MIXED POLYNOMIAL/POWER SERIES RINGS AND RELATIONS AMONG THEIR SPECTRA

William Heinzer

Purdue University

joint with Christel Rotthaus and Sylvia Wiegand

At first glance the rings

B := k[[y]][x] and C := k[x][[y]]

look similar. One has

$$B = k[[y]] [x] \hookrightarrow k[x] [[y]] = C,$$

but this is a strict inclusion. For example, 1 - xy is a nonunit of B, and

$$\frac{1}{1-xy} = \sum_{i=0}^{\infty} x^n y^n \in C,$$

so 1 - xy is a unit of C. Indeed, the rings B and C are not isomorphic: the intersection of the maximal ideals of B is (0), while y is in every maximal ideal of C.

Consider the mixed polynomial/power series rings

$$A:=k[x,y] \hookrightarrow B:=k[[y]] \, [x] \hookrightarrow C:=k[x] \, [[y]] \hookrightarrow D:=k[[x,y]],$$

where k is a field. The inclusion maps here are all flat homomorphisms. The prime ideal structure of these rings is well understood. The above inclusions induce maps

$$\operatorname{Spec} A \leftarrow \operatorname{Spec} B \leftarrow \operatorname{Spec} C \leftarrow \operatorname{Spec} D.$$

We are interested in describing these Spec maps.

Consider

$$k[x]\,[[y]] = C \hookrightarrow C[1/x] \hookrightarrow k[x, 1/x]\,[[y]] := E,$$

At first glance, it appears that E is a localization of C, but it is not. There are elements in E that are not in the fraction field of C. However, E is obtained from C by the localization C[1/x] followed by the (y)- adic completion of C[1/x]. Thus E is flat over C. The map $C \hookrightarrow E$ induces $\operatorname{Spec} C \leftarrow \operatorname{Spec} E$, and again we are interested in describing this Spec map.

Also consider

$$C \hookrightarrow C_1 := k[x]\left[\left[\frac{y}{x}\right]\right] \hookrightarrow \dots \hookrightarrow C_n := k[x]\left[\left[\frac{y}{x^n}\right]\right] \hookrightarrow \dots \hookrightarrow E.$$

The maps $C \hookrightarrow C_n$ and $C_i \hookrightarrow C_n$ for i < n are not flat, but

 $C_n \hookrightarrow E = k[x, 1/x][[y]]$ is the localization $C_n[1/x]$ followed by

the (y)-adic completion of $C_n[1/x]$. Thus $C_n \hookrightarrow E$ is flat. These

inclusion maps induce maps

$$\operatorname{Spec} C \leftarrow \operatorname{Spec} C_1 \leftarrow \cdots \leftarrow \operatorname{Spec} C_n \leftarrow \cdots \leftarrow \operatorname{Spec} E.$$

We are interested in describing these Spec maps.

GENERIC FIBER RINGS

Let $R \hookrightarrow S$ be an injective homomorphism of commutative rings with R an integral domain. The **generic fiber ring** of the map $R \hookrightarrow S$ is the localization $(R \setminus \{0\})^{-1}S$ of S. With $A:=k[x,y] \hookrightarrow B:=k[[y]]\,[x] \hookrightarrow C:=k[x]\,[[y]] \hookrightarrow D:=k[[x,y]],$ the generic fiber ring of $A \hookrightarrow R$ is one-dim. for $R \in \{B, C, D\}$, while the generic fiber ring of $R \hookrightarrow S$ is zero-dim for $R \subseteq S$ in $\{B, C, D\}.$

TRIVIAL GENERIC FIBER EXTENSIONS

Let R be a subring of an integral domain S.

Definition. $R \hookrightarrow S$ is a **trivial generic fiber** extension or a **TGF** extension if

$$(0) \neq P \in \operatorname{Spec} S \implies P \cap R \neq (0).$$

One obtains a TGF extension S of R by considering

 $R \hookrightarrow T \to T/P := S,$

where T is an extension ring of R and $P \in \operatorname{Spec} T$ is maximal with respect to $P \cap R = (0)$.

Thus the generic fiber ring of $R \hookrightarrow T$ is relevant to constructing TGF extensions S of R.

