STRONGLY IRREDUCIBLE IDEALS OF A COMMUTATIVE RING

William J. Heinzer, Louis J. Ratliff Jr. and David E. Rush

Abstract

An ideal I of a ring R is said to be **strongly irreducible** if for ideals J and K of R, the inclusion $J \cap K \subseteq I$ implies that either $J \subseteq I$ or $K \subseteq I$. The relationship among the families of irreducible ideals, strongly irreducible ideals, and prime ideals of a commutative ring R is considered, and a characterization is given of the Noetherian rings which contain a non-prime strongly irreducible ideal.¹

1 INTRODUCTION

Although ideal theory in cancellative abelian monoids is similar in many ways to ideal theory in commutative rings, one important difference is that the set of ideals of such a monoid M is closed under *unions* as well as sums and intersections, and of course the distributive laws hold for unions and intersections. Thus the set of ideals of such a monoid M is always a distributive lattice. However the set of ideals in a ring is usually not closed under unions, and intersection usually does not distribute over addition. Indeed, a ring R is said to be **arithmetical** if for all ideals I, J, and K of R, we have $(I + J) \cap K = (I \cap K) + (J \cap K)$. This property is equivalent to the condition that for all ideals I, J, and K of R, we have $(I \cap J) + K = (I + K) \cap (J + K)$. A commutative ring R is arithmetical if and only if for each maximal ideal M of Rthe ideals of the localization R_M are totally ordered with respect to inclusion [4, page 321], [7, pages150-151].

An ideal I of a commutative ring R is said to be **irreducible** if I is not the intersection of two ideals of R that properly contain it. Thus if I is an irreducible

¹2000 Mathematics Subject Classification Numbers: 13A15, 13C05, 13E05, 13F99.

Keywords and phrases: strongly irreducible ideal, Noetherian ring, arithmetical ring, sheltered module.

ideal and if J and K are ideals in R such that $(J \cap K) + I = (J + I) \cap (K + I)$, and if $J \cap K \subseteq I$, then either $J \subseteq I$ or $K \subseteq I$. The equality $(J \cap K) + I = (J+I) \cap (K+I)$ holds, for example, if the ideals I, J, K are generated by monomials in an R-sequence a_1, \ldots, a_n and each contains a power of a_i for $1 \leq i \leq n-1$ [10, Theorem 5]. If R is a polynomial ring in the variables X_1, \ldots, X_d over a field or over the ring of integers, and if I, J, K are generated by monomials in X_1, \ldots, X_d , then $(J \cap K) + I = (J + I) \cap (K + I)$ [2, page 68].

These considerations motivated us to define an ideal I of a ring R to be **strongly** irreducible if for ideals J and K of R, the inclusion $J \cap K \subseteq I$ implies that either $J \subseteq I$ or $K \subseteq I$. The strongly irreducible ideals are also mentioned in [1, Page 301, exercise 34] where they are called *quasi-prime*. In this paper we consider the relationship among the families of irreducible ideals, strongly irreducible ideals, and prime ideals of a commutative ring R. We observe in Lemma 2.2 that a prime ideal is strongly irreducible and that a strongly irreducible ideal is irreducible.

In Theorem 2.6, we prove that if I is an M-primary strongly irreducible ideal of a quasi-local ring (R, M) and if I is properly contained in $I :_R M$, then (1) $I :_R M$ is a principal ideal, (2) $I = (I :_R M)M$, and (3) for each ideal J of R, either $J \subseteq I$ or $I :_R M \subseteq J$. Using this, we observe in Corollary 3.2 that if $I \neq M$ is a strongly irreducible M-primary ideal in a local ring (R, M), then $I = \bigcup \{q \mid q \text{ is an ideal in } R$ and $q \subset I :_R M \}$ and $I :_R M = \cap \{q \mid q \text{ is an ideal in } R \text{ and } I \subset q\}$.

