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Abstract

An ideal I of a ring R is said to be strongly irreducible if for ideals J
and K of R, the inclusion J ∩ K ⊆ I implies that either J ⊆ I or K ⊆ I. The
relationship among the families of irreducible ideals, strongly irreducible ideals,
and prime ideals of a commutative ring R is considered, and a characterization
is given of the Noetherian rings which contain a non-prime strongly irreducible
ideal. 1

1 INTRODUCTION

Although ideal theory in cancellative abelian monoids is similar in many ways to

ideal theory in commutative rings, one important difference is that the set of ideals

of such a monoid M is closed under unions as well as sums and intersections, and of

course the distributive laws hold for unions and intersections. Thus the set of ideals

of such a monoid M is always a distributive lattice. However the set of ideals in a

ring is usually not closed under unions, and intersection usually does not distribute

over addition. Indeed, a ring R is said to be arithmetical if for all ideals I, J , and

K of R, we have (I + J)∩K = (I ∩K) + (J ∩K). This property is equivalent to the

condition that for all ideals I, J , and K of R, we have (I∩J)+K = (I +K)∩(J +K).

A commutative ring R is arithmetical if and only if for each maximal ideal M of R

the ideals of the localization RM are totally ordered with respect to inclusion [4, page

321], [7, pages150-151].

An ideal I of a commutative ring R is said to be irreducible if I is not the

intersection of two ideals of R that properly contain it. Thus if I is an irreducible
12000 Mathmatics Subject Classification Numbers: 13A15, 13C05, 13E05, 13F99.
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module.
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ideal and if J and K are ideals in R such that (J ∩ K) + I = (J + I) ∩ (K + I),

and if J ∩ K ⊆ I, then either J ⊆ I or K ⊆ I. The equality (J ∩ K) + I =

(J + I)∩ (K + I) holds, for example, if the ideals I, J , K are generated by monomials

in an R-sequence a1, . . . , an and each contains a power of ai for 1 ≤ i ≤ n − 1 [10,

Theorem 5]. If R is a polynomial ring in the variables X1, . . . ,Xd over a field or over

the ring of integers, and if I, J , K are generated by monomials in X1, . . . ,Xd, then

(J ∩ K) + I = (J + I) ∩ (K + I) [2, page 68].

These considerations motivated us to define an ideal I of a ring R to be strongly

irreducible if for ideals J and K of R, the inclusion J ∩ K ⊆ I implies that either

J ⊆ I or K ⊆ I. The strongly irreducible ideals are also mentioned in [1, Page

301, exercise 34] where they are called quasi-prime. In this paper we consider the

relationship among the families of irreducible ideals, strongly irreducible ideals, and

prime ideals of a commutative ring R. We observe in Lemma 2.2 that a prime ideal

is strongly irreducible and that a strongly irreducible ideal is irreducible.

In Theorem 2.6, we prove that if I is an M -primary strongly irreducible ideal of

a quasi-local ring (R,M) and if I is properly contained in I :R M , then (1) I :R M

is a principal ideal, (2) I = (I :R M)M , and (3) for each ideal J of R, either J ⊆ I

or I :R M ⊆ J . Using this, we observe in Corollary 3.2 that if I 6= M is a strongly

irreducible M -primary ideal in a local ring (R,M), then I = ∪{q | q is an ideal in R

and q ⊂ I :R M} and I :R M = ∩{q | q is an ideal in R and I ⊂ q}.
Our main result, Theorem 3.6, states that if I is a non-prime ideal with ht(I) > 0

in a Noetherian ring R, then I is strongly irreducible if and only if I is primary, RP

is a DVR, where P = Rad(I), and I = Pn for some integer n > 1. In Proposition 3.4

we prove that an ideal I of a Noetherian ring R is a non-prime strongly irreducible

ideal if and only if there exist ideals C and P of R such that I ⊂ C ⊆ P and: (1)

P is prime; (2) I is P -primary; and, (3) for all ideals J in R either J ⊆ I or CRP

⊆ JRP . Also if this holds, then CRP = IRP :RP
PRP . In particular, a Noetherian

ring R contains a non-prime strongly irreducible ideal if and only if there exists an

ideal I of R satisfying these conditions.

All rings considered in the paper are assumed to be commutative rings with iden-
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tity. We use “⊂” for strict inclusion. If S is a multiplicatively closed subset of a

ring R and A is an ideal of RS , then we denote by A ∩ R the ideal ϕ−1(A), where

ϕ : R → RS is the canonical map.