A TGF EXTENSION

Let x and y be indeterminates over a field k. Then

$$R := k[[x, y]] \hookrightarrow S := k[[x]][[\frac{y}{x}]]$$
 is TGF.

Proof. It suffices to show $P \cap R \neq (0)$ for each $P \in \operatorname{Spec} S$ with

ht P = 1. This is clear if $x \in P$, while if $x \notin P$, then

$$k[[x]] \cap P = (0), \text{ so } k[[x]] \hookrightarrow R/(P \cap R) \hookrightarrow S/P.$$
 Now

S/P is one-dim local with residue field k. Hence by Cohen's

Theorem 8, S/P is finite over k[[x]]. Thus dim $R/(P \cap R) = 1$, so $P \cap R \neq (0)$.

Cohen's Theorem 8

Theorem (Classical) Let I be an ideal of a ring R and let Mbe an R-module. Assume that R is complete in the I-adic topology and $\bigcap_{n=1}^{\infty} I^n M = (0)$. If M/I is generated over R/I by elements $\overline{w}_1, \ldots, \overline{w}_s$ and w_i is a preimage in M of \overline{w}_i for $1 \le i \le s$, then M is generated over R by w_1, \ldots, w_s .

This is useful for proving that with

 $B := k[[y]] [x] \hookrightarrow C := k[x] [[y]] \hookrightarrow D := k[[x, y]],$

then $R \hookrightarrow S$ is TGF for $R \subseteq S$ in $\{B, C, D\}$.

TGF EXTENSIONS

PROP. 1. Let $R \hookrightarrow S$ and $S \hookrightarrow T$ be injective maps,

where R, S and T are integral domains.

(1) If $R \hookrightarrow S$ and $S \hookrightarrow T$ are TGF extensions, then so is $R \hookrightarrow T$.

Equivalently if $R \hookrightarrow T$ is not TGF, then at least one of the

extensions $R \hookrightarrow S$ or $S \hookrightarrow T$ is not TGF.

- (2) If $R \hookrightarrow T$ is TGF, then $S \hookrightarrow T$ is TGF.
- (3) If the map $\operatorname{Spec} T \to \operatorname{Spec} S$ is surjective, then $R \hookrightarrow T$

is TGF implies $R \hookrightarrow S$ is TGF.

A NON-TGF EXTENSION

PROP. 2. $R = k[[x]][y, z] \hookrightarrow k[y, z][[x]] = S$ is not TGF.

Proof. There exists $\sigma \in k[y][[x]]$ that is transcendental over

$$k[[x]][y]$$
. Let $\mathbf{q} = (z - \sigma x)k[y, z][[x]]$.

Define $\pi: k[y, z][[x]] \to k[y, z][[x]] / \mathbf{q} \cong k[y][[x]]$. Thus

 $\pi(z) = \sigma x$. If $h \in \mathbf{q} \cap (k[[x]][y, z])$, then $\exists s, t \in \mathbb{N}$ so that

$$h = \sum_{i=0}^{s} \sum_{j=0}^{t} \left(\sum_{\ell \in \mathbb{N}} a_{ij\ell} x^{\ell} \right) y^{i} z^{j}, \quad \text{where } a_{ij\ell} \in k.$$

Hence $0 = \pi(h) = \sum_{i=0}^{s} \sum_{j=0}^{t} (\sum_{\ell \in \mathbb{N}} a_{ij\ell} x^{\ell}) y^i (\sigma x)^j$.

Since σ is transcendental over k[[x]][y], each $a_{ij\ell} = 0$.

Therefore $\mathbf{q} \cap (k[[x]][y, z]) = (0)$, and $R \hookrightarrow S$ is not TGF.

POWER SERIES RINGS

Lemma. Let R[[y]] denote the power series ring in the variable

- y over the commutative ring R. Then
- (1) Each maximal ideal of R[[y]] has the form (m, y)R[[y]], where
 m is a maximal ideal of R. Thus y is in every maximal ideal of R[[y]].
- (2) If R is Noetherian with dim R[[y]] = n and x₁,..., x_m are indeterminates over R[[y]], then y is in every maximal ideal of height n + m of the polynomial ring R[[y]] [x₁,..., x_m].

