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Abstract. Let I be an M -primary ideal in a local ring (R,M) and let irr(I) denote

the set of irreducible components of I , where an ideal q is an irreducible component

of I if q occurs as a factor in some decomposition of I as an irredundant intersection

of irreducible ideals. We give several characterizations of the ideals in irr(I) and show
that if J is an ideal between I and an irreducible component of I , then J is the

intersection of ideals in irr(I). We also exhibit examples showing that there may exist

irreducible ideals containing I that contain no ideal in irr(I). Also, we determine

necessary and sufficient conditions that the principal ideal uR[u, tI] of the Rees ring

R[u, tI] have a unique cover, and apply this to the study of the form ring of R with

respect to I .
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1. INTRODUCTION. The following notation is fixed for this paper: (R,M)

is a local ring with identity 1 6= 0, and I is an open (= M -primary) ideal in R. Our

terminology is generally the same as that in [M], [N], and [ZS].

Irreducible ideals have interested us ever since we learned that each ideal in

a Noetherian ring is a finite intersection of irreducible ideals. This is a classical

result of Emmy Noether [No, Satz II, p. 33], and is the first of four different types

of decomposition considered by Noether in [No].1 Noether’s work stimulated an

important classical paper on irreducible ideals by Wolfgang Gröbner [Gr].2 However,

apparently since 1934 few papers have been devoted to the study of irreducible ideals

and the decomposition of ideals as a finite intersection of irreducible ideals. Our

purpose here is to begin such a study. (This study was partly suggested by our

work in [HRS1], [HRS2], and [HRS3], where we discovered that irreducible ideals

are closely related to the maximal embedded components of an ideal.) Our results

in the present paper show that irreducible ideals have some interesting and useful

(and, perhaps, unexpected) properties.

In Section 2 we give several characterizations of the irreducible components of

I, and then show that nirr(I) + 1 is an upper bound on the number n(I) of ideals

in a decomposition of I as an irredundant intersection of irreducible ideals, where

nirr(I) = min{`(q/I); q is an irreducible ideal in R that contains I}.
In Section 3 it is shown in (3.2) that each ideal J ∈ I(I) = {J ; I ⊆ J ⊆ q for

some ideal q ∈ irr(I)} is the intersection of the ideals in irr(I) that contain J . Then

we characterize the maximal reducible ideals in I(I) and also show that the ideals

in I(I) that are minimal with respect to properly containing I are the covers of

I. Also, we briefly consider the concept of an ideal J being irreducibly related to

I (where J is irreducibly related to I in case J is a finite intersection of ideals in

irr(I)).

In Section 4 the ideal structure of the Artinian Gorenstein local ringR = F [x, y] =

F [X,Y ]/(X3, Y 3) (where F is the field {0, 1}) is considered. The main result shows

that the ideal (x+ y)R is an irreducible ideal that contains x2y2R, but contains no

irreducible component of x2y2R. A large part of this section is devoted to describing

1An informative discussion of Noether’s work in [No] is presented by Robert Gilmer in [Gi].
2Gröbner in his paper thanks E. Noether for direction and valuable advice.
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how the computer program Macaulay [BS] was used in developing this example.

The main result in Section 5 gives a useful characterization of when the principal

ideal uR[u, tI] has a unique cover, and this is then used to show that if R is an

Artinian Gorenstein local ring, then uR[u, tI] is irreducible if and only if R[u, tI] is

Gorenstein if and only if the form ring F(R, I) of R with respect to I is Gorenstein.

Finally, in Section 6 we give three examples of rather “bad” behavior of irreducible

ideals. All three examples are in a regular local ring R of altitude two. The first

shows that the set S = {I; n(I) ≤ nirr(I)} is nonempty. The next is an example of

an infinite descending chain of open ideals I1 ⊃ I2 ⊃ . . . in R and an infinite set Q

of irreducible ideals qi in R such that, for all positive integers n and k, irr(In+k)∩Q

= {q1, . . . , qn+k} and In+k = qn ∩ qn+k. The final example shows that if k < m are

positive integers, then there exists an open ideal I in R such that n(I) = m and

there exists an ideal J ∈ I(I) such that J is the irredundant intersection of m + k

ideals in irr(I).

2. THE IDEALS IN irr(I). In this section we give several definitions that

are needed in what follows, recall several facts concerning irreducible ideals that

have previously appeared in the literature, then give several characterizations of the

ideals in irr(I), and then show that nirr(I) + 1 is an upper bound on n(I).

We begin with several definitions.

(2.1) DEFINITION. Let J be an ideal in a Noetherian ring A. Then:

(2.1.1) J is reducible in case there exist ideals K and L in A that properly contain

J such that J = K ∩ L. J is irreducible in case J is not reducible. An ideal q is

an irreducible component of J in case q appears as a factor in a decomposition

of J as an irredundant intersection of irreducible ideals (see (2.2.3)).

(2.1.2) irr(J) = {q; q is an irreducible component of J}, and I(J) denotes the set

of all intersections of the ideals in irr(J) (excluding A, the empty intersection).

(2.1.3) n(J) denotes the number of ideals in a decomposition of J as an irredundant

intersection of irreducible ideals (see (2.2.3) and (2.2.4)).

(2.1.4) If A is local, then nirr(J) = min{`(q/J); q is an irreducible ideal in A that

contains J}, where `(q/J) denotes the length of the A -module q/J .
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(2.1.5) If A is local, then S = {J ; n(J) ≤ nirr(J)}. (The letter S is an abbreviation

for “short” - the ideals J in S have a shorter irreducible decomposition than nirr(J)+

1 (see (2.5.3).)

(2.1.6) An ideal K is a cover of J in case J ⊂ K and there exist no ideals between

J and K. (In this case, K/J ∼= A/N for some maximal ideal N in A, and it then

follows that K = (J, b)A for some b ∈ N and NK ⊆ J .) Also, K is an irreducible

cover of J in case K is an irreducible ideal and a cover of J .

Concerning (2.1.4), let J = {q; q is an irreducible ideal in R that contains J},
so irr(J) ⊆ J, so nirr(J) ≤ min{`(q/J); q ∈ irr(J)}. If J is an open ideal, then

an interesting question is whether this inequality is always an equality. We show in

(4.1) that there may exist ideals that are minimal in J that are not in irr(J). This

indicates that there is a possibility that nirr(J) strictly less than min{`(q/J); q ∈
irr(J)} may be achievable in an appropriate example.

A number of known results concerning irreducible ideals will be frequently used

below, so we briefly summarize them here.

(2.2) REMARK. Let I be an open ideal in a local ring (R,M). Then:

(2.2.1) [ZS, Theorem 34, p. 248] I is irreducible if and only if I has a unique cover

(and then its unique cover is I : M).

(2.2.2) If I, J , and q are open ideals in R such that I * J and q is maximal with

respect to containing I and not containing J , then q is irreducible.

(2.2.3) [No, Satz II and Satz IV] I is a finite intersection of irreducible ideals, and if

the intersection is irredundant, then the number of such ideals is the same for each

such representation of I.

(2.2.4) [HRS2, (3.3.3)] n(I) = dimR/M (S(R/I)), where S(R/I) is the socle (0) :

(M/I) of R/I; see [SV, p. 69].)

(2.2.5) [HRS2, (3.2)] If q ∈ irr(I) and J * q is an ideal between I and I : M , then

(q/I) ∩ (J/I) is a codimensional one subspace of the R/M vector space J/I.

(2.2.6) [HRS3, (3.2)] There are no containment relations among the ideals in irr(I).

Proof. The proofs of these, except for (2.2.2), are given in the cited references.
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For (2.2.2), it is clear that every ideal that contains q must contain J , so q+ J is

the unique cover of q, so (2.2.2) follows from (2.2.1), �

In (2.3) we give two useful characterizations of the ideals in irr(I).

