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Abstract. We prove an existence theorem for dicritical divisors.
Key Words: Dicritical, DVR.

Section 1: Introduction. The analytical (topological) concept of dicritical

divisors was developed by several authors such as Artal [Art], Eisenbud-Neumann

[EiN], Fourrier [Fou], Le-Weber [LeW], and Mattei-Moussu [MaM]. It was then

algebracized by Abhyankar in the paper [Ab5] entitled “Inversion and Invariance of

Characteristic Terms Part I.” We shall use the notation and terminology of [Ab5].

Especially Sections 1 and 5 of [Ab5], together with the preamble and Note (II**)

of Section 4 of [Ab5], will be used mostly without explicit mention.

To introduce some more terminology, let R be a two dimensional regular local

domain with quotient field L. For any z in L, the set of all dicritical divisors of z in

R will be denoted by D(R, z). Note that D(R)∆ is the set of all prime divisors of

R, and D(R, z) is the finite set consisting of those V in D(R)∆ relative to which z is

residually transcendental over R; see Note (5.6) of Section 5 of [Ab5]. Conversely,

for any finite subset U of D(R)∆, by D
∗(R,U) we denote the set of all z ∈ L such

that D(R, z) = U .

To enhance the study of dicritical divisors started in [Ab5] we prove the following

ET= Existence Theorem and ask the following EQ = Existence Question:

ET. Given any finite subset U of the set D(R)∆ of all prime divisors of a two

dimensional regular local domain R with quotient field L, there exists z ∈ L× such

that U coincides with the set of all dicritical divisors of z in R. Moreover, if the

residue field R/M(R) is infinite then z can be chosen so that for every V in U we

have z ∈ V with H(V ) = K ′(HV (z)) where HV : V → H(V ) = V/M(V ) is the
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residue class epimorphism and K ′ is the relative algebraic closure of K = HV (R)

in H(V ).

EQ. Can you describe the set D∗(R,U)?

Our main tools will be Appendix 5 of volume II of Zariski’s algebra book [Zar]

and the Northcott-Rees paper [NoR]. We shall also refer to the 1956 paper [Ab1]

which is a precursor of the present paper. The paper [Ab1] was expanded into the

monograph [Ab2]. We shall use the language of models introduced in [Ab2] and

expanded in the books [Ab3] and [Ab4]. In general we shall follow the notation and

terminology of [Ab4] and we shall use results from it tacitly.

Section 2: Notation and ZQT. We introduce some more terminology.

If i is any nonnegative integer then the set of all i-dimensional members of

V(S), V(S, J), W(S, J), W(S, J)∆, W(k;x1, . . . , xp) is denoted by V(S)i, V(S, J)i,

W(S, J)i, W(S, J)∆i , W(k;x1, . . . , xp)i respectively, and the set of all height i mem-

bers of spec(S) is denoted by spec(S)i, where these objects are as defined in the

preamble of Section 4 of [Ab5] and item (5.4) of Section 5 of [Ab5].

Let A be a domain with quotient field L. For any V ∈ D(L/A), by a V -ideal in

A we mean an ideal J in A such that J = I ∩A for some ideal I in V . Let A be the

integral closure of A in L. By a complete ideal in A we mean an ideal J in A such

that J = ∩V ∈D(L/A)(I(V )∩A) where, for each V ∈ D(L/A), I(V ) is some ideal in

V . By C(A) we denote the set of all nonzero complete ideals in A. Ideal J in A

is simple means (1) J 6= A and (2) J1, J2 ideals in A with J = J1J2 ⇒ J1 = A or

J2 = A. If A is quasilocal then we define AN to be the set of all members of V(A)

which dominate A and we call AN the local normalization of A. Likewise, for

any set U of quasilocal domains we put UN = ∪B∈UB
N.

For any positive dimensional regular local domain S with quotient field L, let

o(S) denote the DVR with quotient field L such that ordo(S)x = ordSx for all

x ∈ L. In other words, o(S) is the unique one dimensional first QDT of S. We call

o(S) the natural DVR of S.
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Let R be a two dimensional regular local domain with quotient field L. Let

C(R) denote the set of all M(R)-primary simple complete ideals in R. Let Q(R)

denote the set of all two dimensional regular local domains whose quotient field

is L and which dominate R. By Section 2 of [Ab1] we see that S 7→ o(S) gives a

bijection oR : Q(R) → D(R)∆. By Section 2 of [Ab1] we also see that, given any

V in D(R)∆, there exists a unique sequence (Rj)0≤j≤ν with ν ∈ N and R0 = R

such that Rj+1 is a two dimensional first QDT of Rj for 0 ≤ j < ν and o(Rν) = V ;

we call this sequence the finite QDT sequence of R along V . Note the disjoint

partition Q(R) =
∐

j∈N
Qj(R) where Qj(R) is the set of all those members of

Q(R) which are j-th QDTs of R. Note that oR(Rν) = V and o−1
R (V ) = Rν .

Given any S ∈ Q(R) and any nonzero ideal I in R we define the (R,S)-transform

of I to be the unique ideal J in S which we shall denote by (R,S)(I) and which

is characterized by requiring that

IS = J
∏

M(R)⊂M(W )

(S ∩M(W ))ordW (IS)

where the product is taken over the set W of all one dimensional members W of

V(S) with M(R) ⊂ M(W ). Note that S = R ⇔ W = ∅. Moreover, if S 6= R then

eitherW = {SxS} with x ∈M(S)\M(S)2 orW = {SxS , SyS} with (x, y)S = M(S).

The following ZQT = Zariski Quadratic Theorem is the main message of the

Appendix 5 of volume II of Zariski’s book [Zar].

ZQT. (I) Given any V ∈ D(R)∆ there is at least one and at most a finite number

of V -ideals in R which are members of C(R). Labelling these members of C(R) as

M(R) = J0 % J1 % · · · % Jν

we get a bijection ζR : D(R)∆ → C(R) by taking ζR(V ) = Jν . We call ζR the

Zariski map of R. Also we call (Ji)0≤i≤ν the simple V -ideal sequence of R.

(II) To describe the inverse map ζ−1
R more explicitly we proceed thus. Given any

I ∈ C(R) let (R0, I0) = (R, I). It can be shown that if I0 6= M(R0) then there is

a unique R1 ∈ Q1(R0) such that upon letting I1 = (R0, R1)(I0) we have I1 6= R1.