Our main result, Theorem 3.6, states that if I is a non-prime ideal with ht(I) > 0in a Noetherian ring R, then I is strongly irreducible if and only if I is primary, R_P is a DVR, where P = Rad(I), and $I = P^n$ for some integer n > 1. In Proposition 3.4 we prove that an ideal I of a Noetherian ring R is a non-prime strongly irreducible ideal if and only if there exist ideals C and P of R such that $I \subset C \subseteq P$ and: (1) P is prime; (2) I is P-primary; and, (3) for all ideals J in R either $J \subseteq I$ or CR_P $\subseteq JR_P$. Also if this holds, then $CR_P = IR_P :_{R_P} PR_P$. In particular, a Noetherian ring R contains a non-prime strongly irreducible ideal if and only if there exists an ideal I of R satisfying these conditions.

All rings considered in the paper are assumed to be commutative rings with iden-

tity. We use " \subset " for strict inclusion. If S is a multiplicatively closed subset of a ring R and A is an ideal of R_S , then we denote by $A \cap R$ the ideal $\varphi^{-1}(A)$, where $\varphi: R \to R_S$ is the canonical map.

2 STRONGLY IRREDUCIBLE IDEALS

Definition 2.1 An ideal I of a ring R is strongly irreducible if for ideals J and K of R, the inclusion $J \cap K \subseteq I$ implies that either $J \subseteq I$ or $K \subseteq I$.

In Lemma 2.2 we list some basic properties concerning strongly irreducible ideals.

Lemma 2.2 Let I be an ideal in a ring R. Then:

(1) If I is strongly irreducible, then I is irreducible. (Therefore, if R is Noetherian, then I is a primary ideal.)

(2) If I is a prime ideal, then I is strongly irreducible.

(3) If R is an arithmetical ring, I is irreducible if and only if I is strongly irreducible if and only if the set of zero-divisors on R/I is a prime ideal of R.

(4) If S is a multiplicatively closed set in R and if IR_S is strongly irreducible, then $IR_S \cap R$ is strongly irreducible.

(5) If I is a strongly irreducible primary ideal and S is a multiplicatively closed subset of R such that $\operatorname{Rad}(I) \cap S = \emptyset$, then IR_S is strongly irreducible.

(6) If I is P-primary and IR_P is strongly irreducible, then I is strongly irreducible.

(7) If T is a faithfully flat extension ring of R and if IT is strongly irreducible, then I is strongly irreducible.

(8) If I is strongly irreducible and if H is an ideal contained in I, then I/H is strongly irreducible in R/H.

(9) To show that I is strongly irreducible, it suffices to show that if bR and cR are principal ideals in R such that $bR \cap cR \subseteq I$, then either $b \in I$ or $c \in I$.

(10) A principal primary ideal of a UFD is strongly irreducible.

Proof. For (1) assume that I is strongly irreducible and let J and K be ideals in R such that $J \cap K = I$. Then $J \cap K \subseteq I$, so either $J \subseteq I$ or $K \subseteq I$, since I is strongly

irreducible, and it then follows that either J = I or K = I, so I is irreducible. (If R is Noetherian, then [11, Lemma 2, p. 209] shows that an irreducible ideal is a primary ideal.)

For (2) assume that I is prime and let J and K be ideals in R such that $J \cap K \subseteq I$. I. Then $JK \subseteq I$, so either $J \subseteq I$ or $K \subseteq I$, since I is prime, so it follows that I is strongly irreducible.

The first assertion in (3) is clear from the discussion in the Introduction. To prove the second assertion in (3), assume the set of zero-divisors on R/I is a prime ideal Pof R. Then $I = IR_P \cap R$. Since the ideals of R_P are linearly ordered with respect to inclusion, IR_P is strongly irreducible in R_P . Hence by part (4) below, I is strongly irreducible. For the other direction, if I is strongly irreducible, then I is irreducible. It is then easily seen that the zero-divisors on R/I form an ideal and hence a prime ideal of R.

For (4) assume that IR_S is strongly irreducible and let J and K be ideals in Rsuch that $J \cap K \subseteq IR_S \cap R$. Then $JR_S \cap KR_S \subseteq IR_S$, so either $JR_S \subseteq IR_S$ or KR_S $\subseteq IR_S$, so either $J \subseteq IR_S \cap R$ or $K \subseteq IR_S \cap R$, hence $IR_S \cap R$ is strongly irreducible.

