MIXED POLYNOMIAL/POWER SERIES RINGS AND RELATIONS AMONG THEIR SPECTRA

William Heinzer
Purdue University

joint with Christel Rotthaus and Sylvia Wiegand

OVERVIEW 1

At first glance the rings

$$
B:=k[[y]][x] \quad \text { and } \quad C:=k[x][[y]]
$$

look similar. One has

$$
B=k[[y]][x] \hookrightarrow k[x][[y]]=C
$$

but this is a strict inclusion. For example, $1-x y$ is a nonunit of B, and

$$
\frac{1}{1-x y}=\sum_{i=0}^{\infty} x^{n} y^{n} \in C
$$

so $1-x y$ is a unit of C. Indeed, the rings B and C are not isomorphic: the intersection of the maximal ideals of B is (0), while y is in every maximal ideal of C.

OVERVIEW 2

Consider the mixed polynomial/power series rings

$$
A:=k[x, y] \hookrightarrow B:=k[[y]][x] \hookrightarrow C:=k[x][[y]] \hookrightarrow D:=k[[x, y]],
$$

where k is a field. The inclusion maps here are all flat
homomorphisms. The prime ideal structure of these rings is
well understood. The above inclusions induce maps

$$
\operatorname{Spec} A \quad \leftarrow \operatorname{Spec} B \quad \leftarrow \quad \operatorname{Spec} C \quad \leftarrow \quad \operatorname{Spec} D
$$

We are interested in describing these Spec maps.

OVERVIEW 3

Consider

$$
k[x][[y]]=C \hookrightarrow C[1 / x] \hookrightarrow k[x, 1 / x][[y]]:=E,
$$

At first glance, it appears that E is a localization of C, but it is not.
There are elements in E that are not in the fraction field of C.

However, E is obtained from C by the localization $C[1 / x]$ followed
by the (y) - adic completion of $C[1 / x]$. Thus E is flat over C.
The map $C \hookrightarrow E$ induces $\operatorname{Spec} C \leftarrow \operatorname{Spec} E$, and again we are
interested in describing this Spec map.

OVERVIEW 4

Also consider

$$
C \hookrightarrow C_{1}:=k[x]\left[\left[\frac{y}{x}\right]\right] \hookrightarrow \cdots \hookrightarrow C_{n}:=k[x]\left[\left[\frac{y}{x^{n}}\right]\right] \hookrightarrow \cdots \hookrightarrow E .
$$

The maps $C \hookrightarrow C_{n}$ and $C_{i} \hookrightarrow C_{n}$ for $i<n$ are not flat, but
$C_{n} \hookrightarrow E=k[x, 1 / x][[y]]$ is the localization $C_{n}[1 / x]$ followed by
the (y)-adic completion of $C_{n}[1 / x]$. Thus $C_{n} \hookrightarrow E$ is flat. These
inclusion maps induce maps

$$
\operatorname{Spec} C \leftarrow \operatorname{Spec} C_{1} \leftarrow \cdots \leftarrow \operatorname{Spec} C_{n} \leftarrow \cdots \leftarrow \operatorname{Spec} E
$$

We are interested in describing these Spec maps.

GENERIC FIBER RINGS

Let $R \hookrightarrow S$ be an injective homomorphism of commutative rings
with R an integral domain. The generic fiber ring of the map
$R \hookrightarrow S$ is the localization $(R \backslash\{0\})^{-1} S$ of S. With
$A:=k[x, y] \hookrightarrow B:=k[[y]][x] \hookrightarrow C:=k[x][[y]] \hookrightarrow D:=k[[x, y]]$,
the generic fiber ring of $A \hookrightarrow R$ is one-dim. for $R \in\{B, C, D\}$,
while the generic fiber ring of $R \hookrightarrow S$ is zero-dim for $R \subseteq S$ in
$\{B, C, D\}$.

TRIVIAL GENERIC FIBER EXTENSIONS

Let R be a subring of an integral domain S.
Definition. $R \hookrightarrow S$ is a trivial generic fiber extension or a
TGF extension if

$$
(0) \neq P \in \operatorname{Spec} S \Longrightarrow P \cap R \neq(0)
$$

One obtains a TGF extension S of R by considering

$$
R \hookrightarrow T \rightarrow T / P:=S
$$

where T is an extension ring of R and $P \in \operatorname{Spec} T$ is maximal with

$$
\text { respect to } P \cap R=(0)
$$

Thus the generic fiber ring of $R \hookrightarrow T$ is relevant to constructing TGF extensions S of R.

