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1. Introduction. In [Na1], Nashier asked if the condition on a one-dimensional
local domain R that each maximal ideal of the Laurent polynomial ring R[y, y−1]
contracts to a maximal ideal in R[y] or in R[y−1] implies that R is Henselian. Moti-
vated by this question, we consider the structure of the projective line Proj(R[s, t])
over a one-dimensional semilocal domain R (the projective line regarded as a topo-
logical space, or equivalently as a partially ordered set). In particular, we give an
affirmative answer to Nashier’s question. (Nashier has also independently answered
his question [Na3].) Nashier has also studied implications on the prime spectrum
of the Henselian property in [Na2] as well as in the papers cited above.

We also investigate the structure of prime spectra of finitely generated birational
extensions of R[y] and of blowups of parameter ideals of a two-dimensional Cohen-
Macaulay local domain. In each case we note some analogies with Spec(R[y]), which
was analyzed in [HW].

Since the Henselian property is so crucial to this work, it seems appropriate to
thank Professor Abhyankar here for his inspiration and contributions to an earlier
paper [AHW]. In [AHW] an example was constructed of a non-Henselian local two-
dimensional domain D such that D/P is Henselian for each height-one prime ideal
P of D.

The present paper is in part an extension and generalization of work in [HW].
One of the results of that paper is the following:

Theorem. Let R be a countable one-dimensional semilocal domain.
(1) If R is not Henselian and has exactly n maximal ideals, then Spec(R[y]) is

isomorphic (as topological spaces or partially ordered sets) to Spec(L[y]), where L
is a localization of the integers Z outside n distinct nonzero prime ideals.

(2) If R is Henselian (which implies R is local), then Spec(R[y]) is isomorphic to
Spec(H[y]), where H is a Henselization within the complex numbers of Z localized
outside 2Z .

In analogy with the affine case given in the Theorem above, we prove in Theo-
rem 2.3 that if R is a countable one-dimensional Noetherian domain with n maximal
ideals, then up to homeomorphism or isomorphism, there are exactly two possibil-
ities for Proj(R[s, t]) if n = 1, and only one if n > 1. As before, the two cases
distinguish between Henselian and non-Henselian rings.
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In Section 3 we consider certain birational extensions of the polynomial ring
R[y], where R is a one-dimensional semilocal domain. For example, if (R,m) is a
countable one-dimensional local domain and f ∈ R[y] − m[y], then Spec(R[y]) ∼=
Spec(R[y, 1/f ]). But if the ideal fR[y] has prime radical and B is a finitely gen-
erated R-algebra that is properly between R[y] and R[y, 1/f ], we show in Proposi-
tion 3.1 that Spec(B) is not homeomorphic to Spec(R[y]).

Section 4 concerns the blowup of a parameter ideal of a two-dimensional Cohen-
Macaulay local domain. We show in Proposition 4.1 that affine pieces of this blowup
satisfy many of the axioms satisfied by the spectrum of a polynomial ring in one
variable over a one-dimensional local domain. Proposition 4.2 gives similar results
for the entire blowup.

All rings we consider are commutative and contain a multiplicative identity. The
terms “local” and “semilocal” include “Noetherian.” The symbol < between sets
means proper inclusion.

It will be convenient to set some notation for partially ordered sets from earlier
papers:

1.1 Notation. For U a partially ordered set, u ∈ U , and T a subset of U ,

G(u) = {w ∈ U |w > u} , L(u) = {w ∈ U |w < u} ,

Le(T ) = {w ∈ U | G(w) = T}.

Note that the set called L(T ) in [HW] is denoted Le(T ), the “exactly-less-than”
set, here.

We will be concerned with partially ordered sets of dimension two with a unique
minimal element, specifically the spectra of two-dimensional integral domains. In
this context, if P is a height-one prime, then G(P ) is the set of maximal ideals
containing P , while if T is a set of height-two maximal ideals, then Le(T ) is the
set of height-one primes contained in the intersection of the elements of T and not
contained in any other maximal ideal of the ring.