It can also be shown that I1 ∈ C(R1). If I1 6= M(R1) then let (R2, I2) be the pair

such that R2 ∈ Q1(R1) and I2 = (R1, R2)(I1) 6= R2. And so on. It can be shown
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that this process is finite. Thus we get a unique sequence (Rj , Ij)0≤j≤ν with ν ∈ N

such that Rj+1 ∈ Q1(Rj) with Ij ∈ C(Rj) \ {M(Rj)} and Ij+1 = (Rj , Rj+1)(Ij)

for 0 ≤ j < ν, and Iν = M(Rν). We call this sequence the transform sequence

of (R, I). Let V = o(Rν). Now clearly (Rj)0≤j≤ν is the finite QDT sequence of R

along V . It can be shown that the map ηR : C(R) → D(R)∆ given by I 7→ V is a

bijection. Indeed ηR = ζ−1
R . Moreover, if the V here is the same as the V above

then the two values of ν coincide and we have Ji = R∩ Iν−i for 0 ≤ i ≤ ν. We call

ηR the inverse Zariski map of R. Note that ζRoR : Q(R) → C(R) is a bijection

and its inverse is the bijection o−1
R ηR : C(R) → Q(R). Moreover (o−1

R ηR)(I) = Rν .

(III) The product of any finite number of members of C(R) is again a member

of C(R). Every I ∈ C(R) has a unique factorization

I = Î
∏

J∈C(R)

Ju(I,J) with nonzero principal ideal Î in R

where u(I, J) ∈ N with u(I, J) = 0 for all except finitely many J .

(IV) In the situation of (III), upon letting

ηR(I) = {ηR(J) : J ∈ C(R) with u(I, J) > 0}

we have that ηR(I) is a finite subset of D(R)∆ and

W(R, I)∆1 = ηR(I).

Conversely, for any finite subset U of D(R)∆, upon letting

ζR(U) =
∏

V ∈U

ζR(V )

we have ζR(U) ∈ C(R) and

W(R, ζR(U))∆1 = U.

Section 3: Sketch Proof of ET. In (3.1) we shall outline a sketch proof of

ET. A complete proof of ET will be given in Section 9. In (3.2) we shall expand on

ZQT. Let R be a two dimensional regular local domain with quotient field L and

maximal ideal M = M(R). Let U be a finite subset of prime divisors of R.
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SKETCH PROOF OF ET (3.1). Let I = ζR(U). Since R is noetherian, I has a

finite set of generators x1, . . . , xp. Take two generic linear combinations

x = a1x1 + · · · + apxp and y = b1x1 + · · · + bpxp

where a1, . . . , ap, b1, . . . , bp are elements of R whose images in R/M(R) avoid the

zeroset of a certain nonzero polynomial P (A1, . . . , Ap, B1, . . . , Bp) with coefficients

in R/M(R). Then z = x/y is a desired member of L×. In the more general case,

generic linear combinations can be replaced by a two-generated reduction of I as

in Northcott-Rees [NoR].

Another helpful idea is to make induction on the depth d(R,U) of R in U which

is defined to be the maximum of d(R, V ) with V varying over U , where the depth

d(R, V ) of R in V is defined to be ν + 1 where (Rj)0≤j≤ν is the QDT sequence of

R along V ; convention: d(R,U) = 0 ⇔ U = ∅. By (5.6)(†∗) of Section 5 of [Ab5]

we have

d(R,U) = 0 ⇔ D
∗(R,U) = {z ∈ L× : either z ∈ R or 1/z ∈ R}.

So let d(R,U) > 0 and assume for all smaller values of d(R,U). And so on.

COMPLEMENT TO ZQT (3.2). Appendix 5 of volume II of Zariski’s book [Zar]

is not easy to read. So here is some help especially for deciphering ZQT(IV). Let us

observe that ZQT(I) and ZQT(II) are proved in Subsection 5 on pages 388-393 of

Appendix 5. Likewise ZQT(III) is proved in Theorems 2′ and 3 on pages 385-386 of

Appendix 5. Theorem 2′ says that the set C(R) of all nonzero complete ideals in R

is closed under multiplication. Theorem 3 proves that an M -primary complete ideal

I has a unique factorization into members J of C(R) = the set of all M -primary

simple complete ideals in R.

Before turning to ZQT(IV), a word about QDTs. Let k be the residue field R/M ,

let κ be a coefficient set of R, let (t1, t2) be generators of M , and let (z1, z2) be

their respective leading forms. For the graded ring of R we have grad(R,M) = the

bivariate polynomial ring k[z1, z2]. The leading form l(t) of any t ∈ Mn \Mn+1

with n ∈ N is the image of t under the canonical epimorphism Mn → Mn/Mn+1

followed by the canonical monomorphism Mn/Mn+1 → k[z1, z2]; if t = 0 then
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l(t) = 0. LetW be the set consisting of z1 together with all homogeneous irreducible

members of k[z1, z2] of the form

g = g(z1, z2) = zω
2 +

∑

1≤i≤ω

aiz
i
1z

ω−i
2 with ai ∈ k.

For the above g let

g = (t2/t1)
ω +

∑

1≤i≤ω

ai(t2/t1)
ω−i where ai ∈ κ with HR(ai) = ai.

If g = z1 then take g = t1/t2. This gives a subset W of L such that g 7→ g

gives a bijection W → W . In turn g 7→ Sg gives a bijection W → Q1(R) where

M(Sg) = (g, t2)Sg or M(Sg) = (t1, g)Sg according as g = z1 or g 6= z1. We let

ǫ : W → Q1(R) and δ : Q1(R) →W

be the bijections g 7→ Sg and Sg 7→ g respectively.

With this preparation in hand, let us complete the proof of ZQT(IV). In doing

so we shall tacitly use the implication to be proved in Lemma (8.2) of Section

8 which says that for any complete ideal I in a two dimension regular local domain

R we have W(R, I)N = W(R, I).

The “conversely” part of ZQT(IV) follows from the first part of ZQT(IV) and

hence it suffices to show that, given any nonzero complete ideal I in R, upon letting

U = {ηR(J) : J ∈ C(R) : u(I, J) > 0}, we have W(R, I)∆1 = U .

Now contracted ideals of R are defined at the top of page 373 of Appendix 5, and

on the same page Theorem 1 about their factorization is proved using characteristic

form c defined on page 363 and using order r of an ideal or element of R defined

on page 362; this order is our ordR. Now look at our ZQT(III) = Theorem 3 of

Appendix 5. In the first paragraph of page 379 which is the beginning of Subsection

4 of Appendix 5, Zariski proves the important fact that complete ideals are

contracted ideals. Now M ∈ C(R) and the argument in the proof of Theorem 3

shows that c(M) = 1 whereas for any J ∈ C(R) \ {M} we have c(J) = gλ for a

unique g ∈W and λ ∈ N+. In ZQT(III) let us label the J 6= M with u(I, J) > 0 as

(Jij)1≤i≤m,1≤j≤ni
with m ∈ N and ni ∈ N+ so that c(Jij) and c(Ji′j′) are powers

of the same member of W iff i = i′; let c(Jij) = g
λij

i . Since W(R, I) is unchanged

if we multiply I by a nonzero principal ideal, we may assume Î = R. By the said
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argument we can match up with Theorem 1 by taking

A = I with u(I,M) = r − s

and

Bi =
∏

1≤j≤ni

Jij and λi =
∑

1≤j≤ni

λij for 1 ≤ i ≤ m.

with

ordRA = r and ordR

∏

1≤i≤m

Bi = s.

