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Abstract. For an ideal I of a Noetherian local ring (R,m) we consider prop-
erties of I and its powers as reflected in the fiber cone F (I) of I . In particular,
we examine behavior of the fiber cone under homomorphic image R→ R/J = R′

as related to analytic spread and generators for the kernel of the induced map
on fiber cones ψJ : FR(I) → FR′(IR

′). We consider the structure of fiber cones
F (I) for which kerψJ 6= 0 for each nonzero ideal J of R. If dimF (I) = d > 0,
µ(I) = d+ 1 and there exists a minimal reduction J of I generated by a regular
sequence, we prove that if grade(G+(I)) ≥ d − 1, then F (I) is Cohen-Macaulay
and thus a hypersurface.

1. Introduction

For an ideal I in a Noetherian local ring (R,m), the fiber cone of I is the graded

ring

F (I) =
⊕
n≥0

Fn =
⊕
n≥0

In/m In ∼= R[It]/mR[It],

where R[It] is the Rees ring of I and Fn = In/m In. We sometimes write FR(I) to

indicate we are considering the fiber cone of the ideal I of the ring R. In terms of the

height, ht(I), of I and the dimension, dimR, of R, one always has the inequalities

ht(I) ≤ dimF (I) ≤ dimR.

For an arbitrary ideal I ⊆ m of (R,m), the fiber cone F (I) has the attractive

property of being a finitely generated graded ring over the residue field k := R/m
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that is generated in degree one, i.e., Fn = Fn1 for each positive integer n, so F (I) =

k[F1].

It is well known in this setting that the Hilbert function HF (n) giving the di-

mension of In/m In as a vector space over k is defined for n sufficiently large by a

polynomial hF (X) ∈ Q[X], the Hilbert polynomial of F (I) [Mat, Corollary, page 95],

[AM, Corollary 11.2]. A simple application of Nakayama’s lemma, [Mat, Theorem

2.2], shows that the cardinality of a minimal set of generators of In, µ(In), is equal

to λ(In/m In), the value of the Hilbert function HF (n) of F (I).

An interesting invariant of the ideal I is its analytic spread, denoted `(I), where

the analytic spread of I is by definition the dimension of the fiber cone, `(I) =

dimF (I) [NR]. The analytic spread measures the asymptotic growth of the minimal

number of generators of In as a function of n. In relation to the degree of the Hilbert

polynomial, we have the equality `(I) = 1 + deg hF (X). An ideal J ⊆ I is said to

be a reduction of I if there exists a positive integer n such that JIn = In+1. It

then follows that J iIn = In+i for every postive integer i. If J is a reduction of I,

then J requires at least `(I) generators. If the residue field R/m is infinite, then

minimal reductions of I correspond to Noether normalizations of F (I) in the sense

that a1, . . . , ar ∈ I− I2 generate a minimal reduction of I if and only if their images

ai ∈ I/m I ⊆ F (I) are algebraically independent over R/m and F (I) is integral

over the polynomial ring (R/m)[a1, . . . , ar]. In particular, if R/m is infinite, then

there exist `(I)-generated reductions of I,

For a positive integer s, the fiber cone F (Is) of the ideal Is embeds in the fiber

cone F (I) = ⊕∞n=0Fn of I by means of F (Is) ∼= ⊕∞n=0Fns. This isomorphism makes

F (I) a finitely generated integral extension of F (Is). Thus dimF (I) = dimF (Is)

and `(I) = `(Is).

We are particularly interested in conditions that imply the fiber cone F (I) is a

hypersurface. Suppose dimF (I) = d > 0 and µ(I) = d + 1. If I has a reduction

generated by a regular sequence and if grade(G+(I)) ≥ d − 1, we prove in Theo-

rem 5.6 that F (I) is a hypersurface. We have learned from Bernd Ulrich that this

result also follows from results in the paper [CGPU] of Corso-Ghezzi-Polini-Ulrich.

A useful property of the analytic spread `(I) is that it gives an upper bound on the

number of elements needed to generate I up to radical. This property of generation

up to radical behaves well with respect to analytic spread of a homomorphic image

in the following sense:

Lemma 1.1. Suppose I ⊆ m is an ideal of a Noetherian local ring (R,m), where

R/m is infinite. Let a ∈ I and let R′ := R/aR and I ′ := IR′. If a′1, . . . , a
′
s ∈ R′
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are such that rad(a′1, . . . , a
′
s)R

′ = rad I ′ and if ai ∈ R is a preimage of a′i, then

rad I = rad(a1, . . . , as, a)R. In particular, if `(I ′) = s, then I can be generated up

to radical by s+ 1 elements.

Proof. Assume that rad(a′1, . . . , a
′
s)R

′ = rad I ′. If x ∈ rad I, then for some positive

integer n, we have xn = y ∈ I. Hence the image y′ of y in R′ is in rad(a′1, . . . , a
′
s)R

′.

Therefore y and hence also x is in rad(a1, . . . , as, a)R.