2 STRONGLY IRREDUCIBLE IDEALS

Definition 2.1 An ideal I of a ring R is strongly irreducible if for ideals J and

K of R, the inclusion J ∩ K ⊆ I implies that either J ⊆ I or K ⊆ I.

In Lemma 2.2 we list some basic properties concerning strongly irreducible ideals.

Lemma 2.2 Let I be an ideal in a ring R. Then:

(1) If I is strongly irreducible, then I is irreducible. (Therefore, if R is Noetherian,

then I is a primary ideal.)

(2) If I is a prime ideal, then I is strongly irreducible.

(3) If R is an arithmetical ring, I is irreducible if and only if I is strongly irreducible

if and only if the set of zero-divisors on R/I is a prime ideal of R.

(4) If S is a multiplicatively closed set in R and if IRS is strongly irreducible, then

IRS ∩ R is strongly irreducible.

(5) If I is a strongly irreducible primary ideal and S is a multiplicatively closed subset

of R such that Rad(I) ∩ S = ∅, then IRS is strongly irreducible.

(6) If I is P -primary and IRP is strongly irreducible, then I is strongly irreducible.

(7) If T is a faithfully flat extension ring of R and if IT is strongly irreducible, then

I is strongly irreducible.

(8) If I is strongly irreducible and if H is an ideal contained in I, then I/H is strongly

irreducible in R/H.

(9) To show that I is strongly irreducible, it suffices to show that if bR and cR are

principal ideals in R such that bR ∩ cR ⊆ I, then either b ∈ I or c ∈ I.

(10) A principal primary ideal of a UFD is strongly irreducible.

Proof. For (1) assume that I is strongly irreducible and let J and K be ideals in

R such that J ∩K = I. Then J ∩K ⊆ I, so either J ⊆ I or K ⊆ I, since I is strongly
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irreducible, and it then follows that either J = I or K = I, so I is irreducible. (If R is

Noetherian, then [11, Lemma 2, p. 209] shows that an irreducible ideal is a primary

ideal.)

For (2) assume that I is prime and let J and K be ideals in R such that J ∩K ⊆
I. Then JK ⊆ I, so either J ⊆ I or K ⊆ I, since I is prime, so it follows that I is

strongly irreducible.

The first assertion in (3) is clear from the discussion in the Introduction. To prove

the second assertion in (3), assume the set of zero-divisors on R/I is a prime ideal P

of R. Then I = IRP ∩ R. Since the ideals of RP are linearly ordered with respect to

inclusion, IRP is strongly irreducible in RP . Hence by part (4) below, I is strongly

irreducible. For the other direction, if I is strongly irreducible, then I is irreducible.

It is then easily seen that the zero-divisors on R/I form an ideal and hence a prime

ideal of R.

For (4) assume that IRS is strongly irreducible and let J and K be ideals in R

such that J ∩K ⊆ IRS ∩R. Then JRS ∩KRS ⊆ IRS , so either JRS ⊆ IRS or KRS

⊆ IRS, so either J ⊆ IRS ∩R or K ⊆ IRS ∩R, hence IRS ∩R is strongly irreducible.

For (5) assume that I is a strongly irreducible primary ideal of R and let J and

K be ideals in RS such that J ∩ K ⊆ IRS . Then (J ∩ R) ∩ (K ∩ R) ⊆ IRS ∩ R = I

(by [8, Theorem 6.6], since I is primary). So either J ∩ R ⊆ I or K ∩ R ⊆ I, since I

is strongly irreducible. Therefore it follows that either J = (J ∩ R)RS ⊆ IRS or K

= (K ∩ R)RS ⊆ IRS , and hence IRS is strongly irreducible.

For (6), by (4) IRP ∩R is strongly irreducible. But since I is P -primary, IRP ∩R

= I by [8, Theorem 6.6].

For (7) assume that T is a faithfully flat extension ring of R and that IT is strongly

irreducible. Let J and K be ideals in R such that J ∩ K ⊆ I, so JT ∩ KT ⊆ IT ,

hence either JT ⊆ IT or KT ⊆ IT . Therefore either J = JT ∩ R ⊆ IT ∩ R = I, or

K = KT ∩ R ⊆ IT ∩ R = I, hence I is strongly irreducible.