Roger Wiegand has conjectured in [rW] that the spectrum of any two-dimensional
domain that is a finitely generated algebra over Z is homeomorphic to the spec-
trum of the polynomial ring Z[y]. It is shown in [rW] that if k is a field and
A is a two-dimensional domain that is finitely generated as a k-algebra, then
Spec(A) ∼= Spec(Z[y]) if and only if k is contained in the algebraic closure of a
finite field. His method was to provide an axiom system characterizing Spec(Z[y])
up to homeomorphism or isomorphism. Motivated by his result, the following axiom
systems were formulated in [HW]:

1.2 Definition. A partially ordered set U is “CZ(n)P” if it satisfies:

(P0) U is countable.
(P1) U has a unique minimal element u0.
(P2) U has dimension two.
(P3) There exist infinitely many height-one maximal ideals.
(P4) There exist n height-one nonmaximal “special” elements u1, u2, . . . un satis-

fying: (i) G(u1) ∪ · · · ∪ G(un) = { height-two elements of U }, (ii) G(ui) ∩
G(uj) = ∅ for i 6= j, and (iii) G(ui) is infinite for each i, 1 ≤ i ≤ n.

(P5) For each height-one nonspecial element u, G(u) is finite.
(P6) For each nonempty finite subset T of { height-two elements of U }, Le(T )

is infinite.
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(Pictorially, a CZ(n)P partially ordered set looks like this:

inf u1 u2 . . . un inf

inf inf . . . inf

u0

The relationships of the lower right boxed section, determined by (P5) and (P6),
are too complicated to display.)

1.3 Definition. A partially ordered set U is “CHP” if it satisfies:

(P0)–(P5) Same as CZ(1)P above.
(P6) For each finite subset T of { height-two elements of U } of cardinality greater

than one, Le(T ) = ∅. For each singleton t ∈ { height-two elements of U },
Le({t}) is infinite.

inf u1 inf inf · · ·

· · · · · ·

u0

It was shown in [HW] that (1) these axiom systems are categorical; (2) if (R,m1, . . . ,mn)
is a countable semilocal one-dimensional domain that is not Henselian, then Spec(R[y]
is CZ(n)P ; and (3) if R is a countable Henselian one-dimensional (local) domain,
then Spec(R[y]) is CHP . We use these facts in the present paper.

R. Wiegand proves in [rW] that if D is an order in an algebraic number field, then
Spec(D[y]) ∼= Spec(Z[y]). A crucial point in this proof is his axiomatic characteri-
zation of Spec(Z[y]), and the crucial axiom here is (rW5), called (P5) in [rW], which
states that if P1, . . . , Pr are height-one primes and M1, . . . ,Ms are maximal ideals,
then there exists a height-one prime Q such that Q ⊂ Mi, for each i = 1, . . . , s, and
if M is a maximal ideal containing Q and some Pi, then M is one of the Mj . If
A is a two-dimensional domain that is finitely generated as a Z-algebra and if P is
a height-one prime of A, then it is known that every maximal ideal of A/P is the
radical of a principal ideal. It follows that Spec(A) satisfies a restricted version of
axiom (rW5) where r = 1 and s = 1. This motivates the following
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Question. Suppose A is a two-dimensional Noetherian domain having the property
that Spec(A) is countable, every height-one prime of A is contained in infinitely
many maximal ideals, and for each height-one prime P and each maximal ideal M
containing P , there exists a height-one prime Q such that P + Q is M -primary,
does it follow that Spec(A) satisfies axiom (rW5) mentioned above?

Our work in this paper is part of an on-going study of the general question:
What partially ordered sets arise as the prime spectrum of a Noetherian ring?
This question is entirely open, even for two-dimensional rings. It is even unknown
how to characterize polynomial rings over one-dimensional countable rings (even
polynomial rings in two variables over a countable field).