We claim that

(1) u(I,M) = 0 ⇔ o(R) 6∈ W(R, I)∆1 .

To see this, take a finite set of generators (x1, . . . , xp) of I. After suitable relabelling

we may assume that (i) ordRxi = r or ordRxi > r according as 1 ≤ i ≤ q or

q < i ≤ p with q ∈ N+. Replacing x2, . . . , xq by x2 − a2x1, . . . , xq − aqx1 with

suitable a2, . . . , aq in R and then again relabelling we may assume that in addition

(i) we have that (ii) l(xi)/l(x1) 6∈ k for 2 ≤ i ≤ q. Note that then (iii) for 2 ≤ i ≤ q

we have l(xi)/l(x1) 6∈ k and l(x1)/l(xi) 6∈ k. Clearly u(I,M) = 0 ⇔ q = 1. Upon

letting A = R[x2/x1, . . . , xp/x1] we have A ⊂ o(R) V(A) ⊂ W(R, I). Moreover,

upon letting S be the center of o(R) on V(A) we see that q = 1 or q ≥ 2 according

as dim(S) = 2 or dim(S) = 1. QED.

For 1 ≤ i ≤ m, upon letting Si = ǫ(gi) we see that Si is the center of ηR(Jij)

on W(R,M) for 1 ≤ j ≤ ni. Moreover, S1, . . . , Sm are exactly all those distinct

members S of Q1(R) such that (R,S)(I) 6= S. In view of (6.6.6) and (6.6.8) on

pages 182-183 of [Ab3], by ZQT(I) and ZQT(II) we get the following.

(2)






Assuming d(R,U) > 0, for 1 ≤ i ≤ m,

upon letting Ii = (R,Si)(I) we have

Ii ∈ C(Si) and {ηR(Jij : 1 ≤ j ≤ ni} = ηSi
(Ii).

Moreover we have W(R, I)∆1 \ {o(R)} =
⋃

1≤i≤m W(Si, Ii)
∆
1 .

Finally we observe the following.

(3)

{
As noted in (3.1), d(R,U) = 0 ⇔ U = ∅.

Hence if U = ∅ then I = R and W(R, I)∆1 = ∅.

In view of (1) to (3) we are done by induction on d(R,U).
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Section 4: Integral Dependence and Reductions of Ideals. Let R ⊂ S

be nonnull rings and let J be an ideal in R. An element x of S is integral over J

means f(x) = 0 for a univariate polynomial f(Z) of the form

(∗) f(Z) = Zn + y1Z
n−1 + · · · + yn with n ∈ N+ and yi ∈ J i for 1 ≤ i ≤ n.

A subset T of S is integral over J means every x ∈ T is integral over J . We

may write x/J (is) integral or T/J (is) integral to indicate that x is integral over

J or T is integral over J respectively. By the integral closure of J in S we mean

the set of all elements of S which are integral over J . Note that if J = R then

J i = J for all i and hence in that case these definitions of integral over and integral

closure coincide with the usual definitions. For the above definitions see L4§10(E2)

on pages 161-163 of [Ab4] and Definition 2 on page 349 of volume II of [Zar].

Let I be an ideal in R. We say that J is a reduction of I to mean that

(†) J ⊂ I and JIn = In+1 for some n ∈ N.

The above definition of reduction was first introduced by Northcott-Rees in [NoR].

We may write J/I (is a) reduction to indicate that J is a reduction of I. Clearly

(‡) (†) ⇒ JpIq = Ip+q for all integers p > 0 and q ≥ n.

To see this, multiply both sides of (†) by Iq−n to get JIq = JIq+1, i.e., we get (‡)

for p = 1. Now letting p > 1 and assuming (‡) for p− 1 we have Jp−1Iq = Ip+q−1.

Multiplying both sides by J we get JpIq = JIp+q−1 = Ip+q. So we are done by

induction on p.

We shall use various concepts concerning graded rings and homogeneous rings.

For the basic material about these matters see L5§§2-3 on pages 206-216 of [Ab4].

By the Rees ring of I relative to R with variable Z we mean the ring ER(I)

obtained by putting

ER(I) = R[IZ].

Note that R[Z] is the univariate polynomial ring as a naturally graded homogeneous

ring with R[Z]n = the set of all homogeneous polynomials of degree n including the

zero polynomial, and n varying over N. Now ER(I) is a graded subring of R[Z].

We make the convention that the reference to R and Z may be omitted when it is
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clear from the context. Thus we write E(I) instead of ER(I). Note that

(4.1)

{
as a ring E(I) is generated over its subring R

by the set IZ = {xZ : x ∈ I}.

and

(4.2)

{
for any P (Z) =

∑
PnZ

n ∈ R[Z] with Pn ∈ R we have:

P (Z) ∈ E(I) ⇔ Pn ∈ In for all n ∈ N.

Also note that, writing E(I)n for the n-th homogeneous component of E(I) we

have

(4.3) E(I)n = {xZn : x ∈ In}.

Finally note that, if J ⊂ I then E(J) is a graded subring of E(I).

We claim that

(4.4)






for any x ∈ I we have:

(xZ)/E(J) is integral

⇔ x/J is integral

⇒ xn ∈ JIn−1 for some n ∈ N+.

PROOF. First suppose that x/J is integral. Then for some n ∈ N+ we have

xn +
∑

1≤i≤n

yix
n−i = 0 with yi ∈ J i for 1 ≤ i ≤ n.

Clearly yix
n−i ∈ J iIn−i ⊂ JIn−1 for 1 ≤ i ≤ n and hence xn ∈ JIn−1. Multiplying

both sides of the above equation by Zn and invoking (4.3) we get

(xZ)n +
∑

1≤i≤n

(yiZ
i)(xZ)n−i = 0 with (yiZ

i) ∈ E(J)i for 1 ≤ i ≤ n

and hence (xZ)/E(J) is integral.

Next suppose that (xZ)/E(J) is integral. Then for some n ∈ N+ we have

(xZ)n +
∑

1≤i≤n

zi(xZ)n−i = 0 with zi ∈ E(J) for 1 ≤ i ≤ n.

By (4.3) we can write

zi =
∑

m∈N

yimZ
m where yim ∈ Jm with yim = 0 for almost all m.

Substituting the last display into the previous to last display and then equating the

coefficients of Zn we get

xn +
∑

1≤i≤n

yiix
n−i = 0 with yii ∈ J i for 1 ≤ i ≤ n
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and hence x/J is integral.