(2.3) THEOREM. Let I be an open ideal in a local ring (R,M). Then the fol-

lowing are equivalent for an ideal q in R:

(2.3.1) q ∈ irr(I).

(2.3.2) q is irreducible, I ⊆ q, and I : M * q.

(2.3.3) q is an ideal that is maximal with respect to: (a) containing some ideal J

that contains I; and, (b) not containing I : M .

Proof. It is shown in [HRS2, (3.4)] that an irreducible ideal q in R is in irr(I) if and

only if I ⊆ q and I : M * q, so (2.3.1) ⇔ (2.3.2).

If (2.3.2) holds, then I ⊆ q, so I : M ⊆ q : M and q : M is the unique cover of

q, by (2.2.1). Therefore every ideal that properly contains q must contain I : M , so

q is maximal with respect to (2.3.3)(a) (with J = I) and (2.3.3)(b), so (2.3.2) ⇒
(2.3.3).

Finally, if (2.3.3) holds, then q is irreducible, by (2.2.2), so since I ⊆ J ⊆ q and

I : M * q, [HRS2, (3.4)] shows that q ∈ irr(I), hence (2.3.3) ⇒ (2.3.1), �

(2.4) COROLLARY. Irr(I) = {q; q is an irreducible ideal in R, I ⊆ q, and

q∩(I : M) is covered by I : M} = {q; q is an ideal in R that is maximal with respect

to: (a) containing an ideal J that contains I; and, (b) intersecting I : M in an ideal

that is covered by I : M}.

Proof. This readily follows from (2.3) and (2.2.5), �

In (2.5) we note a relation between n(I) and nirr(I) (see (2.1.3) and (2.1.4)).

(2.5) PROPOSITION (2.5.1). If I is irreducible, then n(I) = 1 and nirr(I) =

0, so I /∈ S (see (2.1.5)).
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(2.5.2) If I has an irreducible cover q and if I is reducible, then q ∈ irr(I), n(I) =

2, and nirr(I) = 1, so I /∈ S.

(2.5.3) It is always true that n(I) ≤ nirr(I) + 1.

Proof. (2.5.1) is clear.

For (2.5.2) assume that I is reducible and that q is an irreducible cover of I,

and let Q be an ideal in R that is maximal with respect to containing I and not

containing q. (Such an ideal Q exists, since I is reducible.) Then Q is irreducible,

by (2.2.2), and I = q ∩Q, hence q, Q ∈ irr(I). Therefore it follows that n(I) = 2

and nirr(I) = 1 = `(q/I), so I /∈ S.

For (2.5.3), let nirr(I) = k, let q be an irreducible ideal in R such that I ⊆ q and

`(q/I) = k, and let q = q0 ⊃ · · · ⊃ qk = I be a (maximal) chain of ideals is R of

length k between q and I. Then, for i = 1, . . . , k, qi−1 covers qi, so if q(i) is an ideal

in R that is maximal with respect to containing qi and not containing qi−1, then

(2.2.2) shows that q(i) is irreducible, and q(i) ∩ qi−1 = qi. Therefore it follows that

I = q0 ∩ q(1) ∩ · · · ∩ q(k), so n(I) ≤ k + 1 = lirr(I) + 1, �

Note that no irreducible M -primary ideal is in the set S of (2.1.5), by (2.5.1), and

a similar statement holds for each reducible M -primary ideal that has an irreducible

cover, by (2.5.2). So it is natural to wonder if either S is empty or if the following

“converse” of (2.5.2) holds: if I is the irredundant intersection of two irreducible

ideals, then I has an irreducible cover. In (6.2.1) and (6.2.2) we give examples of

when this converse holds, but (6.2.3) shows that it does not hold in general, so S is

not empty.

3. THE IDEALS IN I(I). The main result in this section, (3.1), shows that

if I ⊆ J , if K is a cover of J , and if I : M * J , then there exists q ∈ irr(I) such

that q ∩K = J . An immediate consequence of this is (3.2), which characterizes the

ideals in I(I) by showing that these ideals are precisely the ideals between I and an

arbitrary irreducible component of I. Then we briefly consider some consequences

of (3.2), including the relation of irreducibly related (see (3.6)).

The proof of (3.1) is somewhat similar to the proof of (2.12) in [HRS3].
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(3.1) THEOREM. Let J be an ideal in R such that I ⊆ J and I : M * J , and

let K be a cover of J . Then there exists q ∈ irr(I) such that q ∩K = J .

Proof. Note first that if I is irreducible, then J = I (since I : M * J and I : M is

the unique cover of I (by (2.2.1))), so it follows that K = I : M and we may take q

= I.

Therefore it may be assumed that I is reducible. Then since I : M * J , there

exists an ideal q′′ in R that is maximal with respect to containing J and not contain-

ing I : M . Then q′′ ∈ irr(I), by (2.3.3) ⇒ (2.3.1), and since K covers J it follows

that either q′′ ∩K = J (as desired), or K ⊆ q′′.

Therefore it may be assumed that K ⊆ q′′. Then I : M * K, since I : M * q′′,

so it follows that J ∩ (I : M) ⊆ K ∩ (I : M) ⊂ I : M . If J ∩ (I : M) ⊂ K ∩ (I : M),

then let t ∈ (K ∩ (I : M)) − J . Then if q′ is an ideal in R that is maximal with

respect to containing J and not containing t, then it follows that I : M * q′ (so q′

∈ irr(I)) and K * q′, so q′ ∩K = J , as desired.

Therefore it may be assumed that J ∩ (I : M) = K ∩ (I : M). Then since K

covers J , there exists x ∈ K − J such that xM ⊆ J . Also, since K ∩ (I : M) is

properly contained in I : M , there exists y ∈ (I : M)−K, so let K ′ = (J, x+ y)R.

Then (x+ y)M ⊆ J , so K ′ covers J , and K ′ 6= K (since x ∈ K and y /∈ K).

Suppose J ∩ (I : M) ⊂ K ′ ∩ (I : M) and let z ∈ (K ′ ∩ (I : M)) − J . Then z =

j+ r(x+ y) for some j ∈ J and for some r ∈ R. Then r is a unit, since (x+ y)M ⊆
J and z /∈ J . Also, z− ry ∈ I : M (since z, y ∈ I : M) and j+ rx ∈ K (since j ∈ J
⊆ K and x ∈ K), so z− ry = j+ rx ∈ K ∩ (I : M) = J ∩ (I : M). Therefore j+ rx

∈ J , and j ∈ J and r is a unit, hence x ∈ J , and this contradicts the choice of x.

Therefore it follows that J ∩ (I : M) = K ′ ∩ (I : M). Therefore let q be an ideal

in R that is maximal with respect to containing K ′ and not containing y (where y

∈ (I : M)−K). Then I : M * q (since y ∈ (I : M) − q), so q ∈ irr(I). And K *

q, since (J, x+ y)R = K ′ ⊆ q and y /∈ q (so x /∈ q and x ∈ K). Therefore, since K

covers J it follows that q ∩K = J , �

(3.2) COROLLARY. Assume that I is reducible, let q ∈ irr(I), and let J be an

ideal in R such that I ⊆ J ⊆ q. Then J ∈ I(I). In fact, J is the (possibly redundant)
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intersection of `(q/J) + 1 ideals in irr(I). Therefore I(I) = {J ; J is an ideal in R

such that I ⊆ J ⊆ q for some q ∈ irr(I)} = {J ; J is a finite intersection of ideals

in irr(I)}.