For (8) let J and K be ideals in R such that (J/H) ∩ (K/H) ⊆ I/H. Then

(J +H)∩ (K +H) ⊆ I +H = I, since H ⊆ I. Since I is strongly irreducible it follows

that either J ⊆ I or K ⊆ I, hence either J/H ⊆ I/H or K/H ⊆ I/H, so I/H is
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strongly irreducible.

For (9), assume that I has the property that whenever bR ∩ cR ⊆ I it holds that

either b ∈ I or c ∈ I. To see that I is strongly irreducible let J and K be ideals in

R such that J ∩ K ⊆ I. Assume that J 6⊆ I, so there exists b ∈ J such that b /∈ I.

Then for all c ∈ K it holds that bR ∩ cR ⊆ J ∩K ⊆ I, so c ∈ I. It follows that K ⊆
I, hence I is strongly irreducible.

Finally, for (10), let pA be a principal prime ideal in the UFD A, and let n be a

positive integer. To show that pnA is strongly irreducible, it suffices by (6) to show

that pnApA is strongly irreducible, and this is clear since ApA is a DVR. 2

Concerning conditions (4), (5) and (6) of Lemma 2.2, it is well known that in a

Noetherian ring, irredicible ideals are primary and primary ideals are not necessarily

irreducible. In an arithmetical ring the opposite holds. That is primary ideals are

irreducible [5, Theorem 6], and irredicible ideals are not necessarily primary. Recall

that an integral domain is arithmetical if and only if it is Prüfer [5, Corollary 3], and

that a Prüfer domain R has the property that each ideal of R with prime radical is

irreducible if and only if each prime ideal of R is contained in a unique maximal ideal

[5, Theorem 8]. A general necessary and sufficient condition for an irreducible ideal

I of a commutative ring R to be primary is that each chain of the form I ⊆ I :R a ⊆
I :R a2 ⊆ I :R a3 . . ., a ∈ R, must be finite [3].

In Example 2.3, we give several examples of strongly irreducible ideals (the first

of which is alluded to in the proof of parts (3) and (10) of Lemma 2.2).

Example 2.3 (1) If the ideals of R are linearly ordered, then each ideal in R is

strongly irreducible. So, for example, if R is either a DVR or a homomorphic image of

a DVR, then each ideal in R is strongly irreducible (and also principal). In particular,

if F is a field, X is an indeterminate, and n is a positive integer, then each ideal in

R = F [[X]]/(Xn) is strongly irreducible.

(2) If R is any ring such that the zero ideal of R is irreducible, then the zero ideal of

R is strongly irreducible.
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(3) If R is Gorenstein of altitude zero, then the zero ideal is irreducible, so it is strongly

irreducible, by (2). In particular, if R = F [X1, . . . ,Xg]/(X1
n1, . . . ,Xg

ng), where F is

a field, X1, . . . ,Xg are indeterminates, and n1, . . . , ng are positive integers, then the

zero ideal in R is strongly irreducible.

(4) If P is a height-one prime ideal of a Krull domain R, then each P -primary ideal

is strongly irreducible (by Lemma 2.2(6)).

A strongly irreducible ideal of a Noetherian ring is primary and thus, in particular,

has prime radical. Also, as noted in part (3) of Lemma 2.2, if I is a strongly irreducible

ideal of an arithmetical ring R, then the set of zero-divisors on R/I is a prime ideal P

of R. Since R is arithmetical, the prime ideals of R contained in P are linearly ordered

with respect to inclusion. Therefore in an arithmetical ring a strongly irreducible ideal

has prime radical. In general, however, a strongly irreducible ideal may fail to have

prime radical as we show in Example 2.4.

Example 2.4 Let (R,M) be a Noetherian local ring having more than one minimal

prime. Let E = E(R/M) denote the injective envelope of the residue field R/M of

R as an R-module. Then the zero ideal of the idealization A = R + E [8, page 2]is

irreducible, and hence strongly irreducible by part (2) of Example 2.3. But the radical

of zero in A has more than one minimal prime since R has more than one minimal

prime.

We believe Lemma 2.5 is known, but do not know an appropriate reference, so we

include a proof.

Lemma 2.5 Let b and c be elements in a ring R. Then bR ∩ cR = b(cR :R bR) =

c(bR :R cR). Moreover, if I is an ideal in R such that I ⊆ bR, then I = b(I :R bR).