Examples given by Huckaba in [Hu, Examples 3.1 and 3.2] establish the surprising

fact of the existence of 3-generated height-2 prime ideals I of a 3-dimensional regular

local ring R for which dimF (I) = 3 = dimR and for which there exists a principal

ideal J = xR ⊆ I such that if R′ := R/xR and I ′ := IR′, then dimFR′(I
′) = 1 <

dimR′ = dimR − 1. This result of Huckaba shows that a statement analogous to

Lemma 1.1 for reductions, rather than generators up to radical, is false, that is, it

is possible that I ′ = I/aR has an s-generated reduction while every reduction of I

requires at least s+ 2 generators.

These interesting examples are the original motivation for our interest in the

behavior of analytic spread in a homomorphic image.

2. Behavior of the fiber cone under homomorphic image.

Setting 2.1. Let J ⊆m be an ideal of a Noetherian local ring (R,m), let R′ := R/J ,

and let m′ = m /J . For an ideal I ⊆ m of R let I ′ = (I + J)/J = IR′ denote the

image of I in R′. There is a canonical surjective ring homomorphism of the fiber

cone FR(I) of I onto the fiber cone FR′(I
′).

We have R[It] =
⊕

n≥0 I
ntn and R′[I ′t] =

⊕
n≥0(I ′)ntn. Since

(I ′)n = (In + J)/J ∼= In/(In ∩ J),

there is a canonical surjective homomorphism of graded rings φJ : R[It] → R′[I ′t],

with ker φJ =
⊕

n≥0(In ∩ J)tn.

Since FR(I) = R[It]/mR[It] and FR′(I
′) = R′[I ′t]/m′R′[I ′t], the homomor-

phism φJ : R[It]→ R′[I ′t] induces a surjective homomorphism ψJ : FR(I)→ FR′(I
′)

which preserves grading. This is displayed in the following commutative diagram

for which the rows are exact and the column maps are surjective:



4

0 −−−→ ⊕n≥0(In ∩ J)tn −−−→ R[It]
φJ−−−→ R′[I ′t] −−−→ 0y y y

0 −−−→ ⊕n≥0
(In∩J)+m In

m In −−−→ R[It]
mR[It]

ψJ−−−→ R′[I′t]
m′R′[I′] −−−→ 0

Since we are interested in the behavior of the fiber cone under homomorphic

image, we are especially interested in

kerψJ = ⊕n≥0
(In ∩ J) + m In

m In

Remark 2.2. Let (R,m) be a Noetherian local ring and let I ⊆ m be an ideal

of R. Suppose J1 ⊆ J2 ⊆ m are ideals of R. Let Ri := R/Ji, i = 1, 2, and let

ψi : FR(I) → FRi(IRi) denote the canonical surjective homomorphisms on fiber

cones as in (2.1). Then R2
∼= R1/J

′, where J ′ = J2/J1, and there exists a canonical

surjective homomorphism ψ′ : FR1(IR1)→ FR2(IR2) such that ψ2 = ψ′ ◦ ψ1.

With notation as in (2.1), if J is a nilpotent ideal of R, then kerψJ is a nilpotent

ideal of FR(I). For suppose x ∈ J is such that xs = 0. If x ∈ (In∩J)+m In

m In = Fn is

the image of x in F (I), then by definition xs is the image of xs in Fsn, so xs = 0.

Thus for J a nilpotent ideal of R, we have dimFR(I) = dimFR′(I
′) and `(I) = `(I ′).

Applying this to the situation considered in (2.2), if s is a positive integer, J1 = Js

and J2 = J , then with ψ′ : FR1(IR1)→ FR2(IR2) as in (2.2), it follows that kerψ′ is

a nilpotent ideal and in this situation dimFR1(IR1) = dimFR2(IR2). In particular

for the examples of Huckaba [Hu, Examples 3.1 and 3.2] mentioned in the end of

Section 1, going modulo a power xnR of the ideal xR also reduces the dimension of

the fiber cone F (I) from 3 to 1.

Proposition 2.3. With notation as in Setting 2.1, we have the following implica-

tions of Remark 2.2.

(1) If J ′ ⊆ J are ideals of R and if kerψJ = 0, then kerψJ ′ = 0.

(2) kerψJ = 0 if and only if kerψxR = 0 for each x ∈ J .

(3) For x ∈m, we have kerψxR = 0 if and only if (In : x) = (m In : x) for each

n ≥ 0.

Proof. Statements (1) and (2) are clear in view of (2.2) and the description of

kerψJ given in (2.1). For statement (3), we use that In ∩ xR = x(In : x). Thus

0 = kerψxR = ⊕n≥0
(In∩xR)+m In

m In ⇐⇒ (In ∩ xR) ⊆ m In for each n ⇐⇒ x(In :

x) ⊆ m In for each n ⇐⇒ (In : x) ⊆ (m In : x) for each n. This last statement is

equivalent to (In : x) = (m In : x) for each n.
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Proposition 2.4. Let (R,m) be a Noetherian local ring and let I ⊆ m be an

ideal of R. Suppose J1 and J2 are ideals of R such that radJ1 = rad J2. Let

Ri := R/Ji, i = 1, 2, and let ψi : FR(I)→ FRi(IRi) denote the canonical surjective

homomorphisms on fiber cones as in (2.1). Then dimFR1(IR1) = dimFR2(IR2)

and `(IR1) = `(IR2).