Proof. Let `(q/J) = k and let q = q0 ⊃ q1 ⊃ · · · ⊃ qk = J be a maximal chain of

ideals between q and J . Then I : M * q0, by (2.3.1) ⇒ (2.3.2), so I : M * qi for

i = 1, . . . , k, and qi−1 covers qi, so (3.1) shows that there exists q(i) ∈ irr(I) such

that q(i) ∩ qi−1 = qi. Therefore it follows that J = q0 ∩ q(1) · · · ∩ q(k), hence J is the

intersection of `(q/J) + 1 ideals in irr(I), so J ∈ I(I).

Finally, since R/I has finite length, it follows that the ideals in I(I) are finite

intersections of the ideals in irr(I), so the final statement follows from what was

shown in the preceding paragraph, �

(3.3) COROLLARY. Assume that I is reducible and let m = min({`(M/q); q ∈
irr(I)}). Then card({q; q ∈ irr(I) and `(M/q) = m}) ≥ 2.

Proof. Let q1 ∈ irr(I) such that `(M/q1) = m. Then since `(q1/I) is finite, it is

clear that there exists an ideal J in R such that q1 covers J and I ⊆ J . Now J is

reducible, by (2.2.6), so n(J) ≥ 2. But since `(q1/J) = 1, (3.2) shows that there

exists an ideal q2 ∈ irr(I) such that J = q1 ∩ q2. Then it follows that `(M/q2) ≤
`(M/J)−1 = `(M/q1) = m ≤ `(M/q2) (this last inequality by the definition of m),

hence `(M/q2) = m = `(M/q1), �

The next result lists several properties of the ideals in I(I).

(3.4) PROPOSITION. The following statements hold for an open reducible ideal

I:

(3.4.1) The maximal elements in I(I) are the elements in irr(I).

(3.4.2) The maximal reducible ideals in I(I) are the ideals J ∈ I(I) such that n(J)

= 2 and J is covered by all ideals q ∈ irr(I) that contain J .

(3.4.3) I is the minimum element in I(I).

(3.4.4) The ideals J in I(I) that are minimal with respect to properly containing I

are the ideal covers of I, and for each such ideal J it holds that n(J) ≥ n(I)− 1.
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(3.4.5) If J ∈ I(I) and if J = Q1 ∩ · · · ∩Qh is an arbitrary decomposition of J as

an intersection of irreducible ideals, then at least one Qi is in irr(I).

(3.4.6) If J ∈ I(I), if J = Q1 ∩ · · · ∩Qh is an arbitrary decomposition of J as an

intersection of irreducible ideals, and if `((I : M)/(J ∩ (I : M))) = k, then at least

k of the Qi are in irr(I).

(3.4.7) An ideal J in R is in I(I) if and only if I ⊆ J and I : M * J .

Proof. (3.4.1) is clear by the definitions of I(I) and irr(I).

For (3.4.2) let J ∈ I(I) such that n(J) = 2 and J is covered by all ideals q ∈
irr(I) such that J ⊆ q. To see that q is a maximal reducible ideal in I(I) let q′ ∈
I(I) such that q ⊂ q′ and let q′′ ∈ irr(I) such that q′ ⊆ q′′. Then q ⊂ q′′, so `(q′′/q)

= 1, by hypothesis, hence q′ = q′′, so it follows that q is a maximal reducible ideal

in I(I).

Conversely, let q be a maximal reducible ideal in I(I). Then q = q1 ∩ · · · ∩ qk for

some ideals q1, . . . , qk in irr(I). Assume this intersection is irredundant. Then k =

2, since otherwise q ⊂ q1 ∩ q2 and q1 ∩ q2 is reducible and is in I(I). Also, if q ⊂
q′ ∈ irr(I), and if `(q′/q) > 1, then there exists an ideal q′′ in R such that q ⊂ q′′

⊂ q′, so q′′ ∈ I(I), by (3.2), and q′′ is reducible, by (2.2.6), and this contradicts the

choice of q. Therefore (3.4.2) holds.

It is clear that I is the minimum element in I(I), so (3.4.3) holds.

For (3.4.4) let J be a cover of I. Then I ⊂ J ⊆ I : M . If J = I : M , then since

every cover of I is contained in I : M it follows that I : M is the unique cover of I,

so I is irreducible by (2.2.1), and this contradicts the hypothesis that I is reducible.

Therefore J ⊂ I : M , so there exists an ideal q ∈ irr(I) such that J ⊆ q, by (2.3.3)

⇒ (2.3.1), so J ∈ I(I), by (3.2), and it then readily follows that J is minimal in

I(I) with respect to properly containing I.

For the converse let J ∈ I(I) be minimal with respect to properly containing I.

Then since every ideal properly between I and J is in I(I), by (3.2), it follows that

`(J/I) = 1, hence J is a cover of I. Therefore, if n(J) = k and J = q1 ∩ · · · ∩ qk
is a decomposition of J as an irredundant intersection of irreducible ideals, then

(3.1) shows that there exists q ∈ irr(I) such that q1 ∩ · · · ∩ qk ∩ q = I, hence n(I) ≤
n(J) + 1.
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For (3.4.5), note that I : M is not contained in any ideal in irr(I), by (2.3.1) ⇒
(2.3.2), so it follows from (3.2) that I : M * J . Therefore I : M * Qi for some i =

1, . . . , h, and I ⊆ J ⊆ Qi, so Qi ∈ irr(I) by (2.3.2) ⇒ (2.3.1).

For (3.4.6) let j such that Q1, . . . , Qj are in irr(I) and Qj+1, . . . , Qh are not in

irr(I), so j ≥ 1 by (3.4.5). Let J0 = I : M and for i = 1, . . . , j let Ji = Qi ∩ Ji−1.

Then (2.2.5) shows that either Ji is a codimensional one subspace of Ji−1 or Ji =

Ji−1. Therefore since `((I : M)/(J ∩ (I : M))) = k it follows that j ≥ k.

Finally, for (3.4.7), if J is an ideal in R such that I ⊆ J and I : M * J , then

(2.3.3) ⇒ (2.3.1) shows that there exists q ∈ irr(I) such that J ⊆ q, hence J ∈ I(I)

by (3.2).

And, if J ∈ I(I), then I ⊆ J ⊆ q for some q ∈ irr(I), by (3.2), and I : M * q,

by (2.3.1) ⇒ (2.3.2), hence I : M * J , �

The next remark generalizes (3.3).

(3.5) REMARK. It follows from (3.4.2) that if J is a maximal reducible ideal in

I(I), then `(M/q) = `(M/J)− 1 for all ideals q ∈ irr(I) that contain J . And there

exist at least two such ideals q, by (3.2).

We next breifly consider a new relation (called “irreducibly related”) between

two open ideals in R.

(3.6) DEFINITION. If I and J are open ideals in R, then it will be said that J

is irreducibly related to I in case J is the (finite) intersection of ideals in irr(I).

We will denote this relation by J ir I.

(3.7) PROPOSITION. The following hold for the relation “irreducibly related”:

(3.7.1) The ideals that are irreducibly related to I are the ideals in I(I).

(3.7.2) I ir I for all open ideals I, so the relation is reflexive.

(3.7.3) If I ir J and J ir I, then I = J , so the relation is anti-symmetric.

(3.7.4) The relation is not transitive.

(3.7.5) If I, J , and K are open ideals in R such that J ir I, K ir J , and I : M =

J : M , then K ir I.
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(3.7.6) If J is an ideal in R, then J ir I if and only if I ⊆ J and I : M * J .

Proof. (3.7.1) follows immediately from (3.2) and the definitions.

(3.7.2) is clear from the definition, and (3.7.3) follows immediately from (3.7.1).

For (3.7.4) it suffices to give an example of ideals H,J,K such that J ir H,

K ir J , and K is not irreducibly related to H. For this, let (L,N) be a local ring,

let H, J , and q be open ideals such that H ⊂ J ⊂ q ∈ irr(H) + irr(J), and let K

∈ irr(J)− irr(H). Then (3.2) and (3.7.1) show that J ir H, K ir J , and K is not

irreducibly related to H, hence this relation is not transitive.