Proof. For the last statement, assume that I is an ideal in R such that I ⊆ bR.

Then it is clear that b(I :R bR) ⊆ I, and if i ∈ I ⊆ bR, then i = rb for some r ∈ R,

so r ∈ iR :R bR ⊆ I :R bR, so i = rb ∈ b(I :R bR).
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Then, since bR ∩ cR ⊆ bR, it follows that bR ∩ cR = b((bR ∩ cR) :R bR) =

b(cR :R bR). By symmetry it follows that bR ∩ cR = c(bR :R cR). 2

Theorem 2.6 gives some properties of a strongly irreducible M -primary ideal in a

quasi-local ring (R,M). (The hypothesis in Theorem 2.6 that I is properly contained

in I :R M is clearly satisfied if I = M . It is also satisfied if R is local (Noetherian)

and I 6= M , so this result plays an important role in the next section where we restrict

attention to the case where R is Noetherian.)

Theorem 2.6 Let (R,M) be a quasi-local ring and let I be a strongly irreducible

M -primary ideal in R. Assume that I ⊂ I :R M . Then:

(1) I :R M is a principal ideal.

(2) I = (I :R M)M .

(3) For each ideal J in R either J ⊆ I or I :R M ⊆ J .

Proof. By hypothesis, I ⊂ I :R M , so there exist x ∈ (I :R M)−I. If (I :R M) 6=
xR, let y ∈ (I :R M)−xR. Then xR∩ yR = y(xR :R yR) (by Lemma 2.5) ⊆ I (since

xR :R yR ⊆ M and y ∈ I :R M). However, I is strongly irreducible, so xR ∩ yR ⊆ I

implies that either xR ⊆ I or yR ⊆ I, hence y ∈ I. Therefore it follows that I :R M

= xR ∪ I. But then I :R M ⊆ xR or I :R M ⊆ I [6, Theorem 81]. Therefore I :R M

= xR, so (1) holds.

For (2), I ⊂ I :R M = xR (by (1)), so I = x(I :R xR) (by Lemma 2.5) = xM

(since x ∈ (I :R M) − I implies (since R is quasi-local with maximal ideal M) that

I :R xR = M), hence (2) holds.

To prove (3) let J be an ideal in R. It may clearly be assumed that J 6⊆ I, so it

remains to show that I :R M ⊆ J ; that is, that x ∈ J . For this, if x /∈ J , then let j ∈
J , so x /∈ jR. Therefore xR ∩ jR = xR(jR :R xR) ⊆ xM ⊆ I, hence jR ⊆ I (since

I is strongly irreducible and xR 6⊆ I). Since this holds for each j ∈ J , it follows that

J ⊆ I, and this is a contradiction. Therefore x ∈ J , hence (3) holds. 2

Recall that an ideal I of a ring R is said to be sheltered if there exists a least

element in the set of nonzero submodules of R/I [1, Page 238, exercise 18]. Thus a
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strongly irreducible M -primary ideal in a local ring (R,M) is sheltered. The converse

is false since, for example in a one-dimensional Gorenstein local ring, any regular

principal I of R is sheltered (since it is irreducible), but it will be seen in Corollary

3.7, that if I is strongly irreducible, then either (R,M) is a DVR or I = M . In

particular the zero ideal of R/I can be strongly irreducible while I fails to be strongly

irreducible. An example of a sheltered ideal of a non-Noetherian ring is the zero ideal

of A = R + E in Example 2.4.

3 STRONGLY IRREDUCIBLE IDEALS IN

NOETHERIAN RINGS

In this section we first prove a corollary of Theorem 2.6. We then give a character-

ization for a Noetherian ring to have a strongly irreducible non-prime ideal I. We

observe that such an ideal I has several properties similar to an ideal in a homomor-

phic image of a DVR, and then show that a strongly irreducible ideal I of positive

height is either prime or RRad(I) is a DVR. We often use the fact (Lemma 2.2(1))

that a strongly irreducible ideal in a Noetherian ring is a primary ideal.

Corollary 3.1 Let I be a strongly irreducible ideal in a Noetherian ring R, let Rad(I)

= P , and assume that I 6= P . Then:

(1) (I :R P )RP is a principal ideal (hence ht(I) ≤ 1).

(2) IRP = ((I :R P )P )RP .

(3) For each ideal J in R either J ⊆ I or (I :R P )RP ⊆ JRP .