A TGF EXTENSION

Let x and y be indeterminates over a field k. Then

$$
R:=k[[x, y]] \hookrightarrow S:=k[[x]]\left[\left[\frac{y}{x}\right]\right] \quad \text { is TGF. }
$$

Proof. It suffices to show $P \cap R \neq(0)$ for each $P \in \operatorname{Spec} S$ with ht $P=1$. This is clear if $x \in P$, while if $x \notin P$, then
$k[[x]] \cap P=(0), \quad$ so $k[[x]] \hookrightarrow R /(P \cap R) \hookrightarrow S / P$. Now
S / P is one-dim local with residue field k. Hence by Cohen's
Theorem $8, \quad S / P$ is finite over $k[[x]]$. Thus $\operatorname{dim} R /(P \cap R)=1$,
so $P \cap R \neq(0)$.

Cohen's Theorem 8

Theorem (Classical) Let I be an ideal of a ring R and let M be an R-module. Assume that R is complete in the I-adic topology and $\bigcap_{n=1}^{\infty} I^{n} M=(0)$. If M / I is generated over R / I by elements $\bar{w}_{1}, \ldots, \bar{w}_{s}$ and w_{i} is a preimage in M of \bar{w}_{i} for $1 \leq i \leq s$, then M is generated over R by w_{1}, \ldots, w_{s}.

This is useful for proving that with

$$
B:=k[[y]][x] \hookrightarrow C:=k[x][[y]] \hookrightarrow D:=k[[x, y]],
$$

then $R \hookrightarrow S$ is TGF for $R \subseteq S$ in $\{B, C, D\}$.

TGF EXTENSIONS

PROP. 1. Let $R \hookrightarrow S$ and $S \hookrightarrow T$ be injective maps,
where R, S and T are integral domains.
(1) If $R \hookrightarrow S$ and $S \hookrightarrow T$ are TGF extensions, then so is $R \hookrightarrow T$.

Equivalently if $R \hookrightarrow T$ is not TGF, then at least one of the extensions $R \hookrightarrow S$ or $S \hookrightarrow T$ is not TGF.
(2) If $R \hookrightarrow T$ is TGF, then $S \hookrightarrow T$ is TGF.
(3) If the map $\operatorname{Spec} T \rightarrow \operatorname{Spec} S$ is surjective, then $R \hookrightarrow T$ is TGF implies $R \hookrightarrow S$ is TGF.

A NON-TGF EXTENSION

PROP. 2. $R=k[[x]][y, z] \hookrightarrow k[y, z][[x]]=S$ is not TGF.
Proof. There exists $\sigma \in k[y][[x]]$ that is transcendental over
$k[[x]][y] . \quad$ Let $\mathbf{q}=(z-\sigma x) k[y, z][[x]]$.
Define $\pi: k[y, z][[x]] \rightarrow k[y, z][[x]] / \mathbf{q} \cong k[y][[x]]$. Thus
$\pi(z)=\sigma x$. If $h \in \mathbf{q} \cap(k[[x]][y, z])$, then $\exists s, t \in \mathbb{N}$ so that
$h=\sum_{i=0}^{s} \sum_{j=0}^{t}\left(\sum_{\ell \in \mathbb{N}} a_{i j \ell} x^{\ell}\right) y^{i} z^{j}, \quad$ where $a_{i j \ell} \in k$.
Hence $0=\pi(h)=\sum_{i=0}^{s} \sum_{j=0}^{t}\left(\sum_{\ell \in \mathbb{N}} a_{i j \ell} x^{\ell}\right) y^{i}(\sigma x)^{j}$.
Since σ is transcendental over $k[[x]][y]$, each $a_{i j \ell}=0$.
Therefore $\mathbf{q} \cap(k[[x]][y, z])=(0)$, and $R \hookrightarrow S$ is not TGF.

POWER SERIES RINGS

Lemma. Let $R[[y]]$ denote the power series ring in the variable
y over the commutative ring R. Then
(1) Each maximal ideal of $R[[y]]$ has the form $(\mathbf{m}, y) R[[y]]$, where \mathbf{m} is a maximal ideal of R. Thus y is in every maximal ideal of $R[[y]]$.
(2) If R is Noetherian with $\operatorname{dim} R[[y]]=n$ and x_{1}, \ldots, x_{m} are indeterminates over $R[[y]]$, then y is in every maximal ideal of height $n+m$ of the polynomial ring $R[[y]]\left[x_{1}, \ldots, x_{m}\right]$.

Lemma. Let R be an n-dim. Noetherian domain, let y be an indeterminate over R, and let \mathbf{q} be a prime ideal of height n in the power series ring $R[[y]]$. If $y \notin \mathbf{q}$, then \mathbf{q} is contained in a unique maximal ideal of $R[[y]]$.