For (3.7.5), let I, J,K be open ideals in R such that J ir I, K ir J , and I : M =

J : M . Then K = Q1 ∩ · · · ∩Qh for a finite number of ideals Q1, . . . , Qh in irr(J),

and for j = 1, . . . , h we have I ⊆ J ⊆ Qj and I : M = J : M * Qj , so Qj ∈ irr(I),
by (2.3.2) ⇒ (2.3.1). Therefore K ir I.

Finally, (3.7.6) follows immediately from (3.4.7) and (3.7.1), �

4. MINIMAL IRREDUCIBLES NEED NOT BE IRREDUCIBLE

COMPONENTS. In this section we consider the ideal structure of the ring L

= F [X,Y ]/(X3, Y 3) (where F is the field of two elements), and use it to show that

it is possible for an irreducible ideal q in a local ring R to contain an open ideal I

and yet not contain any irreducible component of I. (In this regard, it is shown in

[HRS4, Corollary 6.5] that if I is a monomial ideal in a Gorenstein local ring R and

if Q is minimal in the set {q; I ⊆ q and q is an irreducible monomial ideal in R},
then Q is an irreducible component of I. (4.1) shows that the “monomial” condition

was crucial for this result.)

(4.1) THEOREM. There exist a local ring (L,N) and open ideals J ⊂ q such

that q is irreducible and contains no irreducible component of J .

Proof. (See (4.2.3) for more details concerning the following proof.) Let F be the

field of two elements, let X and Y be indeterminates, and let L = F [X,Y ]/K,

where K = (X3, Y 3)F [X,Y ], so L is a finite local ring (and L is Gorenstein, since

K is irreducible). Let N = (x, y)L, where x = X + K and y = Y + K, let J =

x2y2L, and let q = (x + y)L. Then it is readily checked that (0) : (x2 + xy + y2)L
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= q, so q is irreducible (by [ZS, Theorem 35, p.250], since (X3, Y 3)F [X,Y ](X,Y ) is

irreducible). Also, J = xy2L ∩ x2yL, so J is reducible. Further, J = N4, J : N =

N3 = (x2y, xy2)L, and x2y = x3 +x2y = x2(x+y) and xy2 = xy2 +y3 = y2(x+y),

so N3 = (x2y, xy2)L ⊂ q, hence q /∈ irr(J), by (2.3.2) ⇔ (2.3.1). Finally, the only

ideals properly between q and J are the ideals (x2 + xy, y2 + xy)L, (x2 + xy)L,

(xy + y2)L, (x2, y2)L, N3, x2yL, xy2L, and (x2y + xy2)L, and none of these ideals

is irreducible by [ZS, Theorem 35, p. 250] (since none of them is the annihilator

of a principal ideal; specifically, (x2 + xy, y2 + xy)L = (0) : (x2 + xy + y2, xy2)L,

(x2 + xy)L = (0) : (x2, xy + y2)L, (xy + y2)L = (0) : (x2 + xy, y2)L, (x2 + y2)L =

(0) : (x2 + y2, xy)L, N3 = (0) : N2, x2yL = (0) : (x, y2)L, xy2L = (0) : (x2, y)L,

and (x2y + xy2)L = (0) : (x2, x+ y, y2)L)), �

(4.2) REMARK. (4.2.1) It follows, by passing to L/J , that another way to state

(4.1) is that there exists an Artinian local ring (L,N) with an irreducible ideal q

such that q contains no irreducible component of zero.

(4.2.2) The computation to determine the ideal structure of L in (4.1) was carried

out by the computer program Macaulay. This computation also showed that (x2 +

x+ y)L is an irreducible ideal that contains J = x2y2L and that does not contain

any irreducible component of J . (Craig Huneke pointed out to us examples of

irreducible ideals q containing I that fail to contain an irreducible component of I.

One of his examples is in a regular local ring (R,M) of altitude three with M =

(x, y, z)R and I = (x3, y3, z3, xyz)R. He argues that with K = (x3, y3, z3)R and f

= yx2 + zy2 + xz2, it follows that K : fR is irreducible, contains I, and fails to

contain an irreducible component of I. His other example is the one presented in

(4.1).)

(4.2.3) If F is the field with two elements, then there are 256 = 28 = (1 + 1)8 =∑8
i=0

(
8
i

)
nonunits in the ring L = F [X,Y ]/(X3, Y 3) (since there are the 8 mono-

mials x, y, x2, xy, y2, x2y, xy2, x2y2) ranging from 0, x, . . . , x2y2, x + y, . . . , xy2 +

x2y2, x + y + x2, . . . , x + y + x2 + xy + y2 + x2y + xy2 + x2y2), so there are also

256 units (each being of the form f + 1, where f is a nonunit). It is straightforward

to write a computer program to compute and store the nonunits in one file and
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the units in another file. Then to get a list of generators of the distinct principal

ideals, Macaulay can quickly compute all unit multiples of each of the nonunits, and

this shows that each of the 255 nonzero nonunits is a unit multiple of one of the

following 20 polynomials (14 homogeneous, 4 homogenizable (by adjusting weights),

and 2 nonhomogenizable): x, y, x2, xy, y2, x2y, xy2, x2y2, x + y, x2 + y, x + y2,

x2+x+y, x2+xy, xy+y2, x2+y2, x2+xy2, x2y+y2, x2+xy+y2, x2y+x2+xy+y2,

x2y+xy2. (There is some symmetry in the generators of the two nonhomogenizable

principal ideals; for example, (x2 + x+ y)L = (y2 + x+ y)L = (xy + x+ y)L, and

(x2y + x2 + xy + y2)L = (xy2 + x2 + xy + y2)L = (x2y2 + x2y + x2 + xy + y2)L =

(x2y2 + xy2 + x2 + xy + y2)L.) [To compute these unit multiples, we created a file

(“xy”, say) to be fed into Macaulay with the “Macaulay < xy” command. It’s first

few lines specified: (a) an output file (with Macaulay’s “monitor” command); (b)

the base ring A (with Macaulay’s “ring” command (specifying characteristic 2 and

2 variables)); (c) the kernel K (with Macaulay’s “ideal” command (specifying the

two generators x3, y3)); and, (d) the factor ring L = A/K (with Macaulay’s “qring”

command). The next line uses Macaulay’s “poly” command (to specify the nonunit

polynomial f whose unit multiples are desired), and this is followed by 255 pairs of

lines “poly h {f} ∗ (g + 1)” “type h” (with g varying over the 255 nonzero nonunit

polynomials), to compute and display (in the output file) the 255 unit multiples h =

f(g + 1) of f), and then the file is ended with Macaulay’s “exit” command (to exit

from Macaulay). By successively changing the definition of f in this file, and then

feeding it into Macaulay, it is readily checked that each of the 255 nonzero nonunit

polynomials is a unit multiple of one of the 20 polynomials listed above; in this re-

gard, it is useful to write a short program to keep track of the distinct polynomials

that are unit multiples of these 20 polynomials, since Macaulay’s output from each

run on the file “xy” contains 255 polynomials, with at most 32 distinct ones. Using

this process, Macaulay shows that there are: 32 unit multiples of each of x, y, x+y,

x+ y2, x2 + y, x2 +x+ y; 8 unit multiples of each of x2 +xy, xy+ y2, xy, x2 + y2; 4

unit multiples of each of x2, y2, x2 +xy2, x2y+ y2, x2 +xy+ y2, x2y+x2 +xy+ y2;

2 unit multiples of each of x2y, xy2, x2y + xy2; and, 1 unit multiple of x2y2.]