We claim that

(4.5)






assuming that R is noetherien and J ⊂ I, we have:

E(I)/E(J) is integral ⇔ I/J is integral ⇔ J/I is a reduction

where for the first ⇔ we do not need the noetherian hypothesis.

PROOF. Without invoking the noetherian hypothesis, the first ⇔ follows from

(4.1) and (4.4). With the noetherian hypothesis, first assume that I/J is integral,

and let x1, . . . , xp be a finite number of generators of I with p ∈ N+. For 1 ≤ i ≤ p,

by (4.4) we can find n(i) ∈ N+ such that x
m(i)
i ∈ JIm(i)−1. Let m = m(1) +

· · · + m(p). Now every x ∈ I can be expressed as x = a1x1 + · · · + apxp with

a1, . . . , ap in R, and by raising both sides of the equation to the m-th power we get

xm ∈ JIm−1. In particular xm
i ∈ JIm−1 for 1 ≤ i ≤ p. Let n = mp. Since every

element of In is an R-linear combination of monomials in x1, . . . , xp of degree mp,

we get In ⊂ JIn−1 and hence JIn−1 = In. Therefore J/I is a reduction.

Now with the noetherian hypothesis, assume that J/I is a reduction. Then by (‡)

we find n ∈ N+ such that for all p ∈ N+ we have JpIn = In+p, and multiplying this

equation by Zp+n we get JpInZp+n = In+pZp+n. In view of (4.3), the last equation

tell us that E(I), as an E(J)-module, is generated by the submodule
∑

1≤q≤nE(I)q.

The noetherian hypothesis tells us that the ideal I is finitely generated, and hence

so is the said submodule. Therefore E(I) is a finitely generated E(J)-module and

hence the ring E(I) is integral over the subring E(J).

We observe that

(4.6) J/I is a reduction ⇒ radRJ = radRI.

PROOF. If J/I is a reduction then for some n ∈ N+ we have In ⊂ JIn−1 ⊂ J

and hence radRI = radRI
n ⊂ radRJ and obviously radRJ ⊂ radRI and therefore

radRJ = radRI.
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Recall from page 231 of [Ab4] that a minimal prime of R is a prime ideal in R

which does not properly contain any other prime ideal in R. In the next two items

(4.7) and (4.8) we shall gather some general properties of the nonnull rings R ⊂ S.

In comparing the dimensions of two rings, say R and S, we use the convention that

for any n ∈ Z we have n+ ∞ = ∞. First we claim that

(4.7)

{
for any minimal prime P of R

there is a minimal prime Q of S with P = Q ∩R.

PROOF. By taking (I, S,R) = (P,R\P, S) in (12•) on page 121 of [Ab4] we can

find a prime ideal Q′ in S with Q′ ∩ (R \ P ) = ∅. Let P ′ = Q′ ∩ R. Then P ′ is a

prime ideal in R with P ′ ⊂ P , and hence the minimality of P tells us that P ′ = P .

By (T51) on page 265 of [Ab4] we can find a minimal prime of Q of S with Q ⊂ Q′.

The minimality of P now tells us that P = Q ∩R.

Next we claim that

(4.8)






if R is a noetherian ring

and S is a finitely generated ring extension of R

and S is a subring of the polynomial ring R[Z1, . . . , Zm]

in indeterminates Z1, . . . , Zm with m ∈ N+

then: dim(S) ≤ m+ dim(R),

and dim(S/MS) ≤ m− 1 + dim(R) for every ideal M in R

which is not contained in any minimal prime of R,

and dim(S) = dim(R) in case S ⊂ R[NZ1, . . . , NZm]

for some N ⊂ radR{0}.

PROOF. To prove the first assertion, by (T51) on page 265 of [Ab4], it suffices

to show that for any minimal prime B of S we have dim(S/B) ≤ m+ dim(R). To

prove this inequality, by (4.8) we can find a minimal prime C of T = R[Z1, . . . , Zm]

with B = C ∩ S. Let A = C ∩ R. By (T30) on pages 233-234 of [Ab4] and (T51)

on page 265 of [Ab4], the minimality of C tells us that A is a minimal prime of R

and C = AT . Let φ : T → T = T/C be the residue class epimorphism, and let R =

φ(R), S = φ(S), and Zi = φ(Zi) for 1 ≤ i ≤ m. Then R ⊂ S ⊂ T = R[Z1, . . . , Zm]

are noetherian domains, S is a finitely generated ring extension of R, and, in view of
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(C12) on page 235 of [Ab4], the elements Z1, . . . , Zm are algebraically independent

over R. Consequently by (T55) on page 269 of [Ab4] we get dim(S) ≤ m+dim(R).

Also clearly dim(R) ≤ dim(R). Therefore dim(S/B) ≤ m+ dim(R).

To prove the second assertion, let there be given any ideal M in R which is

not contained in any minimal prime of R. Suppose if possible that MS ⊂ B

for a minimal prime B of S. By (4.7) we can find a minimal prime C of T =

R[Z1, . . . , Zm] with B = C ∩ S. Let A = C ∩ R. By (T30) on pages 233-234 of

[Ab4] and (T51) on page 265 of [Ab4], the minimality of C tells us that A is a

minimal prime of R and C = AT . By (T30) on pages 233-234 of [Ab4] we know

that (MT )∩R = M and hence (MS)∩R = M . Now MS ⊂ B with (MS)∩R = M

and B ∩ R = A tells us that M ⊂ A which is a contradiction because M is not

contained in any minimal prime of R but A is a minimal prime of R. Hence MS is

not contained in any minimal prime of S; consequently dim(S/MS) ≤ −1+dim(S)

and by the first assertion we have dim(S) ≤ m+dim(R); putting the two inequalities

together we get dim(S/MS) ≤ m− 1 + dim(S).

To prove the third assertion note that now S = R[Q] with Q ⊂ radS{0}, i.e., with

Q being a set of nilpotent elements in S. Hence, letting ψS : S → S = S/radS{0}

be the residue class epimorphism we get S = ψS(R). S being an overring of R,

we also have R ∩ radS{0} = radR{0}. Therefore S is isomorphic to R = ψR(R)

where ψR : R → R/radR{0} is the residue class epimorphism. Consequently we get

dim(S) = dim(S) = dim(R) = dim(R) because of the fact that for any ring S we

have dim(S) = dim(S). The said fact is an obvious consequence of (T51) on page

265 of [Ab4].

Finally we observe that

(4.9)






assuming that R is noetherien and ideal J ′ ⊂ J ⊂ I, we have:

I/J ′ is integral ⇔ I/J is integral and J/J ′ is integral, and

I/J ′ is a reduction ⇔ I/J is a reduction and J/J ′ is a reduction.

PROOF. Follows from (4.5).



13

Section 5: Jacobson Radicals and Irrelevant Ideals. Let there be given a

nonnull ring R.