2. The projective line over a one-dimensional semilocal domain.

Let (R,m1,m2, . . . ,mn) be a one-dimensional semilocal domain and s, t be in-
determinates. In this section, we study the projective line X over R. It will be
convenient to use two interpretations of the projective line: (1) X = Proj(R[s, t]),
the set of relevant homogeneous primes in the polynomial ring in two indetermi-
nates over R, and (2) X is the union of its affine pieces Spec(R[y]) and Spec(R[1/y]),
where y = s/t. (The only elements in the second affine piece that are not in the first
are the height-one prime (1/y)R[1/y] and the height-two maximals (mi, 1/y)R[1/y],
and the two pieces intersect in Spec(R[y, 1/y]).) We will refer to homogeneous rel-
evant prime ideals of R[s, t] as points of X. Each height-two point of X has the
form (m, f(s, t))R[s, t] where m is a maximal ideal of R and f is a homogeneous
polynomial of which the image mod m is irreducible in (R/m)[s, t]. In such an
f the highest power of at least one of s, t has coefficient not in m; and if only one
(say s) has coefficient not in m, then f(s, t) can be taken to be s times an element
of R − m. (Warning: If R is not integrally closed, the ideal f(s, t)R[s, t] need not
be prime despite the fact that its image in (R/m)[s, t] is a prime ideal.)

In analogy with the axiom systems in [rW] and [HW], we introduce the following:

2.1 Definition. We say that the partially ordered set U is “PCZ(n)P” if it sat-
isfies:

(P0) U is countable.
(P1) U has a unique minimal element u0.
(P2) U has dimension two.
(P3) Every maximal element has height two.
(P4) There exist n height-one nonmaximal “special” elements u1, u2, . . . un satis-

fying: (i) G(u1) ∪ · · · ∪ G(un) = { height-two elements of U }, (ii) G(ui) ∩
G(uj) = ∅ for i 6= j, and (iii) G(ui) is infinite for each i, 1 ≤ i ≤ n.

(P5) For each height-one nonspecial element u, G(u) is finite and G(u)∩G(ui) 6=
∅ for each i, 1 ≤ i ≤ n.

(P6) For each nonempty finite subset T of { height-two elements of U } such
that {u1, . . . , un} ⊆

⋃
{L(t) | t ∈ T}, Le(T ) is infinite. (Here Le(T ) is the

exactly-less-than set.)

2.2 Definition. We say that the partially ordered set U is “PCHP” if it satisfies:

(P0)–(P5) Same as PCZ(1)P above.
(P6) For each finite subset T of { height-two elements of U } of cardinality greater

than one, Le(T ) = ∅. For each singleton t ∈ { height-two elements of U },
Le({t}) is infinite. (Le(T ) as above.)
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2.3 Theorem. Let R be a countable one-dimensional semilocal Noetherian domain
with n maximal ideals. If n = 1, then the projective line over R is PCHP if R
is Henselian and PCZ(1)P otherwise. If n > 1, then the projective line over R is
PCZ(n)P .

The proof of this result will occupy most of this section. We show first that these
axiom systems are categorical:

2.4 Lemma. Every two partially ordered sets which satisfy the axioms PCHP are
order-isomorphic. The same is true for PCZ(n)P for any fixed positive integer n.

Proof. We show this for PCZ(n)P ; the argument for PCHP is similar, and both
are only slight adaptations of those of [rW] or [HW]: Given two posets U, V satis-
fying PCZ(n)P , define the order-isomorphism f : U → V by sending the minimal
element u0 to the minimal element v0, the n height-one special elements u1, . . . , un

bijectively to the n height-one special elements v1, . . . , vn, and for each i, 1 ≤ i ≤ n,
the elements of G(ui) to the elements of G(f(ui)), each in any bijective way. Now
enumerate the nonspecial height-one elements of U : un+1, un+2, . . . , and for k > n,
enumerate Le(f(G(uk))) in such a way that if k′ < k but G(uk′) = G(uk), then
Le(f(G(uk))) is enumerated in the same order as Le(f(G(uk′))). Then inductively
define f(uk) to be the first element of Le(f(G(uk))) that is not of the form f(uk′)
for some k′ < k. �

We now begin to show that for a countable one-dimensional semilocal domain
R, X = Proj(R[s, t]) is either PCZ(n)P or PCHP . Since we are assuming that R
is countable, so is R[s, t]. The relevant homogeneous primes in R[s, t] are generated
by finite subsets, so X is also countable, and (P0) holds. This is the only use we
make of the hypothesis of countability on R.

Of course (0) is the unique minimal element of X, so (P1) holds. Since R[s, t]
has Krull dimension 3 and the irrelevant maximal ideals (mi, s, t) are not elements
of X, we see that dim(X) = 2, i.e., (P2) holds.

Axiom (P3) follows from the second assertion in (P5). For (P4), as in the affine
case, the “special” elements are the extensions mi[s, t] to R[s, t] of the maximal
ideals m1,m2, . . . ,mn of R. Since any two of these extensions generate the unit
ideal R[s, t], it is clear that no point of X contains two of them; so (P4)(ii) holds.
Since Proj((R/mi)[s, t]) is the (infinite) projective line over the field R/mi, we also
have (P4)(iii).

To see that X satisfies (P4)(i) and (P5), we picture X as the union of its affine
pieces Spec(R[y]) and Spec(R[1/y]). Since these affine spectra are either CZ(n)P
or CHP [HW, p. 583], we see that each height-two point in X contains one of
the special elements, i.e., that (P4)(i) holds; and that each nonspecial height-one
element is contained in only finitely many height-two points, i.e., that the first part
of (P5) holds.

To see that the second part of (P5) holds, assume by way of contradiction that
the height-one nonspecial prime P in R[y] is comaximal with the special prime
m[y] in X. We may safely localize all the rings in question at the complement
of m in R, so we assume that R is local and P is a height-one maximal in R[y].
Since yR[y] is not maximal, y 6∈ P , so P survives in the localization R[y, 1/y] of
R[y] at the powers of y, i.e., PR[y, 1/y] ∈ Spec(R[y, 1/y]). There are polynomials
f(y) in P and g(y) in m[y] for which 1 = f(y) + g(y), so the coefficients of f(y),
except the constant term, are in m, but the constant term is a unit. Hence the
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extension of P to R[y, 1/y] contains f(0)−1f(y)/ydeg(f), a monic polynomial in 1/y.
Let Q = R[1/y] ∩ PR[y, 1/y] (i.e., the element in Spec(R[1/y]) corresponding to
P in Spec(R[y])). Then since Q contains a monic polynomial and meets R in (0),
R[1/y]/Q is integral over R, so it has a maximal ideal lying over m, and hence Q
is contained in a maximal ideal of R[1/y] that also contains m[1/y]. It follows that
the element of X represented by P or Q is not comaximal with the special element
represented by the extension of m, the desired contradiction.

We now begin the proof that X = Proj(R[s, t]) satisfies P(6) of PCZ(n)P or
PCHP . We deal first with the non-Henselian case. Note first that by adjoining to
the field of fractions K of R the roots and a deg(f)-th root of the leading coefficient
of a dehomogenized version of f(s, t) (i.e., f(s/t, 1) or f(1, t/s)) to obtain a field
L, and letting S be the integral closure of R in L, we have that each of the points
of Proj(S[s, t]) lying over a height-two point of X is of the form (n, as + bt)S[s, t]
where n is a maximal ideal of S and a, b ∈ S, not both in n.

We use the following lemma to deduce the existence of a generic point (in the
sense of [K, Def. 4.7, p. 25]) for a certain subset of Proj(R[s, t]) from the fact that
an appropriate set in Proj(S[s, t]) has a generic point.