For (5) assume that I is a strongly irreducible primary ideal of R and let J and K be ideals in R_S such that $J \cap K \subseteq IR_S$. Then $(J \cap R) \cap (K \cap R) \subseteq IR_S \cap R = I$ (by [8, Theorem 6.6], since I is primary). So either $J \cap R \subseteq I$ or $K \cap R \subseteq I$, since I is strongly irreducible. Therefore it follows that either $J = (J \cap R)R_S \subseteq IR_S$ or $K = (K \cap R)R_S \subseteq IR_S$, and hence IR_S is strongly irreducible.

For (6), by (4) $IR_P \cap R$ is strongly irreducible. But since I is P-primary, $IR_P \cap R$ = I by [8, Theorem 6.6].

For (7) assume that T is a faithfully flat extension ring of R and that IT is strongly irreducible. Let J and K be ideals in R such that $J \cap K \subseteq I$, so $JT \cap KT \subseteq IT$, hence either $JT \subseteq IT$ or $KT \subseteq IT$. Therefore either $J = JT \cap R \subseteq IT \cap R = I$, or $K = KT \cap R \subseteq IT \cap R = I$, hence I is strongly irreducible.

For (8) let J and K be ideals in R such that $(J/H) \cap (K/H) \subseteq I/H$. Then $(J+H) \cap (K+H) \subseteq I+H = I$, since $H \subseteq I$. Since I is strongly irreducible it follows that either $J \subseteq I$ or $K \subseteq I$, hence either $J/H \subseteq I/H$ or $K/H \subseteq I/H$, so I/H is strongly irreducible.

For (9), assume that I has the property that whenever $bR \cap cR \subseteq I$ it holds that either $b \in I$ or $c \in I$. To see that I is strongly irreducible let J and K be ideals in R such that $J \cap K \subseteq I$. Assume that $J \not\subseteq I$, so there exists $b \in J$ such that $b \notin I$. Then for all $c \in K$ it holds that $bR \cap cR \subseteq J \cap K \subseteq I$, so $c \in I$. It follows that $K \subseteq$ I, hence I is strongly irreducible.

Finally, for (10), let pA be a principal prime ideal in the UFD A, and let n be a positive integer. To show that p^nA is strongly irreducible, it suffices by (6) to show that p^nA_{pA} is strongly irreducible, and this is clear since A_{pA} is a DVR. \Box

Concerning conditions (4), (5) and (6) of Lemma 2.2, it is well known that in a Noetherian ring, irredicible ideals are primary and primary ideals are not necessarily irreducible. In an arithmetical ring the opposite holds. That is primary ideals are irreducible [5, Theorem 6], and irredicible ideals are not necessarily primary. Recall that an integral domain is arithmetical if and only if it is Prüfer [5, Corollary 3], and that a Prüfer domain R has the property that each ideal of R with prime radical is irreducible if and only if each prime ideal of R is contained in a unique maximal ideal [5, Theorem 8]. A general necessary and sufficient condition for an irreducible ideal I of a commutative ring R to be primary is that each chain of the form $I \subseteq I :_R a \subseteq$ $I :_R a^2 \subseteq I :_R a^3 \ldots, a \in R$, must be finite [3].

In Example 2.3, we give several examples of strongly irreducible ideals (the first of which is alluded to in the proof of parts (3) and (10) of Lemma 2.2).

Example 2.3 (1) If the ideals of R are linearly ordered, then each ideal in R is strongly irreducible. So, for example, if R is either a DVR or a homomorphic image of a DVR, then each ideal in R is strongly irreducible (and also principal). In particular, if F is a field, X is an indeterminate, and n is a positive integer, then each ideal in $R = F[[X]]/(X^n)$ is strongly irreducible.

(2) If R is any ring such that the zero ideal of R is irreducible, then the zero ideal of R is strongly irreducible.

(3) If R is Gorenstein of altitude zero, then the zero ideal is irreducible, so it is strongly irreducible, by (2). In particular, if $R = F[X_1, \ldots, X_g]/(X_1^{n_1}, \ldots, X_g^{n_g})$, where F is a field, X_1, \ldots, X_g are indeterminates, and n_1, \ldots, n_g are positive integers, then the zero ideal in R is strongly irreducible.

(4) If P is a height-one prime ideal of a Krull domain R, then each P-primary ideal is strongly irreducible (by Lemma 2.2(6)).