Recall that an R-homomorphism means a homomorphism of R-modules. Recall

that if µ : R → T is a ring epimorphism and L is a T -module then L becomes an

R-module by putting rl = µ(r)l for all r ∈ R and l ∈ L. Recall that the intersection

of all maximal ideals in R is called its jacobson radical and is denoted by jrad(R).

Recall the definition of irrelevant ideals in graded rings given in (C4) on page

212 of [Ab4].

Let M be an ideal in R such that M ⊂ jrad(R). Let I be an ideal in R such

that I = (x1, . . . , xp)R for some x1, . . . , xp in I and p ∈ N+. Let F be a naturally

graded homogeneous ring and let Fn be its homogeneous component of degree n.

Assume there is a ring epimorphism µ0 : R → F0 with kernel M and for every

n ∈ N+ there is an R-epimorphism µn : In → Fn with kernel MIn such that

µu+v(yz) = µu(y)µv(z) for all (u, v, y, z) ∈ N × N × Iu × Iv.

We claim that

(5.1)

{
for any ideal J in R with J ⊂ I we have:

the ideal µ1(J)F is irrelevant iff J/I is a reduction.

PROOF. In view of the definition of irrelevant ideals, our assertion is equivalent

to saying that

F1F ⊂ radF (µ1(J)F ) ⇔ In = JIn−1 for some n ∈ N+.

Now for any n ∈ N+ we have





µn(In) ⊂ µn(JIn−1)

⇔ In ⊂ JIn−1 +MIn

⇔ In = JIn−1 +MIn

⇔ In = JIn−1

where the first two ⇔ are obvious while the last ⇔ follows by taking (U, V, J) =

(JIn−1, In,M) in the Nakayama Lemma (T3) on page 220 of [Ab4]. Thus it only

remains to show that

F1F ⊂ radF (µ1(J)F ) ⇔ µn(In) ⊂ µn(JIn−1) for some n ∈ N+.



14

Clearly





F1F ⊂ radF (µ1(J)F )

⇒ {xm
1 , . . . , x

m
p } ⊂ µ1(J)F for some m ∈ N+

⇒ Fn ⊂ µ1(J)F for some n ∈ N+

⇒ {xm
1 , . . . , x

m
p } ⊂ µ1(J)F for some m ∈ N+

⇒ F1F ⊂ radF (µ1(J)F )

where the first ⇒ is obvious, the second follows by taking n = mp, the third follows

by taking m = n, and the fourth is obvious. Consequently it suffices to show that

for any n ∈ N+ we have

Fn ⊂ µ1(J)F ⇔ µn(In) ⊂ µn(JIn−1).

Obviously Fn = µn(In) and clearly

Fn ⊂ µn(J)F ⇔ Fn ⊂ (µ1(J)F ) ∩ Fn.

Thus it suffices to show that

(µ1(J)F ) ∩ Fn = µn(JIn−1).

To prove the above equation, note that, by the rule µu+v(yz) = µu(y)µv(z), the

RHS consists of all finite sums of the type

∑

i

µ1(yi)µn−1(zi)

with (yi, zi) ∈ J × In−1. Moreover the LHS consists of the n-th components of all

finite sums of the type

∑

i

(
µ1(y

′
i)
∑

m∈N

µm(z′i,m)

)

with (y′i, z
′
i,m) ∈ J×Im. Collecting terms of like degree we see that the LHS consists

of all finite sums of the type

∑

i

µ1(y
′
i)µn−1(z

′
i,n−1).

Therefore the LHS equals the RHS.
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Using Noether Normalization (cf. pages 248 and 402 of [Ab4]) together with

Veronese Embedding (cf. page 263 of [Ab3]) we shall now prove the following:

(5.2)






Assume R is a local ring with I ⊂M = M(R)

and let d = dim(F ) with e = dim(R).

Then there exist elements y1, . . . , yd in I such that the ideal

J = (y1, . . . , yd)R is a reduction of Ic for some c ∈ N+.

If the field R/M is infinite then this is true with c = 1.

If I is M -primary then d ≥ e.

PROOF. If the field K = R/M is infinite then by (T46) on page 248 of [Ab4]

there exist R-linear combinations y1, . . . , yd of x1, . . . , xp such that F/K[µ1(J)] is

integral where J = (y1, . . . , yd)R, and then by (T104) on page 401 of [Ab4] we see

that the ideal µ1(J)F is irrelevant, and hence by (5.1) we conclude that J/I is a

reduction.

In the general case, as on page 263 of [Ab3], for any c ∈ N+ we get a naturally

graded homogeneous ring F (c) = K[µc(I
c)] whose n-th homogeneous component is

F (c) = Fcn for all n ∈ N. Note that F (c) is a subring (but not necessarily a graded

subring) of F . Moreover µcn : Icn → F
(cn)
n is an R-epimorphism with kernel MIcn

for all n ∈ N. By (T105) on page 402 of [Ab4] there exist elements y1, . . . , yd in

Ic for some c ∈ N+ such that F/K[µc(J)] is integral where J = (y1, . . . , yd)R. It

follows that F (c)/K[µc(J)] is integral and therefore by (T104) on page 401 of [Ab4]

we see that the ideal µc(J)F (c) is irrelevant, and hence by (5.1) we conclude that

J/Ic is a reduction.

Suppose I is M -primary and e 6= 0. Now J = (y1, . . . , yd)R is a reduction of Ic

and hence radRJ = radRI
c = radRI = M where the first equality is by (4.6) and

the second and third are obvious. Therefore J is M -primary and hence d ≥ e.

Section 6: Form Rings. Let I be an ideal in a nonnull ring R and assume

that

I ⊂M = a nonunit ideal in R.

We define the form ring F(R,M)(I) of I relative to R with variable Z by putting

F(R,M)(I) = ER(I)/MER(I).
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Again we make the convention that the reference to (R,M) and Z may be omitted

when it is clear from the context. Thus we write F (I) instead of F(R,M)(I). Now

ME(I) is a homogeneous ideal in E(I) and hence F (I) becomes a graded ring. Note

that, upon letting F(R,M)(I)n or F (I)n to be the n-th homogeneous component of

F (I) for all n ∈ N and upon letting

K = F (I)0 we have F (I) = K[F (I)1]

and, via the ring epimorphism R → K = R/M , the K-module F (I) becomes an

R-module so that, for every n ∈ N, the K-submodule F (I)n of F (I) becomes an

R-submodule of F (I) and there is a canonical R-epimorphism µn : In → F (I)n

with kernel MIn such that

µu+v(yz) = µu(y)µv(z) for all (u, v, y, z) ∈ N × N × Iu × Iv.

Observe that F (I) is isomorphic as a graded ring to the associated graded ring

grad(R, I,M) of Definition (D3) on page 586 of [Ab4].