Now, since (X3, Y 3) is irreducible in F [X3, Y 3](X,Y ), [ZS, Theorem 35, p. 250]
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shows that an ideal J in L is irreducible if and only if (0) : J is a principal ideal. Also,

fL = (0) : ((0) : fL), so it follows that there are exactly 20 nonzero irreducible ideals

in L, namely the 20 nonzero ideals (0) : fL. Using Macaulay’s “quotient” command

to compute (0) : fL, it turns out that the 20 nonzero irreducible ideals are: N =

(x, y)L = (0) : x2y2L; (x, y2)L = (0) : x2yL; (x2, y)L = (0) : xy2L; (x2, x+ y, y2)L

= (0) : (x2y + xy2)L; xL = (0) : x2L; x2L = (0) : xL; yL = (0) : y2L; y2L =

(0) : yL; (x+y)L = (0) : (x2 +xy+y2)L; (x2 +xy+y2)L = (0) : (x+y)L; (x+y2)L

= (0) : (x2 + xy2)L; (x2 + xy2)L = (0) : (x+ y2)L; (x2 + y)L = (0) : (x2y + y2)L;

(x2y + y2)L = (0) : (x2 + y)L; (x2 + x + y)L = (0) : (x2y + x2 + xy + y2)L;

(x2y + x2 + xy + y2)L = (0) : (x2 + x + y)L; (x2, xy + y2)L = (0) : (x2 + xy)L;

(x2 + xy, y2)L = (0) : (xy + y2)L; (x2 + y2, xy)L = (0) : (x2 + y2)L; (x2, y2)L =

(0) : xyL. (Macaulay’s “quotient” command readily computes (0) : fL for the 18

homogenizable polynomials f , and (0) : fL can be computed for the two remaining

polynomials f = x2 +x+y and f = x2y+x2 +xy+y2 by having Macaulay compute

all the nonunit multiples of each of these two polynomials f .)

This has introduced eight new (non-principal) ideals (namely, N , (x, y2)L, (x2, y)L,

(x2, x+y, y2)L = (x2, x+y)L (since y2 = x2+(x+y)2), (x2, xy+y2)L, (x2+xy, y2)L,

(x2 + y2, xy)L, and (x2, y2)L, and it is straightforward to find eight additional non-

principal ideals (x2, xy)L, (xy, y2)L, (x2, xy2)L, (x2y, y2)L, N2, N3 = (x2y, xy2)L,

(x2 + xy, y2 + xy)L, and (x2 + xy + y2, xy2)L; note that these 16 non-principal

ideals are all homogeneous. Now Macaulay can be used to show that there are

no additional homogeneous ideals (by having it compute a standard basis for each

homogeneous ideal obtained by adjoining a homogeneous element to the 30 homo-

geneous ideals listed above), and then by hand checking it can be seen (by adjoining

a nonhomogeneous element to each of these 36 ideals) that there are no additional

nonzero proper ideals in L.

Next, to determine which irreducible ideals q are in irr(J) for various ideals J ,

recall that q ∈ irr(J) if and only J ⊆ q and J : N * q (by (2.3.2) ⇔ (2.3.1)). With

this in mind, Macaulay’s “quotient” command can be used to compute J : N for the

34 homogenizable ideals, and then J : N can be computed for the two remaining

nonhomogenizable (principal) ideals by computing all nonunit multiples of x and y
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(since f ∈ gL : N if and only if fx, fy ∈ gL).

Finally, the containment relations between these 36 nonzero proper ideals can be

determined by having Macaulay compute nonunit multiples of the generators of the

ideals.

This procedure is not readily extendible to F [X,Y ]/(Xm, Y n) with m and n

much larger than 3; for example, if m = 3 and n = 4, then there are 211 nonunit

polynomials and 40 nonzero proper principal ideals, and if m = 4 = n, then there

are 215 nonunit polynomials.

5. WHEN DOES uR[u,tI] HAVE A UNIQUE COVER? In this section

we answer this question, and then use it to characterize when uR[u, tI] is irreducible,

in the case when R is Artinian. (Here, R[u, tI] is the Rees ring of R with respect

to I, so t is an indeterminate and u = 1/t.)

(5.1) PROPOSITION. Let R = R[u, tI] and let M = (u,M, tI)R. Then the

following are equivalent:

(5.1.1) M is a prime divisor of uR.

(5.1.2) There exists a nonnegative integer k and an element b ∈ Ik such that uR :

btkR = M.

(5.1.3) There exists a nonnegative integer k and an element b ∈ Ik such that

(u, btk)R covers uR.

(5.1.4) There exists a nonnegative integer k and an element b ∈ Tk − Ik+1, where

Tk = Ik ∩ (Ik+1 : M) ∩ (Ik+2 : I).

Proof. Since uR and M are homogeneous, the definition of prime divisor shows that

(5.1.1) and (5.1.2) are equivalent.

Also, it readily follows from the definition of an ideal cover that (5.1.2) and (5.1.3)

are equivalent.

Now assume that (5.1.2) holds. Then it follows that b ∈ Ik − Ik+1, that btkM ⊆
uR, and that btk(tI) ⊆ uR. Therefore b ∈ Ik− Ik+1, bM ⊆ uk+1R∩R = Ik+1, and

bI ⊆ uk+2R ∩R = Ik+2, so it follows that (5.1.4) holds, hence (5.1.2) ⇒ (5.1.4).

Finally, if (5.1.4) holds, then btk ∈ R − uR, bM ⊂ Ik+1, and bI ⊆ Ik+2, so it

follows that btkM ⊆ tkIk+1 = u(tI)k+1 ⊆ uR, and btk(tI) ⊆ tk+1Ik+2 = u(tI)k+2
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⊆ uR. Therefore it follows that btk ∈ uR : M − uR, so uR : btkR = M, hence

(5.1.4) ⇒ (5.1.2), �

(5.2) REMARK. Let J be an ideal in a local ring (R,M) and for each nonnegative

integer k let Tk = Jk ∩ (Jk+1 : M) ∩ (Jk+2 : J) (as in (5.1.4)). Then:

(5.2.1) Jk+1 ⊆ Tk for all k ≥ 0.

(5.2.2) If Jk+1 ⊂ Tk, then M ∈ Ass(R/Jk+1).

(5.2.3) If J is regular, then Jk+2 : J = Jk+1 for all large k, so Tk = Jk+1 for all

large k.

(5.2.4) If J = bR is a regular principal ideal, then Tk = bk+1R = Jk+1 for all k ≥
0.

(5.2.5) If J is M -primary and Jk+1 is irreducible, then Jk+1 : M is its unique cover,

so Jk+1 : M ⊆ Jk ∩ (Jk+2 : J), hence Tk = Jk+1 : M is principal modulo Jk+1.

Proof. (5.2.1) is clear by the definition of Tk.

For (5.2.2), if Jk+1 ⊂ Tk, then Jk+1 ⊂ Jk+1 : M , so M ∈ Ass(R/Jk+1).

For (5.2.3), if J is regular, then it is shown in the proof of [RR, (2.1)] that Jk+2 : J

= Jk+1 for all large k, so the definition of Tk and (5.2.1) show that Jk+1 = Tk for

all large k.

For (5.2.4), if J = bR is regular, then it is clear that Jk+2 : J = Jk+1 for all k ≥
0, and it readily follows from this and (5.2.1) that Tk = Jk+1.

Finally, for (5.2.5), if J is M -primary and Jk+1 is irreducible, then Jk+1 : M is

its unique cover, by (2.2.1), so it follows that Tk = Jk+1 : M is principal modulo

Jk+1, �

The next result shows an interesting application of the ideals Tk. (If altitude(R)

= 0, then (5.3) characterizes the ideals in R such that uR is irreducible; see (5.4).)

(5.3) THEOREM. Let J be an ideal in R and let R = R[u, tJ ]. Then the following

are equivalent:

(5.3.1) uR has a unique cover.