Proof. Let $S:=R[[y]] / \mathbf{q}$. The assertion is clear if \mathbf{q} is maximal.
Otherwise, $\operatorname{dim} S=1$. Moreover, S is complete in its $y S$-adic topology and every maximal ideal of S is a minimal prime of the principal ideal $y S$. Hence S is a complete semilocal ring. Since S is also an integral domain, it is local by [Mat., Theorem 8.15].

Thus \mathbf{q} is contained in a unique maximal ideal of $R[[y]]$.

The picture of $\operatorname{Spec} k[[y]][x]$ is shown below:

In the diagram, β is the cardinality of $k[[y]]$, and α is the cardinality of the set of maximal ideals of $k[x]$; the boxed β means there are cardinality β height-one primes in that position with respect to the partial ordering.

The picture of $\operatorname{Spec} k[x][[y]]$ is shown below:

Here α is the cardinality of the set of maximal ideals of $k[x]$, and β is the uncountable cardinal equal to the cardinality of $k[[y]]$.

The picture of $\operatorname{Spec} R[[y]]$ for a one-dim Noetherian domain R :

Spec $R[[y]]$

Here κ_{i} and κ_{j} are uncountable cardinals.

ISOMORPHIC SPECTRA

REMARK. Let F be a field that is algebraic over a finite field.

Roger Wiegand proved that as partially ordered sets or
topological spaces

$$
\operatorname{Spec} \mathbb{Q}[x, y] \not \approx \operatorname{Spec} F[x, y] \cong \operatorname{Spec} \mathbb{Z}[y]
$$

The spectra of power series extensions in y behave differently:
We have

$$
\operatorname{Spec} \mathbb{Z}[[y]] \cong \operatorname{Spec} \mathbb{Q}[x][[y]] \cong \operatorname{Spec} F[x][[y]] .
$$

Higher dimensional mixed power series/polynomial rings We display several extensions involving three variables:

$$
\begin{array}{r}
k[x, y, z] \stackrel{\alpha}{\hookrightarrow} k[[z]][x, y] \stackrel{\beta}{\hookrightarrow} k[x][[z]][y] \stackrel{\gamma}{\hookrightarrow} k[x, y][[z]] \stackrel{\delta}{\hookrightarrow} k[x][[y, z]], \\
k[[z]][x, y] \stackrel{\epsilon}{\hookrightarrow} k[[y, z]][x] \stackrel{\zeta}{\hookrightarrow} k[x][[y, z]] \stackrel{\eta}{\hookrightarrow} k[[x, y, z]],
\end{array}
$$

We have been able to show most of these extensions are not TGF.

PROP. 3. $\quad k[[z]][x, y] \stackrel{\beta}{\hookrightarrow} k[x][[z]][y]$ is not TGF.
Proof. Fix $\sigma \in k[x][[z]]$ that is transcendental over $k[[z]][x]$.
Define $\pi: k[x][[z]][y] \rightarrow k[x][[z]]$ to be the identity map on $k[x][[z]]$ and $\pi(y)=\sigma z$. Let $\mathbf{q}=\operatorname{ker} \pi$. Then $y-\sigma z \in \mathbf{q}$. If $h \in \mathbf{q} \cap(k[[z]][x, y])$, then
$h=\sum_{j=0}^{s} \sum_{i=0}^{t}\left(\sum_{\ell \in \mathbb{N}} a_{i j \not} \ell^{\ell}\right) x^{i} y^{j}$, for some $s, t \in \mathbb{N}$ and $a_{i j \ell} \in k$, and so

$$
0=\pi(h)=\sum_{j=0}^{s} \sum_{i=0}^{t}\left(\sum_{\ell \in \mathbb{N}} a_{i j \ell} z^{\ell}\right) x^{i}(\sigma z)^{j}=\sum_{j=0}^{s} \sum_{i=0}^{t}\left(\sum_{\ell \in \mathbb{N}} a_{i j \ell} z^{\ell+j}\right) x^{i} \sigma^{j} .
$$

Since σ is trans. over $k[[z]][x], \quad x$ and σ are alg. indep. over $k((z))$. Thus each $a_{i j \ell}=0$. Therefore $\mathbf{q} \cap(k[[z]][x, y])=(0)$, and the embedding β is not TGF.

QUESTION. Is $k[x, y][[z]] \stackrel{\theta}{\hookrightarrow} k[x, y, 1 / x][[z]]$ TGF?

REMARK. For k a field and x, y, u and z indeterminates over k, the extension $k[x, y, u][[z]] \hookrightarrow k[x, y, u, 1 / x],[[z]]$ is not TGF.