If J is an ideal in R with J ⊂ I then µ1(J) is a K-submodule of F (I)1 and

K[µ1(J)] is a homogeneous subring of F (I); we denote this subring by F(R,M)(I, J)

and we note that for its n-th homogeneous component F(R,M)(I, J)n = µn(Jn) for

all n ∈ N. We call F(R,M)(I, J) the form ring of (I, J) relative to (R,M) with

variable Z. Again we make the convention that the reference to (R,M) and Z may

be omitted when it is clear from the context. Thus we write F (I, J) and F (I, J)n

instead of F(R,M)(I, J) and F(R,M)(I, J)n respectively.

Note that, if R is noetherian and M is a maximal ideal in R then, for every

n ∈ N, F (I)n is a finite dimensional vector space over the field K, and F (I)1F (I)

is the unique homogeneous maximal ideal in F (I).

We claim that

(6.1)

{
if R is a local ring with ideal J ⊂ I ⊂M = M(R) then:

F (I)/F (I, J) is integral ⇔ I/J is integral ⇔ J/I is a reduction.

PROOF. By (T104) on page 401 of [Ab4] we know that F (I)/F (I, J) is integral

iff the ideal µ1(J)F is irrelevant. Therefore we are done by (4.5) amd (5.1).
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We also claim that

(6.2)






if R is a local ring with ideal J ⊂ I ⊂M = M(R)

such that J/I is a reduction

and I is generated by a finite number of elements (x1, . . . , xp)

and J is generated by a finite number of elements (y1, . . . , yq)

then q ≥ dim(F (I, J)) = dim(F (I)) ≤ p,

and furthermore if dim(F (I)) = p then J = I,

and moreover (without assuming dim(F (I)) = p) if q = dim(F (I))

and ideal J ′ ⊂ J is such that J ′/I is a reduction

then J ′ = J .

PROOF. Now

F (I, J) = K[µ1(y1), . . . , µ1(yq)] ⊂ K[µ1(x1), . . . , µ1(xp)] = F (I)

and F (I)/F (I, J) is integral by (6.1), and hence q ≥ dim(F (I, J)) = dim(F (I)) ≤ p,

and if dim(F (I)) = p then µ1(J) = µ1(I) and therefore J = I by taking (U, V, J) =

(J, I,M) in the Nakayama Lemma (T3) on page 220 of [Ab4]. In view of (4.9), the

“moreover” follows from the “furthermore.”

Next we claim that

(6.3)

{
if R is a local ring with I ⊂M = M(R)

then for all c ∈ N+ we have dim(F (Ic)) = dim(F (I)).

PROOF. The rings F (I) and F (Ic) are respectively isomorphic to the graded

rings F and F (c) of the general case proof of (5.2). The ideal in F generated by

µc(I
c) is clearly irrelevant, and hence F/F (c) is integral by (T104) on page 401 of

[Ab4]. Therefore dim(F ) = dim(F (c)).

Finally we claim the following.

(6.4)






Assuming R is a local ring with I ⊂M = M(R)

and letting d = dim(F (I)) with e = dim(R) we have d ≤ e

and there exist elements y1, . . . , yd in I such that

the ideal J = (y1, . . . , yd)R is a reduction of Ic for some c ∈ N+

where if R/M is infinite then c can be chosen to be 1.

Moreover, if I is M -primary then d = e.
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PROOF. Taking F = F (I) in (4.8) we get d ≤ e. The rest follows from (5.2).

Section 7: Proof of NRT. The following NRT = Northcott-Rees Theorem is

the culmination of the Northcott-Rees paper [NoR]. Our proof will be completely

independent of that paper. Indeed we have already done it in (6.1) to (6.4).

For an ideal I in a nonnull ring R, following page 289 of [Ab4], we define the

generating number of I in R to be the smallest number of generators of I and

denote it by gnb(I) (or gnbRI). In case I ⊂ M = a nonunit ideal in R, following

[NoR], we call dim(F(R,M)(I)) the analytic spread of I (relative to (R,M)) and

denote it by σ(I) (or σR(I)), and by a minimal reduction of I (relative to (R,M))

we mean an ideal J in R such that J is a reduction of I with gnb(J) = σ(I).

NRT. Let I be an ideal in a local ring R with I ⊂ M = M(R). Then letting

e = dim(R) and considering the form ring F (I) = F(R,M)(I) we have the following.

(I) σ(I) ≤ e. σ(Ic) = σ(I) for all c ∈ N+. If I is M -primary then σ(I) = e.

(II) For some c ∈ N+, Ic has a minimal reduction.

(III) If R/M(R) is an infinite field then I has a minimal reduction.

(IV) J/I is a reduction ⇒ gnb(J) ≥ σ(I).

(V) gnb(I) = σ(I) ⇒ I is the only reduction of I.

(VI) Given any ideal J in R with J ⊂ I, for F (I, J) = F(R,M)(I, J) we have:

F (I)/F (I, J) is integral ⇔ I/J is integral ⇔ J/I is a reduction.

Section 8: Modelic Proj. We shall now relate local normalization and ideal

reduction. We shall also give supplements to ZQT. We shall do this by proving

several Lemmas.

Note that an ideal I in a normal domain R is said to be normal if Ic is complete

for all c ∈ N+. If I = R then Ic = I for all c ∈ N+ and hence in this case the

definition of normality coincides with the usual definition. Also note that by the

completion of an ideal J in a normal domain R with quotient field L we mean
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the complete ideal I in R obtained by putting

I =
⋂

V ∈D(L/R)

((JV ) ∩R).

We observe that, by Theorem 1 on page 350 of volume II of [Zar], I coincides with

the integral closure of J in R by which we mean the set of all elements of R

which are integral over J . Hence in particular I is an ideal in R such that I/J is

integral, and hence if R is noetherian then J/I is a reduction by (4.5).

For the reader’s convenience, here is a brief review of the theory of modelic

proj developed in (Q34) on pages 534-552 of [Ab4] which itself is a transcription

of §12 on pages 262-283 of [Ab3]. So let R be a noetherian domain with quotient

field L and let A =
∑

n∈N
An be a homogeneous domain with A0 = R and A1 6= 0.

Now proj(A) is the set of all relevant homogeneous prime ideals in A; note that

proj(A) ⊂ spec(A) and for every i ∈ N, upon letting proj(A)i to be the set of all

members of proj(A) of height i, we have proj(A)i ⊂ spec(A)i. Moreover

L ⊂ K(A) ⊂ QF(A)

where the homogeneous quotient field K(A) of A is defined by putting

K(A) =
⋃

n∈N

{yn/zn : yn ∈ An and zn ∈ A×
n }.

Likewise, the homogeneous localization A[P ] of any P in proj(A) is defined by

putting

A[P ] =
⋃

n∈N

{yn/zn : yn ∈ An and zn ∈ An \ P}.

