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OVERVIEW 1
At first glance the rings

B := k[[y]] [x] and C := k[x] [[y]]

look similar. One has

B = k[[y]] [x] ↪→ k[x] [[y]] = C,

but this is a strict inclusion.
For example, 1− xy is a nonunit of B, and

1
1− xy

=
∞

∑
i=0

xnyn ∈C.

So 1− xy is a unit of C.
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CONCLUSION

Indeed, the rings B = k[[y]] [x] and C = k[x] [[y]] are

not isomorphic: the intersection of the maximal ideals

of B is (0), while y is in every maximal ideal of C.
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Overview 2
Consider the mixed polynomial/power series rings

k[x,y] ↪→ k[[y]] [x] ↪→ k[x] [[y]] ↪→ k[[x,y]],

where k is a field. The inclusion maps here are all flat
homomorphisms. The prime ideal structure of these
rings is well understood. The above inclusions induce
maps

SpecA ← SpecB ← SpecC ← SpecD.

We are interested in describing these Spec maps.
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Overview 3
Consider

k[x] [[y]] = C ↪→C[1/x] ↪→ k[x,1/x] [[y]] := E,

At first glance, it appears that E is a localization of C,
but it is not. There are elements in E that are not in the
fraction field of C. However, E is obtained from C by
the localization C[1/x] followed by the (y)- adic
completion of C[1/x]. Thus E is flat over C. The map
C ↪→ E induces SpecC← SpecE, and again we are
interested in describing this Spec map.
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Overview 4
Also consider

C1 := k[x] [[
y
x
]] ↪→ ·· · ↪→Cn := k[x] [[

y
xn ]] ↪→ ·· · ↪→ E.

The maps C ↪→Cn and Ci ↪→Cn for i < n are not flat,
but Cn ↪→ E = k[x,1/x] [[y]] is the localization Cn[1/x]
followed by the (y)-adic completion of Cn[1/x]. Thus
Cn ↪→ E is flat. These inclusion maps induce maps

SpecC← SpecC1← ·· · ← SpecCn← ·· · ← SpecE.

We are interested in describing these Spec maps.
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Generic fiber rings

Let R ↪→ S be an injective homomorphism of
commutative rings with R an integral domain.

DEFINITION. The generic fiber ring of the map
R ↪→ S is the localization (R\{0})−1S of S.

With A := k[x,y] ↪→ B := k[[y]] [x] ↪→C := k[x] [[y]] ↪→
D := k[[x,y]], the generic fiber ring of A ↪→ R is
one-dim. for R ∈ {B,C,D}, while the generic fiber ring
of R ↪→ S is zero-dim for R⊆ S in {B,C,D}.
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Trivial generic fiber
extensions

Let R be a subring of an integral domain S.

Definition. R ↪→ S is a trivial generic fiber extension
or a TGF extension if
(0) 6= P ∈ SpecS =⇒ P∩R 6= (0).

A TGF extension S of R is gotten via

R ↪→ T → T/P := S,

where T is an extension ring of R and P ∈ SpecT is
maximal with respect to P∩R = (0). Thus the generic
fiber ring of R ↪→ T is relevant to constructing TGF
extensions S of R.
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A TGF Extension
Let x and y be indeterminates over a field k. Then

R := k[[x,y]] ↪→ S := k[[x]] [[
y
x
]] is TGF.

Proof. It suffices to show P∩R 6= (0) for each
P ∈ SpecS with htP = 1. This is clear if x ∈ P, while if
x 6∈ P, then k[[x]]∩P = (0), so
k[[x]] ↪→ R/(P∩R) ↪→ S/P. Now S/P is one-dim local
with residue field k. Hence by Cohen’s Theorem 8,
S/P is finite over k[[x]]. Thus dimR/(P∩R) = 1, so
P∩R 6= (0).
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Cohen’s Theorem 8
Theorem (Classical) Let I be an ideal of a ring R and
let M be an R-module. Assume that R is complete in
the I-adic topology and ∞

n=1 InM = (0). If M/I is
generated over R/I by elements w1, . . . ,ws and wi is a
preimage in M of wi for 1≤ i≤ s, then M is generated
over R by w1, . . . ,ws.

This is useful for proving that with

B := k[[y]] [x] ↪→C := k[x] [[y]] ↪→ D := k[[x,y]],

then R ↪→ S is TGF for R⊆ S in {B,C,D}.

2005 Fall Central Section Meeting, Lincoln, Nebraska, October 2005 – p. 10/22



Cohen’s Theorem 8
Theorem (Classical) Let I be an ideal of a ring R and
let M be an R-module. Assume that R is complete in
the I-adic topology and ∞

n=1 InM = (0). If M/I is
generated over R/I by elements w1, . . . ,ws and wi is a
preimage in M of wi for 1≤ i≤ s, then M is generated
over R by w1, . . . ,ws.

This is useful for proving that with

B := k[[y]] [x] ↪→C := k[x] [[y]] ↪→ D := k[[x,y]],

then R ↪→ S is TGF for R⊆ S in {B,C,D}.
2005 Fall Central Section Meeting, Lincoln, Nebraska, October 2005 – p. 10/22



TGF Extensions
PROP. 1. Let R ↪→ S and S ↪→ T be injective maps,
where R, S and T are integral domains.

(1) If R ↪→ S and S ↪→ T are TGF extensions, then so
is R ↪→ T . Equivalently if R ↪→ T is not TGF, then
at least one of the extensions R ↪→ S or S ↪→ T is
not TGF.