Proof. Since rad(J1 + J2) = rad J1 = rad J2, it suffices to consider the case where

J1 ⊆ J2. With notation as in (2.2), kerψ′ is a nilpotent ideal. Thus dimFR1(IR1) =

dimFR2(IR2) and `(IR1) = `(IR2).

As we remarked in Section 1, the dimension of the fiber cone F (I) of an ideal I is

the same as the dimension of the fiber cone F (In) of a power In of I. Hence, with

notation as in (2.1), we have dimFR′(IR
′) = dimFR′(I

nR′) and `(IR′) = `(InR′)

for each positive integer n.

3. The associated graded ring and the fiber cone.

The associated graded ring of the ideal I plays a role in the behavior of the fiber

cone of the image of I modulo a principal ideal as we illustrate in Proposition 3.1

and Example 3.2.

Proposition 3.1. Let I ⊆m be an ideal of a Noetherian local ring (R,m). For x ∈
m, let x∗ denote the image of x in the associated graded ring G(I) = R[It]/IR[It]

and let x denote the image of x in the fiber cone F (I). If x∗ is a regular element of

G(I), then F (I)/xF (I) ∼= FR′(I
′), where R′ = R/xR and I ′ = IR′.

Proof. There exists a positive integer s such that x ∈ Is − Is+1. Since x∗ is a

regular element of G(I) with degx∗ = s, we have (In ∩ xR) = xIn−s for every

n ≥ 0, where In−s := R if n− s ≤ 0. Hence we have

[kerψxR]n =
(In ∩ xR) + m In

m In
=
xIn−s + m In

m In
= [xF (I)]n,

for every n ≥ 0. Therefore F (I)/xF (I) ∼= FR′(I
′).

With notation as in Proposition 3.1, the following example shows that for x ∈
I−m I such that x is a regular element of F (I), it may happen that xF (I) ( kerψxR

and FR′(I
′) 6∼= FR(I)/xF (I), where R′ = R/xR and I ′ = IR′. Proposition 3.1

implies that for such an example x∗ ∈ G(I) is necessarily a zero divisor.

Example 3.2. Let k be a field and consider the subring R := k[[t3, t4, t5]] of the

formal power series ring k[[t]]. Thus R = k+ t3k[[t]] is a complete Cohen-Macaulay
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one-dimensional local domain. Let I = (t3, t4)R. An easy computation implies

I3 = t3I2. Hence t3R is a principal reduction of I. Since I is 2-generated, it

follows from [DGH, Proposition 3.5] that F (I) is Cohen-Macaulay and in fact a

complete intersection. Let X,Y be indeterminates over k and define a k-algebra

homomorphism φ : k[X,Y ] → F (I) by setting φ(X) = t3 and φ(Y ) = t4. Then

ker φ = Y 3k[X,Y ] and F (I) ∼= k[X,Y ]/Y 3k[X,Y ]. Thus t3 is a regular element

of F (I) and F (I)/t3F (I) ∼= k[Y ]/Y 3k[Y ]. Let J = t3R, R′ = R/J and I ′ = IR′.

Since t8 ∈ (I2 ∩ J), we have φ(Y 2) = t8 ∈ kerψJ and FR′(I
′) ∼= k[Y ]/Y 2k[Y ]. Thus

F (I)/t3F (I) 6∼= FR′(I
′). In fact, we have kerψJ = (t3, t8)F (I) and t8 6∈ t3F (I).

We list several observations and questions concerning the dimension of fiber cones

and their behavior under homomorphic image.

Discussion 3.3. Let I ⊆m be an ideal of a Noetherian local ring (R,m). If J ⊆m

is an ideal of R and R′ = R/J , then there exists a surjective ring homomorphism

χJ : GR(I) = R[It]/IR[It] → GR′(IR
′) of the associated graded ring GR(I) of I

onto the associted graded ring GR′(IR
′) of IR′ [K, page 150].

We have the following commutative diagram involving the associated graded rings

and fiber cones for which the vertical maps α and β are surjective:

GR(I) = R[It]/IR[It] = ⊕n≥0I
n/In=1 χJ−−−→ R′[I ′t]/I ′R′[I ′t] = ⊕(I ′)n/(I ′)n+1

α

y β

y
FR(I) = R[It]/mR[It]⊕n≥0 I

n/m In
ψJ−−−→ R′[I ′t]/m′R′[I ′] = ⊕n≥0(I ′)n/m(I ′)n

If J is nonzero, then kerχJ 6= 0. It can happen, however, that J is nonzero and

yet kerψJ = 0. This is possible even in the case where I is m-primary. In an

example exhibiting this behavior, commutativity of the diagram above implies one

must have kerχJ ⊆ kerα.

Example 3.4. Let k be a field and let R = k[x, y](x,y), where x2 = xy = 0. Let

I = yR and let J = xR. Then kerψJ =
⊕

n≥0
(xR∩ynR)+m ynR

m ynR = 0, but J = xR 6= 0.