The set of all homogeneous localizations A[P ], with P varying over proj(A), is

the modelic proj W(A). Note that W(A) = W(R,A1) and for any finite set of

generators x1, . . . , xp of the R-module A1 we have W(A) = W(R;x1, . . . , xp). Also

note that for every i ∈ N, upon letting W(A)i to be the set of all i-dimensional

members of W(A), we have W(A)i = W(R,A1)i = W(R;x1, . . . , xp)i. Recall that

a homogeneous subdomain B of A is a homogeneous domain B =
∑

n∈N
Bn such

that B is a subring of A with Bn = B ∩ An for all n ∈ N. Observe that if B is a

subdomain of A then: B can be made into a homogeneous subdomain of A⇔ the

homogeneous A-components of every element of B belong to B, and B = B0[B1]

where Bn = B ∩ An for all n ∈ N; when this so then we may indicate it by
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saying that B is a homogeneous subdomain of A. Finally note that if B and B are

homogeneous subdomains of A with B ⊂ B then automatically B is a homogeneous

subdomain of B.

LEMMA (8.1). Let R be a noetherian domain with quotient field L and let

A =
∑

n∈N
An be a homogeneous domain with A0 = R and A1 6= 0. Then we have

the following.

(I) If A is normal then W(A)N = W(A).

(II) Given any element x in the integral closure of A in QF(A) we can find

0 6= z ∈ Ae with e ∈ N such that zx ∈ A. Moreover, any y ∈ A×
1 is transcendental

over K(A) and we have QF(A) = K(A)(y).

(III) For any noetherian subdomain S of R and any homogeneous subdomain

B =
∑

n∈N
Bn of A with B0 = S and QF(B) = QF(A), upon letting S and B be

the integral closures of S and B in R and A respectively, we have that B is a graded

subdomain of A with B0 = S.

(IV) If B is a homogeneous subdomain of A with B0 = R and QF(B) = QF(A)

such that A/B is integral then B1 6= 0 with K(B) = K(A) and W(B)N = W(A)N.

(V) If I is a nonzero ideal in R such that A is the Rees ring E(I) = R[IZ] then

W(A) = W(R, I).

(VI) Assume R is normal and A is the Rees ring E(I) = R[IZ] of a nonzero

normal ideal I in R. Then A is normal. Moreover we have W(R, I)N = W(R, I).

Furthermore, if J is any reduction of I then E(I)/E(J) is integral and we have

W(R, J)N = W(R, I).

PROOF OF (I). We only have to show that for any P in proj(A), the local ring

A[P ] is normal. So let x in K(A) be integral over A[P ]. Writing x = y/z with y ∈ An

and 0 6= z ∈ An for some n ∈ N, we get

(y
z

)m

+
∑

1≤i≤m

αi

(y
z

)m−i

= 0 with m ∈ N+ and αi ∈ A[P ].

For 1 ≤ i ≤ m we have αi = βi/γi where β ∈ An(i) and γi ∈ An(i) \ P with

n(i) ∈ N. Let t = γ1 . . . γm with d = n(1) + · · · + n(m). Then t ∈ Ad \ P with
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d ∈ N. Multiplying both sides of the above displayed equation by tm we get
(
ty

z

)m

+
∑

1≤i≤m

ti

(
ty

z

)m−i

= 0 with m ∈ N+ and ti = tiαi ∈ Aid

and hence (ty/z) = s ∈ A by the normality of A. Multiplying both sides of the

last equation by z we get ty = zs and hence s ∈ Ad by homogeneity. Therefore

x = y/z = s/t ∈ A[P ].

PROOF OF (II). Following pages 156-158 of volume II of Zariski’s book [Zar] let

us generalize the construction of K(A) by introducing a subring C of QF(A) with

A ⊂ C such that C is a homogeneous ring C =
∑

q∈N
Cq with C0 = K(A) where Cq

is defined by putting

Cq =
⋃

n∈N

{yn/zn : yn ∈ Aq+n and zn ∈ A×
n }.

As on the cited pages of [Zar], taking 0 6= y ∈ A1 we see that y is transcendental

over C0 with QF(A) = K(A)(y) and C = C0[y] with Cq = {ryq : r ∈ C0} for all

q ∈ N. The domain C is normal because it is a polynomial ring over the normal

domain R. Therefore every element x in the integral closure of A in QF(A) belongs

to C, and hence for it we can find 0 6= z ∈ Ae with e ∈ N such that zx ∈ A.

PROOF OF (III). It suffices to show that, given any e ∈ N and x = u0 + · · ·+ue

with un ∈ An for 0 ≤ n ≤ e such that x/B is integral, we have that ue/B is integral

(and hence by induction un/B is integral for 0 ≤ n ≤ e). Since x/B is integral, we

get

xm +
∑

1≤i≤m

αix
m−i = 0 with m ∈ N+ and αi ∈ B.

From the above equation it follows that for all q ∈ N we have

(1) xq =
∑

0≤i≤m

αiqx
i with αiq ∈ B

and by (II) we get

(2) zx ∈ B for some 0 6= z ∈ Be with e ∈ N.

Upon letting ζ = zm, by (1) and (2) we see that

(3) 0 6= ζ ∈ Bme and ζxq ∈ B for all q ∈ N.
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Taking the q-th power of the equation x = u0 + · · · + ue we see that for all q ∈ N

we have

(4) xq = uq
e +

∑

0≤i<qe

vqi with vqi ∈ Ai.

Upon letting wqi = ζvqi, by (3) and (4) we get

(5) ζxq = ζuq
e +

∑

0≤i<qe

wqi with wqi ∈ Ame+i

where

(6) ζxq ∈ B and ζuq
e ∈ Ame+qe.

In view of (5) and (6), by homogeneity we conclude that for all q ∈ N we have

ζuq
e ∈ Bme+qe and hence ζuq

e ∈ B. Thus B[ue] is a subset of the finitely generated

B-module (1/ζ)B and therefore, because B is noetherian, we see that ue/B is

integral.

PROOF OF (IV). By (II) we get B1 6= 0 with K(B) = K(A). Now

W(A) =
⋃

06=x∈A1

V(R[A1/x]) and W(B) =
⋃

06=y∈B1

V(R[B1/y])

where

A1/x = {z/x : z ∈ A1} and B1/y = {z/y : z ∈ B1}

and hence it suffices to show that, given any 0 6= y ∈ B1, the ring R[A1/y] is

integral over the ring R[B1/y]. In turn it suffices to show that, for any x ∈ A1, the

element x/y is integral over the ring R[B1/y]. Since A/B is integral, we get

xm +
∑

1≤i≤m

αix
m−i = 0 with m ∈ N+ and αi ∈ B.