A strongly irreducible ideal of a Noetherian ring is primary and thus, in particular, has prime radical. Also, as noted in part (3) of Lemma 2.2, if I is a strongly irreducible ideal of an arithmetical ring R, then the set of zero-divisors on R/I is a prime ideal Pof R. Since R is arithmetical, the prime ideals of R contained in P are linearly ordered with respect to inclusion. Therefore in an arithmetical ring a strongly irreducible ideal has prime radical. In general, however, a strongly irreducible ideal may fail to have prime radical as we show in Example 2.4.

Example 2.4 Let (R, M) be a Noetherian local ring having more than one minimal prime. Let E = E(R/M) denote the injective envelope of the residue field R/M of R as an R-module. Then the zero ideal of the idealization A = R + E [8, page 2] is irreducible, and hence strongly irreducible by part (2) of Example 2.3. But the radical of zero in A has more than one minimal prime since R has more than one minimal prime.

We believe Lemma 2.5 is known, but do not know an appropriate reference, so we include a proof.

Lemma 2.5 Let b and c be elements in a ring R. Then $bR \cap cR = b(cR:_R bR) = c(bR:_R cR)$. Moreover, if I is an ideal in R such that $I \subseteq bR$, then $I = b(I:_R bR)$.

Proof. For the last statement, assume that I is an ideal in R such that $I \subseteq bR$. Then it is clear that $b(I:_R bR) \subseteq I$, and if $i \in I \subseteq bR$, then i = rb for some $r \in R$, so $r \in iR:_R bR \subseteq I:_R bR$, so $i = rb \in b(I:_R bR)$. Then, since $bR \cap cR \subseteq bR$, it follows that $bR \cap cR = b((bR \cap cR) :_R bR) = b(cR :_R bR)$. By symmetry it follows that $bR \cap cR = c(bR :_R cR)$. \Box

Theorem 2.6 gives some properties of a strongly irreducible M-primary ideal in a quasi-local ring (R, M). (The hypothesis in Theorem 2.6 that I is properly contained in $I :_R M$ is clearly satisfied if I = M. It is also satisfied if R is local (Noetherian) and $I \neq M$, so this result plays an important role in the next section where we restrict attention to the case where R is Noetherian.)

Theorem 2.6 Let (R, M) be a quasi-local ring and let I be a strongly irreducible M-primary ideal in R. Assume that $I \subset I :_R M$. Then:

- (1) $I :_R M$ is a principal ideal.
- (2) $I = (I :_R M)M$.
- (3) For each ideal J in R either $J \subseteq I$ or $I :_R M \subseteq J$.

Proof. By hypothesis, $I \subset I :_R M$, so there exist $x \in (I :_R M) - I$. If $(I :_R M) \neq xR$, let $y \in (I :_R M) - xR$. Then $xR \cap yR = y(xR :_R yR)$ (by Lemma 2.5) $\subseteq I$ (since $xR :_R yR \subseteq M$ and $y \in I :_R M$). However, I is strongly irreducible, so $xR \cap yR \subseteq I$ implies that either $xR \subseteq I$ or $yR \subseteq I$, hence $y \in I$. Therefore it follows that $I :_R M = xR \cup I$. But then $I :_R M \subseteq xR$ or $I :_R M \subseteq I$ [6, Theorem 81]. Therefore $I :_R M = xR$, so (1) holds.

For (2), $I \subset I :_R M = xR$ (by (1)), so $I = x(I :_R xR)$ (by Lemma 2.5) = xM(since $x \in (I :_R M) - I$ implies (since R is quasi-local with maximal ideal M) that $I :_R xR = M$), hence (2) holds.

To prove (3) let J be an ideal in R. It may clearly be assumed that $J \not\subseteq I$, so it remains to show that $I :_R M \subseteq J$; that is, that $x \in J$. For this, if $x \notin J$, then let $j \in J$, so $x \notin jR$. Therefore $xR \cap jR = xR(jR :_R xR) \subseteq xM \subseteq I$, hence $jR \subseteq I$ (since I is strongly irreducible and $xR \not\subseteq I$). Since this holds for each $j \in J$, it follows that $J \subseteq I$, and this is a contradiction. Therefore $x \in J$, hence (3) holds. \Box

Recall that an ideal I of a ring R is said to be **sheltered** if there exists a least element in the set of nonzero submodules of R/I [1, Page 238, exercise 18]. Thus a strongly irreducible M-primary ideal in a local ring (R, M) is sheltered. The converse is false since, for example in a one-dimensional Gorenstein local ring, any regular principal I of R is sheltered (since it is irreducible), but it will be seen in Corollary 3.7, that if I is strongly irreducible, then either (R, M) is a DVR or I = M. In particular the zero ideal of R/I can be strongly irreducible while I fails to be strongly irreducible. An example of a sheltered ideal of a non-Noetherian ring is the zero ideal of A = R + E in Example 2.4.