(2) If R ↪→ T is TGF, then S ↪→ T is TGF.

(3) If the map SpecT → SpecS is surjective, then
R ↪→ T is TGF implies R ↪→ S is TGF.
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A NON-TGF
EXTENSION

PROP. 2. R = k[[x]][y,z] ↪→ k[y,z][[x]] = S is not TGF.

Proof. There exists σ ∈ k[y][[x]] that is transcendental
over k[[x]][y]. Let q = (z−σx)k[y,z][[x]] and define
π : k[y,z][[x]]→ k[y,z][[x]]/q∼= k[y][[x]]. Thus
π(z) = σx. If h ∈ q∩(k[[x]][y,z]), then ∃ s, t ∈ N so

that h = ∑s
i=0 ∑t

j=0(∑`∈N ai j`x`)yiz j, where ai j` ∈ k.

Hence 0 = π(h) = ∑s
i=0 ∑t

j=0(∑`∈N ai j`x`)yi(σx) j.

Since σ is transcendental over k[[x]][y], each ai j` = 0.
Therefore q∩(k[[x]][y,z]) = (0), and R ↪→ S is not
TGF.
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Power Series Rings 1

Lemma. Let R[[y]] denote the power series ring in the
variable y over the commutative ring R. Then

(1) Each maximal ideal of R[[y]] has the form
(m,y)R[[y]], where m is a maximal ideal of R.
Thus y is in every maximal ideal of R[[y]].

(2) If R is Noetherian with dimR[[y]] = n and
x1, . . . ,xm are indeterminates over R[[y]], then y is
in every maximal ideal of height n+m of the
polynomial ring R[[y]] [x1, . . . ,xm].
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Power Series Rings 2

Lemma. Let R be an n-dim. Noetherian domain and
let q be a prime ideal of height n in the power series
ring R[[y]]. If y 6∈ q, then q is contained in a unique
maximal ideal of R[[y]].

Proof. Let S := R[[y]]/q. The assertion is clear if q is
maximal. Otherwise, dimS = 1. Moreover, S is
complete in its yS-adic topology and every maximal
ideal of S is a minimal prime of the principal ideal yS.
Hence S is a complete semilocal ring. Since S is also
an integral domain, it is local by [Mat., Theorem 8.15].
Thus q is contained in a unique maximal ideal of R[[y]].
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Speck[[y]] [x]

β (y) β β · · ·

• • • · · ·

(#{ bullets}= α)

(0)

β is the cardinality of k[[y]], and α is the cardinality of
the set of maximal ideals of k[x]; the boxed β means
there are cardinality β height-one primes in that
position with respect to the partial ordering.2005 Fall Central Section Meeting, Lincoln, Nebraska, October 2005 – p. 15/22



Speck[x] [[y]]

(y) β β · · ·

• • • · · ·

(#{ bullets}= α)

(0)

Here α is the cardinality of the set of maximal ideals of
k[x], and β is the uncountable cardinal equal to the
cardinality of k[[y]].
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SpecR[[y]]

(y) κi κ j · · ·

• • • · · ·

(#{ bullets}= α)

(0)

SpecR[[y]] for R a one-dim Noetherian domain

Here κi and κ j are uncountable cardinals.
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Isomorphic Spectra

REMARK. Let F be a field that is algebraic over a
finite field. Roger Wiegand proved that as partially
ordered sets or topological spaces

SpecQ[x,y] 6∼= SpecF [x,y]∼= SpecZ[y].

The spectra of power series extensions in y behave
differently: we have

SpecZ[[y]]∼= SpecQ[x] [[y]]∼= SpecF [x] [[y]].
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Higher dimension

We display several extensions involving three
variables:

k[[z]] [x,y]
β

↪→ k[x] [[z]] [y]
γ

↪→ k[x,y] [[z]]
δ

↪→ k[x] [[y,z]],

k[[z]] [x,y]
ε

↪→ k[[y,z]] [x]
ζ

↪→ k[x] [[y,z]]
η
↪→ k[[x,y,z]],

We have been able to show many of these extensions
are not TGF.
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ANOTHER NON TGF
EXTENSION

PROP. 3. k[[z]] [x,y]
β

↪→ k[x] [[z]] [y] is not TGF.

Proof. Fix σ ∈ k[x] [[z]] that is transcendental over
k[[z]] [x]. Define π : k[x] [[z]] [y]→ k[x] [[z]] to be the
identity map on k[x] [[z]] and π(y) = σz. Let q = kerπ.
Then y−σz ∈ q. If h ∈ q∩(k[[z]] [x,y]), then h =

s

∑
j=0

t

∑
i=0

( ∑
`∈N

ai j`z
`)xiy j, for s, t ∈ N and ai j` ∈ k.
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THEREFORE

0 = π(h) =
s

∑
j=0

t

∑
i=0

( ∑
`∈N

ai j`z
`)xi(σz) j =

s

∑
j=0

t

∑
i=0

( ∑
`∈N

ai j`z
`+ j)xiσ j.

Since σ is trans. over k[[z]] [x], x and σ are alg.
indep. over k((z)). Thus each ai j` = 0. Therefore
q∩(k[[z]][x,y]) = (0), and the embedding β is not
TGF.
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Question

Is k[x,y] [[z]]
θ

↪→ k[x,y,1/x] [[z]] TGF?

REMARK. For k a field and x,y,u and z
indeterminates over k, the extension

k[x,y,u] [[z]] ↪→ k[x,y,u,1/x, ] [[z]] is not TGF.
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