By homogeneity, upon replacing αi by its i-th homogeneous component, without

loss of generality we may suppose that αi ∈ Bi for 1 ≤ i ≤ m. Dividing the above

equation by ym we get
(
x

y

)m

+
∑

1≤i≤m

(
αi

yi

)(
x

y

)m−i

= 0 with

(
αi

yi

)
∈ R[B1/y]

showing that the element x/y in integral over R[B1/y].
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PROOF OF (V). It suffices to note that

W(A) =
⋃

06=x∈A1

V(R[A1/x]) and W(R, I) =
⋃

06=x∈I

V(R[I/x])

where

A1 = {xZ : x ∈ I} with A1/x = {z/x : z ∈ A1} and I/x = {y/x : y ∈ I}.

PROOF OF (VI). By taking (B,A) = (E(I), R[Z]) in (III), to prove the first

assertion, it suffices to show that, given any e ∈ N and x = rZe with r ∈ R such

that x/E(I) is integral, we have that r ∈ Ie. Now we get

(rZe)m +
∑

1≤i≤m

αi(rZ
e)m−i = 0 with m ∈ N+ and αi ∈ E(I).

For 1 ≤ i ≤ m we have αi =
∑

n∈N
αinZ

n with αin ∈ In, and hence by equating

the coefficients of Zem on both sides of the above displayed equation we obtain

rm +
∑

1≤i≤m

αier
m−i = 0

and therefore by the normality of I we conclude that r ∈ Ie.

In view of (4.5), the rest now follows from (I), (IV) and (V).

LEMMA (8.2). Let I be any nonzero complete ideal in a two dimensional regular

local domain R. Then I is a normal ideal in R and we have W(R, I)N = W(R, I).

In view of (3.2) this completes the proof of ZQT(IV).

PROOF. I is normal by Theorem 2′ on page 385 of volume II of [Zar], and hence

we are done by (8.1)(VI).

LEMMA (8.3). Let R be a two dimensional regular local domain with maximal

ideal M = M(R) and quotient field L. Let J and I be nonzero ideals in R. Then

we have the following.

(I) Assume that J/I is a reduction and let J = (R,S)(J) with I = (R,S)(I)

where S ∈ Q(R). Then J/I is a reduction. Moreover, if I = M(S) then J = M(S).
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Furthermore, if I = M(S) and J = (x, y) with x 6= 0 6= y in R then upon letting

z = x/y and V = o(S) we have z ∈ V and H(V ) = HV (S)(HV (z)),

(II) Assume that J = (x, y)R with x 6= 0 ≤ y in R, and let z = x/y. Then

D(R, z) = (W(R, J)∆1 )N. Moreover, D(R, z) = ∅ ⇔ J is principal ⇔ either z ∈ R

or 1/z ∈ R. Furthermore, if I is the integral closure of J in R, i.e., equivalently if

I/J is integral and I is complete, then D(R, z) = W(R, I)∆1 .

(III) Assume that I = ζR(U) where U is a nonempty finite subset of D(R)∆.

Also assume that J/Ic is a reduction for some c ∈ N+ where c = 1 in case R/M is

infinite. Finally assume that J = (x, y)R with x 6= 0 6= y in R, and let z = y/x.

Then D(R, z) = U . Moreover, if R/M is infinite then for every V ∈ U we have

z ∈ V with H(V ) = K ′(HV (z)) where HV : V → H(V ) = V/M(V ) is the residue

class epimorphism and K ′ is the relative algebraic closure of HV (R) in H(V ).

(IV) Assume that J = (x, y)R with x 6= 0 6= y in R, and let z = x/y. Let I be

the integral closure of J in R. Also let U be a nonempty finite subset of D(R)∆,

Then z ∈ D∗(R,U) ⇔ η(I) = U .

PROOF OF (I). Upon letting (Rj)0≤j≤ν be the finite QDT sequence of R along

V = o(R) we have R = R0 and S = Rν .

Note that for any overring S of R we have JIn = In+1 ⇒ (JS)(IS)n = (IS)n+1.

Moreover if S ∈ Q1(R) then JIn = In+1 ⇒ ordRJ = ordRI = ( say )e and dividing

both sides of the equation (JS)(IS)n = (IS)n+1 by xe where x ∈M \M2, we get

(JS/xe)(IS/xe)n = (IS)n+1, i.e., JI
n

= I
n+1

. This shows that if ν = 1 then J/I

is a reduction. Therefore by induction on ν we see that J/I is a reduction in the

general case.

The “Furthermore” follows from the “Moreover.” Also the “Moreover” in the

general case follows from the “Moreover” in the case of ν = 0. Consequently it

only remains to show that if J/M is a reduction then J = M . But this clearly

follows from (6.1) + Nakayama by noting that if B is a subring of a finite variable

polynomial ring A = k[Z1, . . . , Zr] over a field k such that A/B is integral and B

is generated over k by homogeneous polynomials of degree one then we must have

B = A.
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PROOF OF (II). In view of (5.6)(†∗) of [Ab5], everything is straightforward

except the “Furthermore” which follows from (8.1)(VI) and Theorem 1 on page

350 of volume II of [Zar].

PROOF OF (III). In view of ZQT(I) and ZQT(II), this follows from (8.3)(I) and

(8.3)(II).

PROOF OF (IV). Follows from (8.3)(II).

REMARK (8.4). (8.3)(II) suggests an extension of the definition of dicritical

divisors by taking any nonzero ideal J in any local domain R of dimension at least

two and putting D(R, J) = (W(R, J)∆1 )N and calling the members of this finite set

the dicritical divisors of J in R.

Section 9: Proof of ET and Answer to EQ. In (9.1) we shall prove ET and

in (9.2) we shall answer EQ.

PROOF OF ET (9.1). Now R is a two dimensional regular local domain with

quotient field L and maximal ideal M = M(R), and we are given a finite subset U

of D(R)∆. We want to find z ∈ L× such that D(R, z) = U and such that if R/M

is infinite then for every V ∈ U we have z ∈ V with H(V ) = K ′(HV (z)) where

HV : V → H(V ) = V/M(V ) is the residue class epimorphism and K ′ is the relative

algebraic closure of HV (R) in H(V ). If U = ∅ then, in view of what is said at the

end of (3.1), it suffices to take z to be any element of L× such that either z ∈ R or

1/z ∈ R. If U 6= ∅ then, in view of NRT and the (8.3)(III) incarnation of ZQT, we

are done by taking I = ζR(U).

ANSWER TO EQ (9.2). If U = ∅ then, in view of what is said at the end of

(3.1), D∗(R,U) is the set of all z ∈ L× such that either z ∈ R or 1/z ∈ R. If U 6= ∅

then, in view of (8.3)(IV), D
∗(R,U) may be described as the set of all z = x/y,
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where x 6= 0 6= y are elements in R such that for the integral closure I of the ideal

J = (x, y)R in R we have ηR(I) = U .
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