A reason for the existence of examples such as Example 3.4 is given in Proposi-

tion 3.5.

Proposition 3.5. Suppose (R,m) is a Noetherian local ring and I is an m-primary

ideal. If the fiber cone F (I) is an integral domain, then kerψJ = 0 for every ideal
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J of R such that dim(R/J) = dimR. In particular, if I is m-primary and F (I) is

an integral domain, then there exists a prime ideal J of R such that kerψJ = 0.

Proof. Let R′ := R/J . Since I is m-primary, dimF (IR′) = dimR′. Thus dimR′ =

dimR implies dimF (IR′) = dimF (I). Since F (I) is an integral domain, it follows

that kerψJ = 0. The last statement follows becaues there exists a prime ideal J of

R such that dimR = dim(R/J).

Propositon 3.5 and Example 3.4 show that with notation as in (3.1), it can happen

that x∗ ∈ G(I) is not a regular element and yet kerψxR = xF (I).

In Section 4 we consider fiber cones F (I) such that kerψJ 6= 0 for each nonzero

ideal J .

4. Maximal fiber cones with respect to homomorphic image.

Suppose (R,m) is a Noetherian local ring and I ⊆ m is an ideal of R. If J is a

nonzero ideal of R such that kerψJ =
⊕

n≥0
(J∩In)+m In

m In is the zero ideal of F (I),

then we have FR(I) = FR′(IR
′), where R′ := R/J ; so the fiber cone F (I) is realized

as a fiber cone of a proper homomorphic image R′ of R. If there fails to exist such

an ideal J , i.e., if kerψJ 6= 0 for each nonzero ideal J , then we say that F (I) is a

maximal fiber cone of R.

We record in Remark 4.1 some immediate consequences of the inequality dimFR′(IR
′) ≤

dimR′.

Remark 4.1. With notation as in (2.1), we have:

(1) If J is such that dimR′ < dimR and if dimFR(I) = dimR, then kerψJ 6= 0.

(2) If I is m-primary and J is not contained in a minimal prime of R, then

kerψJ 6= 0.

(3) If R is an integral domain and dimF (I) = dimR, then F (I) is a maximal

fiber cone.

(4) If R is an integral domain, then F (I) is a maximal fiber cone for every

m-primary ideal I of R.

We are interested in describing all the maximal fiber cones of R. Thus we are

interested in conditions on I and R in order that there exist a nonzero ideal J of

R such that kerψJ = 0. In considering this question, by Proposition 2.3, one may

assume that J = xR is a nonzero principal ideal. Thus the question can also be

phrased:
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Question 4.2. Under what conditions on I and R does it follow for each nonzero

element x ∈m that kerψxR 6= 0?

Discussion 4.3. Information about Question 4.2 is provided by the work of Rees in

[R]. In particular, [R, Theorem 2.1] implies that if x ∈m is such that (In : x) = In

for each positive integer n, then FR(I) = FR′(I
′), where R′ := R/xR and I ′ := IR′.

Thus for x ∈ m a sufficient condition for kerψxR = 0 is that (In : x) = In for each

positive integer n. It is readily seen that this colon condition on x is equivalent to

x 6∈ I and the image of x in the associated graded ring G(I) = R[It]/IR[It] is a

regular element. More generally, if x ∈ Is− Is+1 and if the image x∗ of x in G(I) is

a regular element, then by Proposition 3.1 kerψxR = xF (I). Thus if we also have

x ∈ m Is, then kerψxR = 0. Example 3.4 shows that this sufficient condition for

kerψxR = 0 is not a necessary condition.

Proposition 2.3 gives a necessary and sufficient condition on a principal ideal

J = xR in order that kerψxR = 0, namely that (In : x) = (m In : x) for each

integer n ≥ 0. By Proposition 2.3, if kerψxR = 0, then also kerψyxR = 0 for every

y ∈ R.

If I = yR is a non-nilpotent principal ideal of R, we give in Corollary 4.5 necessary

and sufficient conditions for F (I) to be a maximal fiber cone.

Proposition 4.4. Suppose (R,m) is a Noetherian local ring and I = yR ⊆m is a

non-nilpotent principal ideal of R. For x ∈ m, we have kerψxR = 0 ⇐⇒ yn 6∈ xR
for each positive integer n.

Proof. We have kerψxR = 0 ⇐⇒ (ynR ∩ xR) ⊆ m ynR for each positive integer

n, and yn 6∈ xR ⇐⇒ (ynR ∩ xR) ( ynR ⇐⇒ (ynR ∩ xR) ⊆m ynR.

Corollary 4.5. Let (R,m) be a Noetherian local ring and I = yR ⊆ m be a non-

nilpotent principal ideal of R. Then F (I) is a maximal fiber cone if and only if R

is a one-dimensional integral domain.

Proof. By Proposition 4.4, for x ∈ m we have y ∈ radxR ⇐⇒ kerψxR 6= 0.