3 STRONGLY IRREDUCIBLE IDEALS IN NOETHERIAN RINGS

In this section we first prove a corollary of Theorem 2.6. We then give a characterization for a Noetherian ring to have a strongly irreducible non-prime ideal I. We observe that such an ideal I has several properties similar to an ideal in a homomorphic image of a DVR, and then show that a strongly irreducible ideal I of positive height is either prime or $R_{\text{Rad}(I)}$ is a DVR. We often use the fact (Lemma 2.2(1)) that a strongly irreducible ideal in a Noetherian ring is a primary ideal.

Corollary 3.1 Let I be a strongly irreducible ideal in a Noetherian ring R, let Rad(I) = P, and assume that $I \neq P$. Then:

- (1) $(I:_R P)R_P$ is a principal ideal (hence $ht(I) \leq 1$).
- (2) $IR_P = ((I:_R P)P)R_P.$
- (3) For each ideal J in R either $J \subseteq I$ or $(I :_R P)R_P \subseteq JR_P$.

Proof. *I* is a primary ideal, since *I* is strongly irreducible, hence *I* is *P*-primary (where P = Rad(I)). Also, IR_P is strongly irreducible, by Lemma 2.2(1), so (1) -(3) follow immediately from Theorem 2.6. (Since *R* is Noetherian, it follows from the Principal Ideal Theorem (and the fact that $IR_P \subset (I :_R P)R_P$ and $(I :_R P)R_P$ is a principal ideal) that $ht(I) = ht(P) \leq 1$.) \Box

Corollary 3.2 Let (R, M) be a local ring and let $I \neq M$ be a strongly irreducible M-primary ideal in R (so $ht(M) \leq 1$, by Corollary 3.1). Then I and $I :_R M$ are

comparable (under containment) to all ideals in R; in fact, $I = \bigcup \{q \mid q \text{ is an ideal in } R \text{ and } q \subset I :_R M \}$ and $I :_R M = \cap \{q \mid q \text{ is an ideal in } R \text{ and } I \subset q \}.$

Proof. $I :_R M = \bigcap \{q \mid q \text{ is an ideal in } R \text{ and } I \subset q \}$ by Theorem 2.6(3). Also, if q is an ideal in R such that $q \subset I :_R M$, then $I :_R M \not\subseteq q$, so $q \subseteq I$ by Corollary 3.1, hence $I = \bigcup \{q \mid q \text{ is an ideal in } R \text{ and } q \subset I :_R M \}$. \Box

Remark 3.3 (1) It follows from Corollary 3.1(1) and (2) and Corollary 3.2 that if *I* is a strongly irreducible non-prime ideal in a Noetherian ring *R*, then IR_P has the following three properties that are similar to the ideals in a DVR (where P = Rad(I)): (a) $IR_P :_{R_P} PR_P$ is principal; (b) $IR_P = PR_P(IR_P :_{R_P} PR_P)$; and, (c) IR_P and $IR_P :_{R_P} PR_P$ are comparable to all ideals in R_P .

(2) If I is a non-prime strongly irreducible ideal in a local ring R that is primary for the maximal ideal of R, then I is comparable to all ideals in R, by (1)(c). However, an ideal in a local ring that is comparable to all ideals in R need not be strongly irreducible. For example, the zero ideal in every ring has this property, but need not even be irreducible.

(3) If I is an irreducible M-primary ideal in a local ring (R, M), then I is strongly irreducible if and only if I is comparable to all ideals in R.