(5.3.2) There exists a unique nonnegative integer k such that Tk 6= Jk+1, and for

this k, Tk is a principal ideal modulo Jk+1, where Tk = Jk∩(Jk+1 : M)∩(Jk+2 : J).
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Proof. Assume first that (5.3.1) holds and let f ∈ R such that (u, f)R is the unique

cover of uR. Then f /∈ uR and fN ⊆ uR for some maximal ideal N in R, hence

uR : fR = N . Since uR is homogeneous, it follows that N = M = (u,M, tJ)R.

Therefore M is a prime divisor of uR, so (5.1.1) ⇒ (5.1.3) shows that there exists

a nonnegative integer k and an element b ∈ Jk such that (u, btk)R is a cover of uR.

Therefore the hypothesis implies that (u, f)R = (u, btk)R, so it may be assumed to

begin with that f = btk is homogeneous.

Now (5.1.3) ⇒ (5.1.4) shows that b ∈ Tk − Jk+1, so Tk 6= Jk+1. To see that Tk

modulo Jk+1 is principal, let c ∈ Tk − Jk+1. Then (5.1.4) ⇒ (5.1.3) shows that

(u, ctk)R covers uR, so the hypothesis implies that (u, ctk)R = (u, btk)R, and it

then readily follows that c = x+ vb for some x ∈ Jk+1 and unit v in R. Therefore

Tk is a principal ideal modulo Jk+1.

Now let h 6= k be a nonnegative integer and suppose there exists d ∈ Th −
Jh+1. Then (5.1.4) ⇒ (5.1.3) shows that (u, dth)R is a cover of uR, so (u, dth)R

= (u, btk)R. If h < k, then dth = u(xth+1) + (yuh−k)(btk) for some x ∈ Jh+1 and

y ∈ R, so by cancelling th it follows that d ∈ Jh+1, and this contradicts the choice

of d. And a similar computation produces the contradiction that b ∈ Jk+1 if h

> k. Therefore it follows that h = k, and this contradicts the choice of h, so the

supposition that Th properly contains Jh+1 leads to a contradiction. Therefore Th

= Jh+1 for all nonnegative integers h 6= k, hence (5.3.1) ⇒ (5.3.2).

Now assume that (5.3.2) holds and let b ∈ Tk − Jk+1. Then (5.1.4) ⇒ (5.1.3)

shows that (u, btk)R is a cover of uR. Therefore let (u, f)R be another cover of

uR, so fM ⊆ uR and M and uR are homogeneous, so it follows that it may be

assumed that f is homogeneous, say f = cth. Then (5.1.3) ⇒ (5.1.4) shows that c

∈ Th−Jh+1, so (5.3.2) shows that h = k and that c = x+vb for some x ∈ Jk+1 and

unit v in R, so it follows that (u, cth)R = (u, btk)R, hence (5.3.2) ⇒ (5.3.1), �

(5.4) COROLLARY. The following statements are equivalent for an ideal I in

an Artinian local ring (R,M):

(5.4.1) uR is irreducible.

(5.4.2) (5.3.2) holds.
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(5.4.3) R is Gorenstein.

(5.4.4) The form ring F(R, I) of R with respect to I is Gorenstein.

Proof. Since altitude(R) = 0, it follows that altitude(R) = 1, so since uR is ho-

mogeneous it follows that uR is primary for M = (u,M, tI)R. Therefore uR is

irreducible if and only if uR has a unique cover (by (2.2.1)), so (5.4.1) ⇔ (5.4.2) by

(5.3.1) ⇔ (5.3.2).

It is known that R is Gorenstein if and only if RM is Gorenstein [BH, Prop. 3.1.19,

page 94 and Ex. 3.6.20, page 142]. Since altitude(RM) = 1, it follows that RM is

Gorenstein if and only if uRM is irreducible, and uRM is irreducible if and only if

uR is irreducible (since M is the only prime divisor of uR), so (5.4.1) ⇔ (5.4.3).

Finally, F(R, I) = R(R, I)/uR(R, I), so since uR is regular it follows that (5.4.3)

⇔ (5.4.4), �

(5.5) REMARK. (5.5.1) If I is an ideal in an Artinian local ring (R,M), then R

= R[u, tI] is Cohen-Macaulay. Also, if the equivalent statements of (5.4) hold, then

R is Gorenstein.

(5.5.2) If L = F [X,Y ]/(X3, Y 3) with F the field with two elements, then the

computer program Macaulay can be used to show (by comparing the ideals Tk

and Ik+1 for k = 0, 1, 2, 3, 4) that, of the 34 homogenizable ideals in L, only the

following three choices for I yield that uL[u, tI] is irreducible: I = xL; I = yL; and

I = (x, y)L. For the ideal I = xL, Tk = Ik+1 = xk+1L for k 6= 2 (and xk+1L =

(0) for k ≥ 2), and T2 = (I3, x2y2)L = x2y2L. (Similar results hold for I = yL.)

And for I = (x, y)L, Tk = Ik+1 for k 6= 4, and T4 = x2y2L and I5 = (0). (It should

be noted that all three of these ideals are irreducible, and for the first two of these

ideals I, Ik is irreducible for all k ≥ 1.)

(5.5.3) Assume that altitude(R) > 0, let J be an ideal in R, and let R = R[u, tJ ].

Then neither of the following statements implies the other: (1) uR has a unique

cover. (2) uR is irreducible.

(5.5.4) If altitude(R) > 0 and uR has a unique cover, then uR is not irreducible

(since it is not even primary).
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(5.5.5) If J is a regular principal ideal in R, then uR[u, tJ ] does not have a unique

cover.

Proof. For (5.5.1), u is a regular element in R = R[u, tI] and M = (u,M, tI)R

has height one, so RM is Cohen-Macaulay, so [HR, (4.11)] shows that R is Cohen-

Macaulay. Also, if (5.4.3) holds, that is, if R is Gorenstein, then its quotient ring

R[u, t] = R[1/u] is Gorenstein, so since t is an indeterminate and u = 1/t it follows

that R is Gorenstein.

For (5.5.3), if (R,M) is a regular local ring that is not a field and J = M , then uR

is prime, and it is clear that uR has no cover, so (2) does not imply (1). To see that

(1) does not imply (2), let F be a field and let R = F [[X,Y ]]/(X2,XY ) = F [[x, y]]

and let J = (x, y)R. Then the form ring of R with respect to J is R[u, tJ ]/(u) and

is isomorphic to the graded ring F [X,Y ]/(X2,XY ) = F [x, y], where x2 = xy = 0.

Since the ideal (0) of this ring is reducible and has the unique cover xF [x, y], uR is

reducible and has the unique cover (u, tx)R.

For (5.5.4), if altitude(R) > 0 and uR has a unique cover, then uR cannot be

irreducible, since (u,M, tJ)R is a prime divisor of uR (by (5.1.3) ⇒ (5.1.1)) and

height((u,M, tJ)R) > 1 (so uR is not even primary).

Finally, for (5.5.5), it follows from (5.2.4) and (5.3) that uR[u, tJ ] does not have

a unique cover, �

In passing, it should be noted that (5.5.2) and (5.4.1) ⇒ (5.4.4) show that the

form ring F = F(L, (x, y)L) is Gorenstein. Another way to see this is to note that F

= F [X,Y, u, tX, tY ]/(u, t3X3, t3Y 3), and u, t3X3, t3Y 3 is a regular sequence in the

locally regular ring F [X,Y, u, tX, tY ],

(5.6) COROLLARY. If I is an ideal in an Artinian Gorenstein local ring (R,M)

such that uR[u, tI] is irreducible, then the integer k such that Tk properly contains

Ik+1 is the largest integer h such that Ih 6= 0, and in this case Tk = bR, where bR

= (0) : M is the unique cover of zero in R.

Proof. By (5.4.1)⇒ (5.4.2) let k be the integer such that Tk properly contains Ik+1.