Suppose F (I) is a maximal fiber cone. Then by definition, kerψxR 6= 0 for each

nonzero x ∈ m. Since y is not nilpotent, there exists a minimal prime P of R such

that y 6∈ P . It follows that P = 0, for if not, then there exists a nonzero x ∈ P and

y ∈ radxR ⊆ P implies y ∈ P . Thus R is an integral domain. Moreover, this same

argument implies y is in every nonzero prime of R. Since R is Noetherian, it follows

that dimR = 1. For yR has only finitely many minimal primes and every minimal
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prime of yR has height one by the Altitude Theorem of Krull [N, page 26] or [Mat,

page 100]. If there exists P ∈ SpecR with htP > 1, then the Altitude Theorem of

Krull implies P is the union of the height-one primes contained in P . This implies

there exist infinitely many height-one primes contained in P . Since y is contained

in only finitely many height-one primes, this is impossible. Thus dimR = 1. Since

R is local, m is the only nonzero prime of R.

Conversely, if R is a one-dimensional Noetherian local integral domain, then (4.1)

implies that F (I) is a maximal fiber cone for every non-nilpotent principal ideal

I = yR ⊆m.

Question 4.6. If F (I) is a maximal fiber cone of R, does it follow that dimF (I) =

dimR?

Proposition 4.7. Suppose (R,m) is a Noetherian local ring and I ⊆m is an ideal

of R. If dimF (I) := n = ht(I) < dimR and if F (I) is an integral domain, then

F (I) is not a maximal fiber cone. In particular, if I is of the principal class, i.e.,

I = (a1, . . . , an)R, where ht(I) = n, and if ht(I) < dimR, then F (I) is not a

maximal fiber cone of R.

Proof. Choose x ∈ m such that x is not in any minimal prime of I. Then L :=

(I, x)R has height n+ 1. Let x denote the image of x in the fiber cone FR(L). Then

FR(L) is a homomorphic image of a polynomial ring in one variable FR(I)[z] over

FR(I) by means of a homomorphism mapping z → x. Since dimF (I) = n and F (I)

is an integral domain, it follows that F (I)[z] ∼= F (L) by means of an isomorphism

taking z → x. Let J = xR and R′ := R/J . Then ht(IR′) = ht(L/xR) = n,

so dimFR′(IR
′) ≥ n. Since ψJ : FR(I) → FR′(IR

′) is surjective and FR(I) is

an n-dimensional integral domain, it follows that ψJ : FR(I) → FR′(IR
′) is an

isomorphism. In particular, if I is of the principal class, then F (I) is a polynomial

ring in n variables over the fieldR/m, so F (I) is an integral domain with dimF (I) =

ht(I).

If I is generated by a regular sequence, then I is of the principal class. Thus

if F (I) is a maximal fiber cone and I is generated by a regular sequence, then by

Proposition 4.7, dimF (I) = dimR.

We observe in Proposition 4.8 a situation where the integral domain hypothesis

of Proposition 4.7 applies.

Proposition 4.8. Let A = k[X1,X2, · · · ,Xd] =
⊕∞

n=0An be a polynomial ring in

d variables over a field k and let m = (X1,X2, · · · ,Xd)A denote its homogeneous
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maximal ideal. Suppose I = (f1, f2, · · · , fn)A, where f1, f2, · · · , fn are homogeneous

polynomials all of the same degree t. Let R = Am. Then F (IR) is an integral

domain. Thus if F (IR) is a maximal fiber cone, then dimF (IR) = d.

Proof. We have

k[f1, f2, · · · , fn] = k ⊕ I1 ⊕ I2 ⊕ · · · ,
where Ii = Ii∩Ait for i > 0. Since Ii/mIi ∼= Ii∩Ait for i ≥ 0, we have the following

isomorphisms:

k[f1, f2, · · · , fn] ∼= ⊕∞i=0(Ii/m Ii) ∼= ⊕∞i=0(IiR/m IiR) = F (IR).

Therefore F (IR) is an integral domain. The result now follows from Proposition

4.7.

Corollary 4.9. With notation as in Proposition 4.8, if dimF (I) = ht I and F (IR)

is a maximal fiber cone, then I is m-primary.

Proof. We have dimF (IR) = d by Proposition 4.8. Since I is homogeneous ideal

and ht I = d, m is the unique homogeneous minimal prime of I, Therefore I is

m-primary.

Question 4.10. Let (R,m) be a Noetherian local ring and let I ⊆ m be an ideal

of R. If dimF (I) = ht I and F (I) is a maximal fiber cone, does it follow that I is

m-primary?

Remark 4.11. Without the assumption in Question 4.10 that dimF (I) = ht I,

it is easy to give examples where F (I) is a maximal fiber cone and yet I is not

m-primary. For example, with notation as in Proposition 4.8, if d > 1 and I =

(X2
1 ,X1X2, . . . ,X1Xd)A, then ht(IR) = 1, but dimF (IR) = d and F (IR) is a

maximal fiber cone.