Lemma. Let R be an n-dim. Noetherian domain, let y be an indeterminate over R, and let \mathbf{q} be a prime ideal of height n in the power series ring R[[y]]. If $y \notin \mathbf{q}$, then \mathbf{q} is contained in a unique maximal ideal of R[[y]]. **Proof.** Let $S := R[[y]]/\mathbf{q}$. The assertion is clear if \mathbf{q} is maximal. Otherwise, dim S = 1. Moreover, S is complete in its yS-adic topology and every maximal ideal of S is a minimal prime of the principal ideal yS. Hence S is a complete semilocal ring. Since S is also an integral domain, it is local by [Mat., Theorem 8.15]. Thus **q** is contained in a unique maximal ideal of R[[y]].

In the diagram, β is the cardinality of k[[y]], and α is the cardinality of the set of maximal ideals of k[x]; the boxed β means there are cardinality β height-one primes in that position with respect to the partial ordering.

Here α is the cardinality of the set of maximal ideals of k[x], and β is the uncountable cardinal equal to the cardinality of k[[y]].

ISOMORPHIC SPECTRA

REMARK. Let F be a field that is algebraic over a finite field.

Roger Wiegand proved that as partially ordered sets or

topological spaces

$$\operatorname{Spec} \mathbb{Q}[x, y] \not\cong \operatorname{Spec} F[x, y] \cong \operatorname{Spec} \mathbb{Z}[y].$$

The spectra of power series extensions in y behave differently: We have

$$\operatorname{Spec} \mathbb{Z}[[y]] \cong \operatorname{Spec} \mathbb{Q}[x] [[y]] \cong \operatorname{Spec} F[x] [[y]].$$

Higher dimensional mixed power series/polynomial rings We display several extensions involving three variables:

$$\begin{split} k[x,y,z] \stackrel{\alpha}{\hookrightarrow} k[[z]] \, [x,y] \stackrel{\beta}{\hookrightarrow} k[x] \, [[z]] \, [y] \stackrel{\gamma}{\hookrightarrow} k[x,y] \, [[z]] \stackrel{\delta}{\hookrightarrow} k[x] \, [[y,z]], \\ k[[z]] \, [x,y] \stackrel{\epsilon}{\hookrightarrow} k[[y,z]] \, [x] \stackrel{\zeta}{\hookrightarrow} k[x] \, [[y,z]] \stackrel{\eta}{\to} k[[x,y,z]], \end{split}$$

We have been able to show most of these extensions are not TGF.

PROP. 3. $k[[z]][x, y] \xrightarrow{\beta} k[x][[z]][y]$ is not TGF. **Proof.** Fix $\sigma \in k[x][[z]]$ that is transcendental over k[[z]][x]. Define $\pi : k[x][[z]][y] \rightarrow k[x][[z]]$ to be the identity map on k[x][[z]]and $\pi(y) = \sigma z$. Let $\mathbf{q} = \ker \pi$. Then $y - \sigma z \in \mathbf{q}$. If $h \in \mathbf{q} \cap (k[[z]][x, y])$, then s = t

$$h = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} (\sum_{\ell \in \mathbb{N}} a_{ij\ell} z^{\ell}) x^i y^j, \text{ for some } s, t \in \mathbb{N} \text{ and } a_{ij\ell} \in k, \text{ and so}$$

$$0 = \pi(h) = \sum_{j=0}^{s} \sum_{i=0}^{t} (\sum_{\ell \in \mathbb{N}} a_{ij\ell} z^{\ell}) x^{i} (\sigma z)^{j} = \sum_{j=0}^{s} \sum_{i=0}^{t} (\sum_{\ell \in \mathbb{N}} a_{ij\ell} z^{\ell+j}) x^{i} \sigma^{j}.$$

Since σ is trans. over k[[z]][x], x and σ are alg. indep. over k((z)). Thus each $a_{ij\ell} = 0$. Therefore $\mathbf{q} \cap (k[[z]][x,y]) = (0)$, and the embedding β is not TGF.

QUESTION. Is $k[x, y] [[z]] \stackrel{\theta}{\hookrightarrow} k[x, y, 1/x] [[z]]$ TGF?

REMARK. For k a field and x, y, u and z indeterminates over k, the extension $k[x, y, u] [[z]] \hookrightarrow k[x, y, u, 1/x,] [[z]]$ is not TGF.