstein and rJ(F3) = 2, where J = (x, y)R.

(3) G(F0) is not Gorenstein and rJ(F0) = 3, where J = (x, y)R.

Proof. The associated graded ring G(n) = k[X,Y,Z,W ] is a polynomial ring in 4

variables over the field k, and the associated graded ring G(F3) = G(m) = G/I∗,

where I∗ is the leading form ideal of I in G. One computes that I∗ = (Z2,W 2)G.

Thus G/I∗ = G(m) is Gorenstein. In particular the extended Rees ring R′(F) is

Cohen-Macaulay, and hence by [CPV, Theorem 4.2], F3 = F2 = F1. Also we have

rJ(m) = 2, where J = (x, y)R, since zw ∈ m2 \J m and J m2 = m3.

Set

T =
k[x, y, z, w]

(z2 − (x3 + y3), w2 − (x3 − y3))
,

L1 = ((x, y) + (z,w))T,

L2 = ((x, y)((x, y) + (z,w)) + (zw))T,

Ln = ((x, y)n−1((x, y) + (z,w)) + (x, y)n−3(zw))T for all n ≥ 3.

The ring T becomes a positively graded k-algebra if we set

deg(x) = deg(y) = 2 and deg(z) = deg(w) = 3.

Since the characteristic of the field k is not equal to 2 or 3, the ring T is a 2-

dimensional Gorenstein excellent normal domain. Notice that

[T ]0 = k, [T ]1 = (0), [T ]2 = 〈x, y〉, [T ]3 = 〈z,w〉, [T ]4 = 〈x, y〉2,
[T ]2n−1 = 〈x, y〉n−2〈z,w〉, [T ]2n = 〈x, y〉n + 〈x, y〉bn

2
c〈zw〉 for all n ≥ 3,

where b∗c denotes the floor function, 〈∗〉 stands for k vector space spanned by ∗,
and power denotes symmetric power. From this one sees that Ln =

⊕
i≥2n[T ]i. In

particular Ln
1 ⊆ Ln, and since the image in T of zw is integral over L3

1 it follows that

Ln is integral over Ln
1 . We deduce, as in the proof of Example 7.7, that Ln

1 = Ln,
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and then mn = LnR for every n ≥ 1. The reduction number rJ(F0) of F0 with

respect to J = (x, y)R is 3, since Jmi = mi+1 for all i ≥ 3, but zw ∈ m3\Jm2.

Since z and w are in J : m2, we obtain J : m2 = m. We have J +m2 = (x, y, zw)R,

whereas J : m2 = m because z and w are in J : m2. Therefore J + m2 ( J : m2,

and then Theorem 4.3 shows that G(F0) is not Gorenstein. In particular F3 6= F0

since G(F3) is Gorenstein. �

Remark 7.10. Let (R,m) be a 2-dimensional regular local ring.

(1) Let F = {Fi}i∈Z be an F1-good filtration, where F1 is m-primary. If G(F) is

Gorenstein, then F is the F1-adic filtration and F1 is a complete intersection.

(2) Let I be an m-primary ideal. If G(I) is Gorenstein, then the coefficient ideal

filtrations F3 ⊆ F2 ⊆ F1 ⊆ F0 associated to I are all the same.

Proof. (1): We may assume that the residue field of R is infinite., in which case

F has a reduction J which is a complete intersection. If G(F) is Cohen-Macaulay

then rJ(F) ≤ 1 according to Proposition 3.8, hence F is the F1-adic filtration by

Remark 3.4. If in addition G(F) is Gorenstein, we claim that rJ(I) 6= 1 for I = F1.

Indeed, suppose rJ(I) = 1. In this case Theorem 4.3 implies that J : I = I, hence
J :I
J = I

J . However, J :I
J

∼= HomR(R/I,R/J) ∼= Ext2R(R/I,R), and using a minimal

free R-resolution of R/I one sees that the minimal number of generators of the latter

module is µ(I) − 1. On the other hand, µ(I/J) = µ(I) − 2 since J is a minimal

reduction of I. This contradiction proves that rJ(I) = 0, hence I = J is a complete

intersection.

(2): We apply part (1) to the filtration F = {Ii}i∈Z and use the fact that a

complete intersection has no proper reduction. �
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