5. When is the fiber cone a hypersurface?

Setting 5.1. Let I ⊆ m be an ideal of a Noetherian local ring (R,m). In this

section we consider the structure of the fiber cone F (I) = ⊕n≥0Fn in the case

where dimF (I) = d > 0 and µ(I) = d + 1. If a1, . . . , ad+1 is a basis for F1 =

I/m I as a vector space over the field k := R/m, then there exists a presentation

φ : k[X1, . . . ,Xd+1] → F (I) of F (I) as a graded k-algebra homomorphic image

of a polynomial ring in d + 1 variables over k defined by setting φ(Xi) = ai, for

i = 1, . . . , d+ 1. Moreover, F (I) is a hypersurface if and only if kerφ is a principal

ideal [K, Examples 1.2].
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Lemma 5.2. Let (R,m) be a Noetherian local ring having infinite residue field

R/m := k, and let I ⊆ m be an ideal of R such that dimF (I) = d > 0 and µ(I) =

d+ 1. Let r = r(I) denote the reduction number of I and let φ : k[X1, . . . ,Xd+1]→
F (I) be a presentation of the fiber cone F (I) as in Setting 5.1. Then the minimal

degree of a nonzero form f ∈ kerφ is r + 1.

Proof. The map φ from the graded ring A = k[X1, . . . ,Xd+1] = ⊕n≥0An onto

the graded ring F (I) = ⊕n≥0Fn = ⊕n≥0(In/m In) is a surjective graded k-algebra

homomorphism of degree 0. Let K := ker φ = ⊕n≥0Kn. For each positive integer n

we have a short exact sequence

0→ Kn → An → Fn → 0

of finite-dimensional vector spaces over k. Since I has reduction number r, it follows

from [ES, Theorem, page 440] that dimk Fi = µ(Ii) =
(
i+d
d

)
for i = 0, 1, . . . , r and

dimk Fr+1 = µ(Ir+1) <
(
r+d+1
d

)
. Since dimAi =

(
i+d
d

)
for all i, it follows that

Ki = 0 for i = 0, . . . , r and Kr+1 6= 0. Hence the minimal degree of a nonzero form

f ∈ ker φ is r + 1.

Remark 5.3. LetA = k[X1, . . . ,Xn] be a polynomial ring in n variables X1, . . . ,Xn

over a field k. For an ideal K of A, it is well known that ht(K) = 1 if and only if

dim(A/K) = n− 1 [K, Corollary 3.6, page 53]. Moreover, K is principal if and only

if ht(P ) = 1 for each associated prime P of K. If K = (g1, . . . , gm)A and g is a

greatest common divisor of g1, . . . , gm, then K = gJ , where ht(J) > 1. Thus K is

principal if and only if J = A. If K is homogeneous, then g1, . . . , gm may be taken

to be homogeneous; it then follows that g is homogeneous and K = gJ , where J is

homogeneous with ht(J) > 1. If K = radK, then each associated prime of K is a

minimal prime and K is principal if and only if ht(P ) = 1 for each minimal prime

P of K.

Proposition 5.4. Let (R,m) be a Noetherian local ring with infinite residue field

k = R/m and let I ⊆ m be an ideal of R such that dimF (I) = d > 0 and µ(I) =

d + 1. Let φ : A = k[X1, . . . ,Xd+1] → F (I) be a presentation of F (I) as a graded

homomorphic image of a polynomial ring as in Setting 5.1. Let f ∈ K := ker φ be a

nonzero homogeneous form of minimal degree. Then the following are equivalent.

(1) kerφ = fA, i.e., F (I) is a hypersurface.

(2) htP = 1 for each P ∈ AssK.

(3) F (I) is a Cohen-Macaulay ring.

(4) deg f = e(F (I)), the multiplicity of F (I).
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Proof. That (1) is equivalent to (2) is observed in Remark 5.2. It is clear that

(1) implies (3) and it follows from [BH, (2.2.15) and (2.1.14)] that (3) implies (2).

To see the equivalence of (3) and (4), we use [DRV, Theorem 2.1]. By Lemma 5.2,

deg f = r + 1, where r is the reduction number of I.

Since dimF (I) = d, there exists a minimal reduction J = (x1, . . . , xd)R of I and

y ∈ I such that I = J + yR. By [DRV, Theorem 2.1], F (I) is Cohen-Macaulay if

and only if

e(F (I)) =
r∑

n=0

λ(
In

JIn−1 + m In
).

Since for 0 ≤ n ≤ r, λ( In

JIn−1+m In
) = 1, the sum on the right hand side of the

displayed equation is r + 1 = deg f . This proves the equivalence of (3) and (4).

Remark 5.5. With notation as in Proposition 5.4, we have the following inequality

e(F (I)) ≤ deg f , where e(F (I)) is the multiplicity of F (I). Hence by Proposition 5.4,

F (I) is not Cohen-Macaulay ⇐⇒ e(F (I)) < deg f .

Proof. Let J = (x1, . . . , xd)R be a minimal reduction of I. Then JF (I) is gener-

ated by a homogeneous system of parameters for F (I) and

λ(
F (I)

JF (I)
) =

r∑
n=0

λ(
In

JIn−1 + m In
).

Let M denote the maximal homogeneous ideal of F (I). Then

e(F (I)) = e(F (I)M) ≤ λ(
F (I)M
JF (I)M

) = λ(
F (I)

JF (I)
).