Proof. I is a primary ideal, since I is strongly irreducible, hence I is P -primary

(where P = Rad(I)). Also, IRP is strongly irreducible, by Lemma 2.2(1), so (1) -

(3) follow immediately from Theorem 2.6. (Since R is Noetherian, it follows from the

Principal Ideal Theorem (and the fact that IRP ⊂ (I :R P )RP and (I :R P )RP is a

principal ideal) that ht(I) = ht(P ) ≤ 1.) 2

Corollary 3.2 Let (R,M) be a local ring and let I 6= M be a strongly irreducible

M -primary ideal in R (so ht(M) ≤ 1, by Corollary 3.1). Then I and I :R M are
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comparable (under containment) to all ideals in R; in fact, I = ∪{q | q is an ideal in

R and q ⊂ I :R M} and I :R M = ∩{q | q is an ideal in R and I ⊂ q}.

Proof. I :R M = ∩{q | q is an ideal in R and I ⊂ q} by Theorem 2.6(3). Also, if

q is an ideal in R such that q ⊂ I :R M , then I :R M 6⊆ q, so q ⊆ I by Corollary 3.1,

hence I = ∪{q | q is an ideal in R and q ⊂ I :R M}. 2

Remark 3.3 (1) It follows from Corollary 3.1(1) and (2) and Corollary 3.2 that if

I is a strongly irreducible non-prime ideal in a Noetherian ring R, then IRP has the

following three properties that are similar to the ideals in a DVR (where P = Rad(I)):

(a) IRP :RP
PRP is principal; (b) IRP = PRP (IRP :RP

PRP ); and, (c) IRP and

IRP :RP
PRP are comparable to all ideals in RP .

(2) If I is a non-prime strongly irreducible ideal in a local ring R that is primary for

the maximal ideal of R, then I is comparable to all ideals in R, by (1)(c). However,

an ideal in a local ring that is comparable to all ideals in R need not be strongly

irreducible. For example, the zero ideal in every ring has this property, but need not

even be irreducible.

(3) If I is an irreducible M -primary ideal in a local ring (R,M), then I is strongly

irreducible if and only if I is comparable to all ideals in R.

Proof. For (3), it follows from (1)(c) that it suffices to show that an irreducible

ideal that is comparable to all ideals in R is strongly irreducible. For this, it follows

from Proposition 3.4 below that it suffices to show that I :R M is comparable to all

ideals in R. For this, if J is an ideal in R that is not contained in I, then I ⊂ J , by

hypothesis. Since I is irreducible, it follows that I :R M ⊆ J . 2

Part (3) of Corollary 3.1 characterizes a non-prime strongly irreducible ideal in a

Noetherian ring, as we observe in Proposition 3.4.

Proposition 3.4 Let R be a Noetherian ring. An ideal I of R is a non-prime strongly

irreducible ideal if and only if there exist ideals C and P of R such that I ⊂ C ⊆ P

and: (1) P is prime; (2) I is P -primary; and, (3) for all ideals J in R either J ⊆
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I or CRP ⊆ JRP . Also if this holds, then CRP = IRP :RP
PRP . In particular, a

Noetherian ring R contains a non-prime strongly irreducible ideal if and only if there

exists an ideal I of R satisfying these conditions.

Proof. We have already noted in Remark 3.3(1) that a non-prime strongly irre-

ducible ideal in a Noetherian ring satisfies the stated conditions. For the converse,

assume that I is P -primary. By Lemma 2.2(5), it suffices to show that IRP is strongly

irreducible, so it may be assumed that R is local with maximal ideal P .

Let J and K be ideals in R such that J ∩ K ⊆ I. If J 6⊆ I and K 6⊆ I, then I ⊂
C ⊆ J ∩ K, and this is a contradiction. Therefore either J ⊆ I or K ⊆ I, hence I is

strongly irreducible.

Finally, the ideal C is clearly uniquely determined by the properties (a) I ⊂ C ⊆
P , and (b) for all ideals J in R either J ⊆ I or C ⊆ J . Since I :R P also has these

properties by Corollary 3.1(3), C = I :R P . 2

Proposition 3.5 Let I be a strongly irreducible ideal in a Noetherian ring R, let

Rad(I) = P , and assume that I 6= P and that ht(P ) > 0. Then IRP is a regular

ideal.