2.5 Lemma. Let B =
⊕

∞

n=0 Bn be a graded ring and A =
⊕

∞

n=0 An be a graded
subring (in the sense that A ∩ Bn = An for each n) such that A ⊆ B satisfies the
going-up property. (In particular, this holds if B is integral over A.) Let Q be a
set of homogeneous prime ideals in B. If there exists a homogeneous prime ideal q

of B such that Q = {Q : Q is a homogeneous prime ideal in B containing q}, then
p = q ∩ A is a homogeneous (prime) ideal in A, and

{Q ∩ A : Q ∈ Q} = {P : P is a homogeneous prime ideal in A containing p} .

Proof. The homogeneous components of an element of q∩A are in both q and A (the
latter because of the uniqueness of the expression of an element of B =

⊕
∞

n=0 Bn

as a sum of its homogeneous components); so p is homogeneous. Any Q∩A, for Q
in Q, clearly contains p, so let P be a homogeneous prime of A containing p. By
going-up, there is a prime ideal Q1 of B containing q and such that Q1 ∩ A = P .
The homogeneous ideal q + PB of B is contained in Q1, so Q1 contains a minimal
prime Q of q+PB. By [K, Proposition 5.11, p. 34], Q is homogeneous, and q ⊆ Q,
so Q ∈ Q. Also, since PB ⊆ Q ⊆ Q1, Q ∩ A = P . �

We can now verify that, if R is not Henselian, then for a set T satisfying the
hypothesis of (P6) of PCZ(n)P , Le(T ) is at least nonempty. Note that by the
second assertion of (P5), if the set T does not satisfy the hypothesis of (P6), then
Le(T ) is empty.

2.6 Theorem. Suppose R is not Henselian. Then for each finite set M1, . . . ,Mr

of height-two points of X = Proj(R[s, t]) such that each maximal ideal of R is
contained in at least one Mi, there is a height-one element P of X that is contained
in M1, . . . ,Mr but not in any other height-two point of X.

Proof. In view of Lemma 2.5, we may replace R by its integral closure in a finite
algebraic extension of its field of fractions K, and the collection {M1, . . . ,Mr} by
the (possibly larger) set of points in the projective line over that integral closure
that lie over these Mi. Therefore, we may assume that each Mi has the form
(m, as + bt)R[s, t] for some m maximal in R and some a, b ∈ R, not both in m.
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Now we use the fact that R is not Henselian. Since each of the maximal ideals of
R is ∞-split [HW, Theorem 1.1], there exists a finite algebraic extension L of K for
which the integral closure S of R in L has the property that, for each m maximal
in R, the number of maximal ideals n of S lying over m is greater than or equal to
the number of Mi containing m. For each n, we pick an Mi = (n∩R, as+bt)R[s, t]
in such a way that every Mi is picked at least once, and set Nn = (n, as+ bt)S[s, t].
Then Nn ∩ R[s, t] = Mi.

Since the a, b now vary with n, we write them as an, bn. By the Chinese Re-
mainder Theorem, there are elements a, b of S for which a ≡ an mod n and b ≡ bn
mod n for every maximal ideal n of S. Let Q = (as + bt)S[s, t]. Since not both
an, bn are in n for each n, a, b generate the unit ideal in S; so Q is a prime ideal,
that is, Q ∈ Y = Proj(S[s, t]). Observe that for each maximal ideal n of S, the
polynomial as+bt is in exactly one height-two point of Y containing n (because the
image of as+bt in the polynomial ring (S/n)[s, t] over the field S/n is a nonzero lin-
ear form). Therefore, the set {Nn : n ∈ Mspec(S)} is precisely the set of height-two
points of Y that contain Q. Since {Nn ∩ R[s, t] : n ∈ Mspec(S)} = {M1, . . . ,Mr},
it follows from Lemma 2.5 that P = Q∩R[s, t] is contained in M1, . . . ,Mr but not
in any other height-two point of X. �

Next, we argue that, if R is Henselian, then (P6) in PCHP holds. Suppose R is
Henselian (and hence local, with maximal ideal m). Then no two distinct height-two
points of X contain the same nonspecial height-one element of X. For, if y = s/t
and P is a height-one prime of the polynomial ring R[y] such that P ∩ R = (0),
then P is contained in a unique maximal ideal of R[y] [HW, Proposition 1.4]; if P
is not itself maximal, it suffices to observe that P contains a monic polynomial in
y and therefore is not contained in the height-two point at infinity for Spec(R[y])
in X (i.e., the prime in R[1/y] corresponding to P in X is not contained in the
maximal ideal (m, 1/y)R[1/y]). To see that P contains a monic polynomial in y,
consider the domain R[y]/P = D, an algebraic extension of R. The integral closure
S of R in the field of fractions L of D is a local domain since R is Henselian and a
finite intersection of DVR’s since R is a one-dimensional local domain. Therefore S
is the unique DVR of L containing R. Since D is not a field, it follows that D ⊆ S,
and hence P contains a monic polynomial in y. Thus we have shown that, for t a
height-two element of X, Le({t}) is at least nonempty, since any nonspecial height-
one element u contained in t is such that G(u) = {t}. (In fact, since a height-two
prime in the Noetherian ring R[y] contains infinitely many height-one primes, we
get the full strength of the second sentence in (P6) of PCHP immediately. But
the next paragraph treats both Henselian and non-Henselian cases at once.)

Finally, we complete the proof of (P6) in both the Henselian and non-Henselian
cases, by showing that if Le(T ) is nonempty, then it is infinite: For a height-
one nonspecial element P of Proj(R[s, t]), recall G(P ) = {M ∈ Proj(R[s, t]) :
ht(M) = 2 and P ⊂ M}. We contend that, given a finite set M of height-two
points of Proj(R[s, t]) such that M = G(P ) for some height-one nonspecial element
P of Proj(R[s, t]), there are infinitely many height-one nonspecial elements P of
Proj(R[s, t]) for which G(P ) = M. To see this, let S be a domain that is a finitely
generated integral extension of R such that, in Proj(S[s, t]), there is a finite set of
maximal ideals N such that (1) each maximal ideal of S is contained in exactly one
element of N (i.e., the map N → Mspec(S) : N 7→ S ∩ N is a bijection), (2) there
is at least one N in N lying over each M in M, and (3) each N in N has the
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form N = (S ∩ N, aNs + bN t)S[s, t] with aN , bN in S, not both in S ∩ N . (In the
non-Henselian case, we saw in the proof of Theorem 2.6 that such an S exists. In
the Henselian case, there is only one M ; it contains the unique maximal ideal m

of R, and S can be any extension such that the generator of the image of M in
(R/m)[s, t] has a linear factor over the residue field of S.) Then choose a, b in S
such that a ≡ aN mod (S ∩ N) and b ≡ bN mod (S ∩ N) for each N in N and
note that, if P = (as + bt)L[s, t] ∩ R[s, t], where L is the field of fractions of S,
then P ⊂ M iff M ∈ M. Note that P = f(s, t)K[s, t]∩R[s, t], where K is the field
of fractions of R and f is an irreducible element in K[s, t], unique up to constant
multiple, of which as + bt is a factor in L[s, t]. Now, the choice of a, b above was
determined only up to the (infinite) Jacobson radical J of S; we could add any
element of J to either of a, b without changing the resulting G(P ). But since a
nonzero element f of K[s, t] has only finitely many nonassociate linear factors over
an algebraic closure of K, if we fix a nonzero a and add to b nonzero elements of
the Jacobson radical of S, then the prime ideals in L[s, t] generated by the elements
as + bt are distinct, and only finitely many of these different primes can give the
same P . Thus, there are infinitely many P that give the same G(P ).

The proof of Theorem 2.3 is now complete. We close this section by providing
our affirmative answer to Nashier’s question.