Thus e(F (I)) ≤ deg f = r + 1. Hence by Proposition 5.4, F (I) is not Cohen-

Macaulay if and only if e(F (I)) < deg f .

Theorem 5.6. Let (R,m) be a Noetherian local ring with infinite residue field

k = R/m and let I ⊆ m be an ideal of R such that dimF (I) = d > 0 and

µ(I) = d+1. Suppose there exists a minimal reduction J of I generated by a regular

sequence. Assume that grade(G+(I)) ≥ d − 1. Then F (I) is Cohen-Macaulay and

thus a hypersurface.

Proof. For x ∈ R, let x∗ denote the image of x in G(I) and let x denote the image

of x in F (I). There exists a minimal reduction J = (x1, . . . , xd) ⊆ I and xd+1 ∈ I
such that

(I) {x1, . . . , xd} is a regular sequence in R.

(II) {x1, . . . , xd, xd+1} is a minimal set of generators of I.

(III) {x∗1, . . . , x∗d−1} is a regular sequence in G(I).
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Let R′ = R/(x1, . . . , xd−1)R, let m′ = m /(x1, . . . , xd−1)R and let I ′ = IR′. By

Condition II, I ′ is a 2-generated ideal having a principal reduction generated by the

image x′d of xd. Condition I implies that x′d is a regular element of R′. Hence by

[DGH, Proposition 3.5], FR′(I
′) is Cohen-Macaulay.

As observed in (2.1), the kernel of the canonical map ψ : FR(I)→ FR′(I
′) is

⊕n≥0
(In ∩ (x1, . . . , xd−1)) + m In

m In
.

Condition III and Proposition 3.1 imply

kerψ = ⊕n≥0
(x1, . . . , xd−1)In−1 + m In

m In
= (x1, . . . , xd−1)F (I).

Hence
F (I)

(x1, . . . , xd−1)
∼= FR′(I

′)

and to show F (I) is Cohen-Macaulay, it suffices to show {x1, . . . , xd−1} is a regular

sequence in F (I). By the generalized Vallabrega-Valla criterion of Cortadellas and

Zarzuela [CZ, Theorem 2.8], to show {x1, . . . , xd−1} is a regular sequence in F (I),

it suffices to show

(x1, . . . , xd−1) ∩m In+1 = (x1, . . . , xd−1) m In, for all n ≥ 0.

“ ⊇′′ is clear. We prove “ ⊆′′ by induction on n.

(Case i ) n = 0 : Let u ∈ (x1, . . . , xd−1) ∩m I. Thus u =
∑d−1

i=1 rixi =
∑d+1

j=1 αjxj ,

where ri ∈ R and αj ∈m. Therefore

(r1 − α1)x1 + · · ·+ (rd−1 − αd−1)xd−1 − αdxd − αd+1xd+1 = 0.

Since {x1, . . . , xd+1} is a minimal generating set for I, each ri − αi ∈ m. Since

αi ∈m, ri ∈m. Hence u =
∑d−1

i=1 rixi ∈m(x1, . . . , xd−1).

(Case ii ) 1 ≤ n < r, where r = rJ(I) is the reduction number of I with re-

spect to J : We have (x1, . . . , xd−1) ∩m In+1 = (x1, . . . , xd−1) ∩ (In+1 ∩m In+1)

= ((x1, . . . , xd−1) ∩ In+1) ∩m In+1 = ((x1, . . . , xd−1)In ∩m In+1, the last equality

by Condition III.

Hence u ∈ (x1, . . . , xd−1)∩m In+1 implies u ∈ ((x1, . . . , xd−1)In ∩m In+1. Thus

u =
∑d−1

i=1 xigi, where gi ∈ In and u = H(x1, . . . , xd+1), where H(X1, . . . ,Xd+1) ∈
R[X1, . . . ,Xd+1] is a homogeneous polynomial with coefficients in m of degree n+1.

Let Gi(X1, . . . ,Xd+1) ∈ R[X1, . . . ,Xd+1] be a homogeneous polynomial of degree

n such that Gi(x1, . . . , xd+1) = gi.

Let τ : R[X1, . . . ,Xd+1] → R[It], where τ(Xi) = xit be a presentation of the

Rees algebra R[It]. Consider the following commutative diagram.
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0 −−−→ ker(τ) −−−→ R[X1, . . . ,Xd+1]
τ−−−→ R[It] −−−→ 0

π1

y π2

y π3

y
0 −−−→ ker(φ) −−−→ (R/m)[X1, . . . ,Xd+1]

φ−−−→ F (I) −−−→ 0

Since
∑d−1

i=1 xigi −H(x1, . . . , xd+1) = 0, the homogeneous polynomial

d−1∑
i=1

XiGi(X1, . . . ,Xd+1)−H(X1, . . . ,Xd+1) ∈ ker τ.

Since H(X1, . . . ,Xd+1) has coefficients in m, we have

0 = π3τ(

d−1∑
i=1

XiGi −H) = φπ2(

d−1∑
i=1

XiGi −H) = φπ2(

d−1∑
i=1

XiGi).