Proof. By Lemma 2.2(5) it may be assumed that R is local with maximal ideal

P , so it must be shown that (0) :R I = (0).

For this, let J = ∪{(0) :R In | n ≥ 0}. Then either J ⊆ I or I :R P ⊆ J , by

Corollary 3.1(3). If I :R P ⊆ J , then I :R P ⊆ (0) :R In for all large integers n, so

In+1 ⊆ In(I :R P ) ⊆ In((0) :R In) = (0), and this contradicts the hypothesis that

ht(I) > 0.

Therefore it may be assumed that J ⊆ I. Also, I :R P = xR for some element

x in P , by Corollary 3.1(1). Therefore (0) ⊆ J ⊆ I ⊆ I :R P = xR. However, it is

readily checked that J is the isolated component of zero determined by the height-zero

prime ideals in R, so J :R xR = J (since ht(xR) = 1). By Lemma 2.5 we have J =

x(J :R xR) = xJ , and since R is a local ring, J = (0) by Nakayama’s Lemma. Hence

I is a regular ideal. 2
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It follows from Example 2.3(1) that if R is a discrete valuation ring, then each

ideal in R is strongly irreducible. We show in Theorem 3.6 that in the Noetherian

ring case this is the only case of a non-prime strongly irreducible ideal of positive

height; that is, if I is a strongly irreducible ideal in a Noetherian ring R and if ht(I)

> 0 and RP is not a DVR, (where P = Rad(I)), then I = P .

Theorem 3.6 Let I be a non-prime ideal with ht(I) > 0 in a Noetherian ring R.

Then I is strongly irreducible if and only if I is primary, RP is a DVR, where P =

Rad(I), and I = Pn for some integer n > 1.

Proof. ( ⇐ ) Since RP is a DVR, IRP is strongly irreducible, and since I is

P -primary, this implies I is strongly irreducible by Lemma 2.2(6).

( ⇒ ) Since I is strongly irreducible, it follows from Lemma 2.2(5) that IRP is

strongly irreducible, so it suffices to prove this implication in the case where R is a

local ring with maximal ideal P and I is P -primary. Also, since ht(I) > 0, Corollary

3.1(1) shows that ht(I) = 1 and Proposition 3.5 shows that I (= IRP ) is regular.

Assume that P is not a principal ideal. We show that this implies the contradiction

that I = P . For if I 6= P , then I :R P = xR is a principal ideal and I = xP , by

Corollary 3.1(1) and (2). Let k be the positive integer such that x ∈ P k − P k+1, so

I = xP ⊆ P k+1. If P k is not principal, then there exists y ∈ P k − P k+1 such that

x /∈ yR and y /∈ xR (and y /∈ I, since I ⊆ P k+1). Now, xR ∩ yR = x(yR :R xR) ⊆
I (since x ∈ I :R P and yR :R xR ⊆ P ) and x /∈ I and y /∈ I. This contradicts the

hypothesis that I is strongly irreducible. Therefore P k must be principal. However,

by [9, Proposition 1], if some power of P is principal, then either P is principal, or

P consists of zero divisors. But P is not principal (by hypothesis) and P is a regular

ideal (since I is a regular ideal by Proposition 3.5). Therefore P is principal and

I = Pn for some integer n > 1. 2

Corollary 3.7 A Noetherian integral domain R has a non-prime strongly irreducible

ideal if and only if it contains a height-one prime ideal P such that RP is a DVR.

Proof. This is immediate from Theorem 3.6. 2
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Corollary 3.8 Let I be a strongly irreducible regular ideal in a one-dimensional

Noetherian ring R. Then (J ∩ K) + I = (J + I) ∩ (K + I) for all ideals J and

K of R with J ∩ K ⊆ I.

Proof. It suffices to check the equation locally at each prime P , and either IRP

is strongly irreducible or IRP = RP by Lemma 2.2(5). Thus assume (R,P ) is local.

Since the equation clearly holds if I = R, we may assume I ⊆ P . Then P = Rad(I)

and either J ⊆ P or K ⊆ P . Assume J ⊆ P . Then by Corollary 3.2, either J ⊆ I or

I ⊆ J . If J ⊆ I then (J ∩ K) + I = I = I ∩ (K + I) = (J + I) ∩ (K + I). If I ⊆ J

then, by the modular law, (J ∩ K) + I = J ∩ (K + I) = (J + I) ∩ (K + I). 2
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