Proof. For (3), it follows from (1)(c) that it suffices to show that an irreducible ideal that is comparable to all ideals in R is strongly irreducible. For this, it follows from Proposition 3.4 below that it suffices to show that $I :_R M$ is comparable to all ideals in R. For this, if J is an ideal in R that is not contained in I, then $I \subset J$, by hypothesis. Since I is irreducible, it follows that $I :_R M \subseteq J$. \Box

Part (3) of Corollary 3.1 characterizes a non-prime strongly irreducible ideal in a Noetherian ring, as we observe in Proposition 3.4.

Proposition 3.4 Let R be a Noetherian ring. An ideal I of R is a non-prime strongly irreducible ideal if and only if there exist ideals C and P of R such that $I \subset C \subseteq P$ and: (1) P is prime; (2) I is P-primary; and, (3) for all ideals J in R either $J \subseteq$

I or $CR_P \subseteq JR_P$. Also if this holds, then $CR_P = IR_P :_{R_P} PR_P$. In particular, a Noetherian ring R contains a non-prime strongly irreducible ideal if and only if there exists an ideal I of R satisfying these conditions.

Proof. We have already noted in Remark 3.3(1) that a non-prime strongly irreducible ideal in a Noetherian ring satisfies the stated conditions. For the converse, assume that I is P-primary. By Lemma 2.2(5), it suffices to show that IR_P is strongly irreducible, so it may be assumed that R is local with maximal ideal P.

Let J and K be ideals in R such that $J \cap K \subseteq I$. If $J \not\subseteq I$ and $K \not\subseteq I$, then $I \subset C \subseteq J \cap K$, and this is a contradiction. Therefore either $J \subseteq I$ or $K \subseteq I$, hence I is strongly irreducible.

Finally, the ideal C is clearly uniquely determined by the properties (a) $I \subset C \subseteq P$, and (b) for all ideals J in R either $J \subseteq I$ or $C \subseteq J$. Since $I :_R P$ also has these properties by Corollary 3.1(3), $C = I :_R P$. \Box

Proposition 3.5 Let I be a strongly irreducible ideal in a Noetherian ring R, let $\operatorname{Rad}(I) = P$, and assume that $I \neq P$ and that $\operatorname{ht}(P) > 0$. Then IR_P is a regular ideal.

Proof. By Lemma 2.2(5) it may be assumed that R is local with maximal ideal P, so it must be shown that $(0) :_R I = (0)$.

For this, let $J = \bigcup \{(0) :_R I^n \mid n \ge 0\}$. Then either $J \subseteq I$ or $I :_R P \subseteq J$, by Corollary 3.1(3). If $I :_R P \subseteq J$, then $I :_R P \subseteq (0) :_R I^n$ for all large integers n, so $I^{n+1} \subseteq I^n(I :_R P) \subseteq I^n((0) :_R I^n) = (0)$, and this contradicts the hypothesis that ht(I) > 0.

Therefore it may be assumed that $J \subseteq I$. Also, $I :_R P = xR$ for some element x in P, by Corollary 3.1(1). Therefore $(0) \subseteq J \subseteq I \subseteq I :_R P = xR$. However, it is readily checked that J is the isolated component of zero determined by the height-zero prime ideals in R, so $J :_R xR = J$ (since ht(xR) = 1). By Lemma 2.5 we have $J = x(J :_R xR) = xJ$, and since R is a local ring, J = (0) by Nakayama's Lemma. Hence I is a regular ideal. \Box

It follows from Example 2.3(1) that if R is a discrete valuation ring, then each ideal in R is strongly irreducible. We show in Theorem 3.6 that in the Noetherian ring case this is the only case of a non-prime strongly irreducible ideal of positive height; that is, if I is a strongly irreducible ideal in a Noetherian ring R and if ht(I) > 0 and R_P is not a DVR, (where P = Rad(I)), then I = P.

Theorem 3.6 Let I be a non-prime ideal with ht(I) > 0 in a Noetherian ring R. Then I is strongly irreducible if and only if I is primary, R_P is a DVR, where P = Rad(I), and $I = P^n$ for some integer n > 1.

Proof. (\Leftarrow) Since R_P is a DVR, IR_P is strongly irreducible, and since I is P-primary, this implies I is strongly irreducible by Lemma 2.2(6).