Choose h such that Ih 6= (0) and Ih+1 = (0), so Th+i = Ih+i+1 = (0) for all i ≥ 1,

so k ≤ h.
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Suppose that k < h, so there exists c ∈ Ih such that c 6= 0. By (5.1.4) ⇒
(5.1.3) let b ∈ Tk − Ik+1 such that (u, btk)R is the unique cover of uR. Then

(u, btk)R ⊆ (u, cth)R, so b ∈ Ik+1 + cR ⊆ Ik+1 + Ih = Ik+1, and this contradicts

the choice of b. Therefore it follows that h = k, so Ik 6= (0) and Ik+1 = (0) ⊂ Tk =

Ik ∩ ((0) : M) ∩ ((0) : I) = (0) : M , �

In (5.7) we consider the rings Rn = F [X]/(Xn) and use (5.4) to show that

uRn[u, tI] is irreducible and F(Rn, I) is Gorenstein if and only if I = Xi with i a

divisor of n.

(5.7) REMARK. Let n be a positive integer, let F be a field, let X be an inde-

terminate, let Rn = F [X]/(Xn) = F [x], where xn = 0, and let Mn = xRn. Then

Rn is an Artinian Gorenstein local ring and:

(5.7.1) For each positive integer n it is true that uRn[u, tMn] is irreducible and the

form ring F(Rn,Mn) of Rn with respect to its maximal ideal Mn is Gorenstein.

(5.7.2) For each even positive integer n it is true that uRn[u, tM2
n] is irreducible

and the form ring F(Rn,M
2
n) of Rn with respect to the ideal M2

n is Gorenstein.

(5.7.3) For each odd positive integer n ≥ 3, uRn[u, tM
2
n] is reducible and the form

ring F(Rn,M
2
n) of Rn with respect to the ideal M2

n is not Gorenstein.

(5.7.4) More generally, if i is an integer with 1 ≤ i ≤ n and I = M i
n = xiRn, then

uRn[u, tM i
n] is irreducible and the form ring F(Rn,M

i
n) of Rn with respect to the

ideal M i
n is Gorenstein if and only if n is a multiple of i.

Proof. It is clear that R is an Artinian Gorenstein local ring, so it suffices to prove

(5.7.4), and for this we consider the two cases: (a) n is a multiple of i; and, (b) n is

not a multiple of i.

For (a), let n = qi, where q is a positive integer. Then for j = 0, 1, . . . , q− 2 it is

readily checked that Tj = (xi)j+1Rn, that Tq−1 = xiq−1Rn ⊃ (0) = (xi)qRn, and

that Tj = (0) = (xi)j+1Rn for j ≥ q. Therefore (5.4.2) holds, so it follows from

(5.4) that uRn[u, tM i
n] is irreducible and that F(Rn,M

i
n) is Gorenstein.

For (b), let n = qi+ r, where q is a nonnegative integer and 1 ≤ r < i. Then it is

readily checked that Tq−1 = xiq−i+rRn ⊃ xiqRn and that Tq = xn−1Rn ⊃ (xi)q+1Rn
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= (0). Therefore (5.4.2) does not hold, so it follows from (5.4) that uRn[u, tM
i
n] is

not irreducible and that F(Rn,M
i
n) is not Gorenstein, �

We close this section with an example of an Artinian Gorenstein local ring (R,M)

such that uR[u, tM ] is reducible and F(R,M) is not Gorenstein.

(5.8) EXAMPLE. Let F be a field, letX be an indeterminate, let R = F [X2,X3]/(X5) =

F [x2, x3], where x5 = 0 and xn = 0 for n ≥ 7, and let M = (x2, x3)R. Then R is an

Artinian Gorenstein local ring such that uR[u, tM ] is reducible and the form ring

F(R,M) of R with respect to its maximal ideal M is not Gorenstein.

Proof. It is clear that R is an Artinian Gorenstein local ring, so by (5.4) it suffices

to show that (5.4.2) does not hold. And for this, it is readily checked that T1 = x3R

⊃ x4 = M2 and that T3 = x6 ⊃ (0) = M4, so (5.4.2) does not hold, �

6. SOME EXAMPLES. In this section we give several examples of the “bad”

behavior of the irreducible components of an ideal, even in regular local rings of

altitude two. Our first example, (6.2), shows that S (see (2.1.5)) is not empty, and

to prove (6.2.3) we need the following result.

(6.1) PROPOSITION. Let q be an irreducible M -primary ideal in a local ring

(R,M), let q1 = q : M be the unique cover of q, and let (R,M ) = (R/q,M/q).

Then q1 has an irreducible cover if and only if M covers a principal ideal.

Proof. Let Q be a cover of q1. Then since q1 is the unique cover of q, and since the

operation I → I
′

= (0) : I on the set of ideals I of R is one-to-one and reverses

inclusion (see [ZS, pp. 247-251]), it follows that q1
′ = M is a cover of Q

′
. Also, Q

is irreducible if and only if Q
′
is a principal ideal, by [ZS, Theorem 35, p. 250], and

the conclusion readily follows from this, �

The following example was discussed following (2.5).

(6.2) EXAMPLE. Let (R,M = (x, y)R) be a regular local ring of altitude two

and let n > 1 and m > 1 be integers.
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(6.2.1) Let I = (xn, xy, ym)R. Then q1 = (xn, y)R, q2 = (x, ym)R, and q3 =

(xy, xn−1 +ym−1)R are in irr(I), I = q1∩ q2 (so n(I) = 2), `(q1/I) = m−1, `(q2/I)

= n− 1, and nirr(I) = 1 = `(q3/I) (so q3 is an irreducible cover of I), so I /∈ S by

(2.5.2).

(6.2.2) If m = 2 and I = (xn, xn−1y, y2)R, then q1 = (xn−1, y2)R is an irreducible

cover of I, so n(I) = 2 and `(q1/I) = 1 = nirr(I), so I /∈ S by (2.5.2). (Similarly, if

n = 2 and I = (x2, xym−1, ym)R, then q2 = (x2, ym−1)R is an irreducible cover of

I, so n(I) = 2 and `(q2/I) = 1 = nirr(I), so I /∈ S by (2.5.2).)

(6.2.3) Let n > 2, m > 2, and I = (xn, xn−1ym−1, ym)R. Then q1 = (xn, ym−1)R

and q2 = (xn−1, ym)R are in irr(I), I = q1 ∩ q2 (so n(I) = 2), `(q1/I) = m − 1,

`(q2/I) = n− 1, and I has no irreducible cover, so I ∈ S.

Proof. For (6.2.1), it is shown in [HRS4, (2.1.2), (3.1) and (4.1)] that q1 and q2 are

in irr(I) and that I = q1∩q2. Also, it is readily checked that I ⊂ (xn−1, xy, ym)R ⊂
· · · ⊂ (x2, xy, ym)R ⊂ (x, ym)R = q2 is a saturated chain of ideals between I and q2

(so l(q2/I) = n−1) and that I ⊂ (xn, xy, ym−1)R ⊂ · · · ⊂ (xn, xy, y2)R ⊂ (xn, y)R =

q1 is a saturated chain of ideals between I and q1 (so l(q1/I) = m− 1). Further, it

is readily checked that q3 is a cover of I (so l(q3/I) = 1), and q3 is irreducible (since

it is generated by a system of parameters), so q3 ∈ irr(I) by (2.5.2). It therefore

follows that I /∈ S.

For (6.2.2), it is readily checked that q1 is an irreducible cover of I, and the

conclusions readily follow from this.