Hence π2(
∑d−1

i=1 XiGi) ∈ ker φ. Since
∑d−1

i=1 XiGi is of degree n + 1 ≤ r, Lemma

5.2 implies π2(
∑d−1

i=1 XiGi) = 0. Therefore the coefficients of
∑d−1

i=1 XiGi are in

m. Evaluating this polynomial by mapping Xi 7→ xi gives u =
∑d−1

i=1 xigi ∈
(x1, . . . , xd1) m In.

( Case iii ) n ≥ r : Since n ≥ r, we have In+1 = JIn = (x1, . . . , xd)I
n.

Let u ∈ (x1, . . . , xd−1) ∩ m In+1 = (x1, . . . , xd−1) ∩ m(x1, . . . , xd)I
n. Thus u =∑d−1

i=1 rixi =
∑d

j=1 αjxj, where each ri ∈ R and each αj ∈ m In. Hence αdxd =∑d−1
i=1 (ri − αi)xi and this implies αd ∈ ((x1, . . . , xd−1) : xd) = (x1, . . . , xd−1), the

last equality because of Condition I. Hence

αd ∈ (x1, . . . , xd−1) ∩m In = (x1, . . . , xd−1) m In−1,

the last equality because of our inductive hypothesis. Thus u =
∑d

j=1 αjxj =∑d−1
j=1 αjxj+αdxd ∈ (x1, . . . , xd−1) m In+(x1, . . . , xd−1) m In−1I = (x1, . . . , xd−1) m In.

This completes the proof that {x1, . . . , xd−1} is a regular sequence in F (I), and thus

the proof of Theorem 5.6

6. The Cohen-Macaulay property of one-dimensional fiber cones

We record in this short section several consequences of a result of D’Cruz, Ragha-

van and Verma [DRV, Theorem 2.1] for the Cohen-Macaulay property of the fiber

cone of a regular ideal having a principal reduction.

Proposition 6.1. Let (R,m) be a Noetherian local ring and let I ⊆m be a regular

ideal having a principal reduction aR. Let r = raR(I) be the reduction number of I

with respect to aR. Then the following are equivalent.
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(1) F (I) is a Cohen-Macaulay ring.

(2) λ
(
aIn+m In+1

m In+1

)
= λ

(
In

m In

)
for 1 ≤ n ≤ r − 1.

Proof. (1)⇒ (2). Suppose F (I) is a Cohen-Macaulay ring. Then a(= a+m I) is a

regular element of F (I) with deg a = 1. Let F (I) = ⊕n≥0Fn, where Fn = In/m In,

and consider the graded k-algebra homomorphism φa : Fn → Fn+1 given by φa(x) =

x · a, for every x ∈ Fn. Since a is a regular element of F (I), dimk Fn = dimk(aFn).

For 1 ≤ n ≤ r − 1, we have

λ
(aIn + m In+1

m In+1

)
= λ

(
a
( In

m In
))

= dimk(aFn) = dimk(Fn) = λ
( In

m In
)
.

(2) ⇒ (1). Suppose that λ
(
aIn+m In+1

m In+1

)
= λ

(
In

m In

)
, for 1 ≤ n ≤ r − 1. Since

a is a non-zero-divisor R, In+r/m In+r ∼= Ir/m Ir, for every n ≥ 1. Hence

e(F (I)) = λ(Ir/m Ir). To see the Cohen-Macaulay property of F (I), we use [DRV,

Theorem 2.1]. We have the following:
r∑

n=0

λ
( In

aIn−1 + m In
)

= λ
(R
m

)
+

r∑
n=1

λ
( In

aIn−1 + m In
)

= λ
(R
m

)
+

r∑
n=1

[
λ
( In

m In
)
− λ
(aIn−1 + m In

m In
)]

= λ
(R
m

)
+

r∑
n=1

[
λ
( In

m In
)
− λ
( In−1

m In−1

)]
= λ

( Ir

m Ir
)

= e(F (I)).

Hence by [DRV, Theorem 2.1], F (I) is a Cohen-Macaulay ring.

As an immediate consequence of Proposition 6.1 we have

Corollary 6.2. Let (R,m) be a Noetherian local ring and I be a regular ideal having

a principal reduction aR with raR(I) = 2. If µ(I) = n, then

F (I) is Cohen-Macaulay ⇐⇒ λ
(aI + m I2

m I2

)
= n.

Example 6.3 shows that Proposition 6.1 and Corollary 6.2 may fail to be true

without the assumption on the length of aIn+m In+1

m In+1 .

Example 6.3. Let k be a field and consider the subring R = k[[t3, t7, t11]] of the

formal power series ring k[[t]]. Let I = (t6, t7, t11)R. An easy computation implies

t6I 6= I2 and t6I2 = I3. Hence rt6R(I) = 2. Note that t6F (I) is a homogeneous

system of parameter of F (I). But t6t11 = (t6 + m I)(t11 + m I) = t17 + m I2 =
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0, and hence F (I) is not a Cohen-Macaulay ring. And λ
(
t6I+m I2

m I2

)
= λ

(
I2

m I2

)
−

λ
(

I2

t6I+m I2

)
= 2 < 3.
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