 (\Rightarrow) Since I is strongly irreducible, it follows from Lemma 2.2(5) that IR_P is strongly irreducible, so it suffices to prove this implication in the case where R is a local ring with maximal ideal P and I is P-primary. Also, since ht(I) > 0, Corollary 3.1(1) shows that ht(I) = 1 and Proposition 3.5 shows that $I (= IR_P)$ is regular.

Assume that P is not a principal ideal. We show that this implies the contradiction that I = P. For if $I \neq P$, then $I :_R P = xR$ is a principal ideal and I = xP, by Corollary 3.1(1) and (2). Let k be the positive integer such that $x \in P^k - P^{k+1}$, so $I = xP \subseteq P^{k+1}$. If P^k is not principal, then there exists $y \in P^k - P^{k+1}$ such that $x \notin yR$ and $y \notin xR$ (and $y \notin I$, since $I \subseteq P^{k+1}$). Now, $xR \cap yR = x(yR :_R xR) \subseteq$ I (since $x \in I :_R P$ and $yR :_R xR \subseteq P$) and $x \notin I$ and $y \notin I$. This contradicts the hypothesis that I is strongly irreducible. Therefore P^k must be principal. However, by [9, Proposition 1], if some power of P is principal, then either P is principal, or P consists of zero divisors. But P is not principal (by hypothesis) and P is a regular ideal (since I is a regular ideal by Proposition 3.5). Therefore P is principal and $I = P^n$ for some integer n > 1. \Box

Corollary 3.7 A Noetherian integral domain R has a non-prime strongly irreducible ideal if and only if it contains a height-one prime ideal P such that R_P is a DVR.

Proof. This is immediate from Theorem 3.6. \Box

Corollary 3.8 Let I be a strongly irreducible regular ideal in a one-dimensional Noetherian ring R. Then $(J \cap K) + I = (J + I) \cap (K + I)$ for all ideals J and K of R with $J \cap K \subseteq I$.

Proof. It suffices to check the equation locally at each prime P, and either IR_P is strongly irreducible or $IR_P = R_P$ by Lemma 2.2(5). Thus assume (R, P) is local. Since the equation clearly holds if I = R, we may assume $I \subseteq P$. Then P = Rad(I)and either $J \subseteq P$ or $K \subseteq P$. Assume $J \subseteq P$. Then by Corollary 3.2, either $J \subseteq I$ or $I \subseteq J$. If $J \subseteq I$ then $(J \cap K) + I = I = I \cap (K + I) = (J + I) \cap (K + I)$. If $I \subseteq J$ then, by the modular law, $(J \cap K) + I = J \cap (K + I) = (J + I) \cap (K + I)$. \Box

References

- [1] N. Bourbaki, *Commutative Algebra*, Addison-Wesley, Reading, Mass., 1972.
- [2] J. Eagon and M. Hochster, *R-sequences and indeterminates*, Quart. J. Math. Oxford, 25 (1974), 61-71.
- [3] L. Fuchs, A condition under which an irreducible ideal is primary, Quart. J. Math., Oxford, 19 (1948), 235-237.
- [4] R. Gilmer, Multiplicative Ideal Theory, Queens Papers in Pure and Applied Mathematics - No. 90, Queens University, Kingston Ontario, 1992.
- [5] C. Jensen, Arithmetical rings, Acta Mathematica Scientiarum Hungaricae, 17 (1966), 115-123.
- [6] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago, 1974.
- [7] M. Larsen and P. McCarthy, *Multiplicative Theory of Ideals*, Academic Press, New York, 1971.
- [8] M. Nagata, *Local Rings*, Interscience Tracts in Pure and Applied Math., No. 13, Interscience, New York, NY, 1962.

- [9] J. Sally, On the number of generators of powers of an ideal, Proc. Amer. Math. Soc., 53 (1975), 24-26.
- [10] D. Taylor, Ideals generated by monomials in an R-sequence, Ph.D. Dissertation, University of Chicago, 1966.
- [11] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, D. Van Nostrand Co., Inc., Princeton, NJ, 1958.

Department of Mathematics, Purdue University, West Lafayette, Indiana 47909-1395 *E-mail address: heinzer@math.purdue.edu*

Department of Mathematics, University of California, Riverside, California 92521-0135 *E-mail address: ratliff@newmath.ucr.edu*

Department of Mathematics, University of California, Riverside, California 92521-0135 *E-mail address: rush@newmath.ucr.edu*