Finally, for (6.2.3), it is shown in [HRS4, (2.1.2), (3.1) and (4.1)] that q1 and q2 are

in irr(I) and that I = q1∩q2. Also, it is readily checked that I ⊂ (xn, xn−2ym−1, ym)R ⊂
· · · ⊂ (xn, xym−1, ym)R ⊂ (xn, ym−1)R = q1 is a saturated chain of ideals between

I and q1 (so l(q1/I) = n− 1), and a similar chain shows l(q2/I) = m− 1. Finally, it

follows from (6.1) (with q = (xn, ym)R and q1 = I) that if n > 2 and m > 2, then

I has no irreducible cover (since if M = (x, y)R covers bR, then M = (b, c)R (for

some c ∈ M) and cM ⊆ bR, so M
2 ⊆ bR, hence (x2, xy, y2)R ⊆ (xn, ym, b)R, and

this clearly cannot happen if n > 2 and m > 2), �

The examples in (6.2) show some of the things that do not necessarily hold in a
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given irreducible decomposition of an M -primary ideal I, as noted in the following

remark.

(6.3) REMARK. Let I = q1∩· · ·∩qg be an irredundant irreducible decomposition

of I. Then:

(6.3.1) (6.2.1) shows that it is possible that `(qi/I) > nirr(I) for i = 1, . . . , g.

(6.3.2) (6.2.1) shows that it is possible (by varying I) that, for i = 1, . . . , g, there

is no bound on `(qi/I), even when nirr(I) = 2.

The next two examples were rather a surprise to us. The first of these shows

that, even if n(I) = 2, there may exist arbitrarily long finite chains of ideals in I(I)

each of which is the intersection of two ideals in irr(I), and the second shows that

there may exist ideals in I(I) that are the intersection of more than n(I) elements

in irr(I).

(6.4) PROPOSITION. Let (R,M) be a regular local ring of altitude two. Then

there exists an infinite chain of M -primary ideals I1 ⊃ I2 ⊃ · · · and an infinite set

Q of irreducible M -primary ideals qn such that for all positive integers n and k it

holds that In+k is the irredundant intersection qn ∩ qn+k. In particular, for each

positive integer n the ideals in Q that are in irr(In) are the ideals q1, . . . , qn.

Proof. Fix x1 ∈ M −M2, let q1 = (x1,M
2)R, and let I1 = (x1M,M2)R, so I1 =

M2. Then:

(a1) M
2 ⊆ I1 ⊆ q1 and M * q1; and,

(b1) q1 = (x1, I1)R is a cover of I1

(since x1M ⊂M2 = I1 and q1 = I1 +x1R). (Therefore if y ∈M −x1R and if we let

q = (y, I1)R, then it is readily checked that q1 ∩ q = I1, so q1 and q are in irr(I1).)

Now let z1 ∈ M − q1, let x2 = z1 + x1, let q2 = (x2,M
3)R, and let I2 =

(x2M,M3)R. Then:

(a2) M
3 ⊆ I2 ⊆ q2 and M2 * q2; and,

(b2) q2 = (x2, I2)R is a cover of I2.
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Therefore assume that n ≥ 2 and that zn−1 ∈ Mn−1 − qn−1, xn = zn−1 + xn−1,

qn = (xn,M
n+1)R, and In = (xnM,Mn+1)R have been defined so that:

(an) Mn+1 ⊆ In ⊆ qn and Mn * qn; and,

(bn) qn = (xn, In)R is a cover of In.

Then let zn ∈ Mn − qn, xn+1 = zn + xn, qn+1 = (xn+1,M
n+2)R, and In+1 =

(xn+1M,Mn+2)R.

Then it is readily checked that:

(an+1) M
n+2 ⊆ In+1 ⊆ qn+1 and Mn+1 * qn+1; and,

(bn+1) qn+1 = (xn+1, In+1)R is a cover of In+1.

Also, for each n it follows that xn ∈ M −M2. (For, x1 ∈ M −M2; x2 = x1 + z1

and z1 ∈ M − x1R, so x2 ∈ M −M2; and, if i > 2 and xi ∈ M −M2, then zi

∈ M i − qi implies that xi+1 = xi + zi ∈ M −M2.) Therefore qn = (xn,M
n+1)R

is generated by a system of parameters (since R/xnR is a PID), hence each qn is

irreducible.

Further, for each n it follows that In+1 ⊂ In. (For In+1 = (xn+1M,Mn+2)R and

xn+1M = (xn + zn)M ⊆ xnM + znM ⊆ xnM +MnM = In, and (an) and (an+1)

show that the containment is proper.)

Moreover, (an) and (an+k) show that qn * qn+k (since Mn+1 ⊆ qn and Mn+k *

qn+k). Therefore, if it is shown that, for each n and k, qn+k * qn, then it follows

from (bn+k) that qn ∩ qn+k = In+k is an irredundant intersection. And it then

follows that q1, . . . , qn are in irr(In), and qn+i /∈ irr(In) for all i ≥ 1, since qn+i is

a cover of In+i and In+i is properly contained in In (so In * qn+i). Therefore it

remains to show that qn+k is not contained in qn.

For this, suppose that qn+k ⊆ qn. Then it follows from the definition of the

ideals qi that xn+k ∈ qn = (xn,M
n+1)R, so there exist r ∈ R and m ∈ Mn+1

such that xn+k = rxn + m. Also, the definition of the xi shows that xn+k =

xn + zn + zn+1 + · · ·+ zn+k, and the definition of the zi shows that zn /∈ Mn+1 and

that zn+i ∈ Mn+1 for i = 1, . . . , k. Therefore xn+k = xn + zn + m′, where m′ =

zn+1 + · · ·+zn+k ∈Mn+1. Therefore it follows that rxn+m = xn+k = xn+zn+m′,

so zn = (r− 1)xn +m−m′ ∈ (xn,M
n+1)R = qn, and this contradicts the choice of
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zn ∈ Mn − qn. Therefore qn+k * qn for all n and k, �

Concerning the set Q in (6.4), note that the intersection of each set of more that

two elements in Q is redundant. From this observation, a natural question is, if

n(I) = k, then is the intersection of each set of h > k elements in irr(I) redundant?

The answer is no, as the next result shows.

(6.5) PROPOSITION. Let (R,M) be a regular local ring of altitude two and let

k < m be positive integers. Then there exists an open ideal I of R such that n(I) =

m and there exist m+ k elements in irr(I) whose intersection is irredundant.

Proof. It is shown in the proof of [HS, (2.1)] by computing Tor(R/I,R/M) in two

ways via projective resolutions of R/I and R/M that if I is an open ideal in R, then

n(I) = v(I) − 1, where v(I) denotes the number of elements in a minimal basis of

I.3 Also, given positive integers k < m, [HRS4, (3.12)] shows that in every regular

local ring of altitude two there exists an open ideal I such that v(I) = m + 1 and

v(I : M) = m + k + 2. Therefore there exists an ideal J in R such that I ⊂ J ⊂
I : M and v(J) = m+ k+ 1. Then it follows that n(I) = m and n(J) = m+ k, and

J is the (irredundant) intersection of m+ k elements in irr(I), by (3.2), �

A specific example of ideals I and J such that I ⊂ J ⊂ I : M with n(I) = m

and n(J) = m + k as in (6.5) is the following: let n = m + 1, s = k + 2, for i =

1, . . . , s let fi = x2(i−1)yn+s−2i and zi = x2i−1yn+s−2i−1, for i = s + 1, . . . , n let

fi = xs+(i−1)yn−i and zi = xs+(i−1)yn−1−i (so fi ∈ zi−1R for i = s + 1, . . . , n; zn

is not used), and, finally, let I = (f1, . . . , fn)R and J = (f1, . . . , fs, z2, . . . , zn−1)R.

Then the proof of [HRS4, (3.11)] shows that I ⊂ J ⊂ I : M , v(I) = n (= m + 1),

and v(J) = s+ n− 2 (= m+ k + 1), so n(I) = m and n(J) = m+ k (as noted at

the start of the proof of (6.5)).
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