2.7 Proposition. Let (R,m) be a one-dimensional local domain and y an inde-
terminate. If for every maximal ideal P in R[y, 1/y], either P ∩R[y] is maximal in
R[y] or P ∩ R[1/y] is maximal in R[1/y], then R is Henselian.

Proof. Assume R is not Henselian and let X = Spec(R[y])∪Spec(R[1/y]) be the pro-
jective line over R. By the proof of Theorem 2.3, X satisfies (P1)–(P6) of PCZ(1)P .
If P is any height-one element of X that is in Le((m, y)R[y], (m, 1/y)R[1/y]), then
PR[y, 1/y] is maximal, while both PR[y] and PR[1/y] are nonmaximal.

An alternative proof, not using Theorem 2.3, is the following: Assuming R is
not Henselian, by [N, (43.12)], R has a finite integral extension A that is not local,
and the integral closure A′ of A is also not local, though it is a semilocal PID. Let
N1, . . . , Nn be all the maximal ideals of A′, and pick an element c of the field of
fractions K of A such that c ∈ N1A

′

N1
and c 6∈ A′

Ni
for 2 ≤ i ≤ n. Then since

none of the maximal ideals of A′ survive in A′[c, 1/c], A′[c, 1/c] is a field. Since
it is an integral extension of R[c, 1/c], R[c, 1/c] is also a field. Hence the kernel
of the R-homomorphism R[y, 1/y] →K: y 7→ c is a maximal ideal P . But since
R[c] ⊆ A′

N1
and R[1/c] ⊆ A′

N2
, R[c] and R[1/c] are not fields, so neither P ∩ R[y]

nor P ∩ R[1/y] is maximal. �

3. Spectra of birational extensions of the affine line.

In this section we establish the following result:

3.1 Proposition. Let (R,m1, . . . ,mn) be a one-dimensional semilocal domain, K
its field of fractions, y an indeterminate, A = R[y], f ∈ A −

⋃n

i=1 mi[y], and B a
finitely generated A-algebra strictly between A and A[1/f ]. Then Spec(B) satisfies
the following axioms from CZ(n)P or CHP (Definitions 1.2 and 1.3):

(a) (P0) holds if R is countable.

(b) (P1)–(P3) hold without additional hypotheses.

(c) The number m of “special” elements (height-one elements u1, . . . , um for which
(P4)(iii) holds, i.e., G(ui) is infinite), may be greater than the number n of
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maximal ideals of R, but it is still finite, and (P4)(i) and (P5) hold (the latter
trivially). Any “special” element meets R in a maximal ideal.

(d) If fA has prime radical, then m > n and (P4)(ii) may fail, i.e., the “special”
elements need not be comaximal.

3.2 Remark. (1) Spec(A[1/f ]) ∼= Spec(A), since Spec(A[1/f ]) and Spec(A) both
satisfy the axioms for either CZ(n)P or CHP . The reason for this is that, in
localizing A at f , only finitely many height-one primes of A are lost, none of them
special, and consequently only finitely many maximal ideals (those containing those
height-one nonspecials) are lost.

(2) If B were a non-Noetherian ring strictly between A and A[1/f ], then (P6)
of both CZ(n)P and CHP could fail, and the partially ordered set Spec(B) could
fail to represent Spec(C) for any Noetherian ring C. For example, if R = k[x](x),

f = y, and B = R[y, x/y, x/y2, x/y3, . . . ], then B has a height-two maximal ideal
M = yB, that contains only one height-one prime P =

⋂
∞

n=1 ynB; cf. [Ka, page 7,
Exercise 5]. But this phenomenon is impossible in a Noetherian ring: By Krull’s
Principal Ideal Theorem, every height-two prime ideal M in a Noetherian ring must
contain infinitely many height-one primes. (For, if M contained only r height-one
primes P1, . . . , Pr, then for any a in M −

⋃r

i=1 Pi, the height-two prime ideal M
would be minimal over a, a contradiction.)

(3) The stronger hypothesis that B is finitely generated as an algebra over A is
used below to insure that the dimension formula holds.

We now begin the proof of Proposition 3.1. If R is countable, then so is B, and
since B is also Noetherian, Spec(B) is countable.

Of course, Spec(B) always has unique minimal element (0).
We claim that B has dimension two. Indeed, a bit more generally, if f ∈

A − Jac(R)A and B ⊆ A[1/f ], then dim(A[1/f ]) = 2 and since A[1/f ] = B[1/f ],
dim(B) ≥ 2. Since B is also a birational extension of the two-dimensional Noether-
ian domain A, we have dim(B) ≤ 2 so dim(B) = 2.

At most finitely many of the height-one maximals in A (those containing f)
extend to the unit ideal in B. Let Q be a prime of B lying over a height-one maximal
P in A not containing f . Then BQ = AP and Q = PAP ∩B (since P ∩R = 0, so AP

is a localization of K[y] and hence a DVR), and A/P ⊆ B/Q ⊆ AP /PAP = A/P
(the last equality because P is maximal), and hence Q is a height-one maximal in
B. Therefore Spec(B) has infinitely many height-one maximals.

We want to see that the number of height-one primes Q in Spec(B) such that
G(Q) is an infinite set is finite: Let Q be one of them. If it meets A in a non-
special height-one prime P , then, because none of the height-two maximals of B
containing Q meet A in P (for, if N is a prime in B such that N ∩ A = P , then
BN is between the one-dimensional Noetherian domain AP and its field of frac-
tions and hence has dimension at most one), we get an infinite-to-finite map on
the maximal spectra Mspec(B/Q) → Mspec(A/P ), so that at least one of the ex-
tensions of maximals in A/P to the Noetherian ring B/Q would have infinitely
many minimal primes, a contradiction. Thus Q meets A in either a special height-
one prime or a height-two maximal, and in either case it meets R in a maximal
ideal m, and hence Q is a minimal prime of mB. But since R is semilocal, so is⋃
{{ minimal primes of mB } : m ∈ Mspec(R)}.
Since B < A[1/f ], fB 6= B, so fB has at least one minimal prime Q, and since

B is Noetherian, ht(Q) = 1. Since R is Cohen-Macaulay, A = R[X] is Cohen-
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Macaulay, so every associated prime of fA is of height one. If P1, . . . Pm are the
associated primes of fA, then

A = A[1/f ] ∩ AP1
∩ . . . ∩ APm

= B ∩ AP1
∩ . . . ∩ APm

.

Suppose that m = 1, i.e., that fA has prime radical P (e.g., f = y). In this
case, since f 6∈

⋃n

i=1 miA, P ∩ R = 0, so P is contracted from K[y], and hence
AP is a DVR. Assume that the center on A of a prime Q of B is exactly P ; then
AP ⊆ BQ < K(y), and hence (since AP is a DVR) AP = BQ. So:

B ⊆ A[1/f ] ∩ BQ = A[1/f ] ∩ AP = A ,

a contradiction. Therefore, for each minimal prime Q of fB, Q∩A properly contains
P and hence is a height-two maximal in A. By the dimension formula, e.g., [M,
pages 84–86] (since A is Cohen-Macaulay, it is universally catenary),

1 = ht(Q) = ht(Q ∩ A) + tr.deg.(B/A) − tr.deg.(B/Q)/(A/(Q ∩ A)) .

Since ht(Q∩A) = 2, and tr.deg.(B/A) = 0, we see that tr.deg.(B/Q)/(A/(Q∩A)) =
1, and since B/Q is finitely generated over the field A/(Q∩A), B/Q has infinitely
many maximal ideals. So Q is contained in infinitely many maximal ideals of B,
i.e., the closure G(Q) is infinite. But for each maximal ideal m of R, mA[1/f ]∩B
is also a height-one prime with infinite closure.

Finally, to see that the height-one primes Q of Spec(B) with infinite closure need
not be comaximal, we provide an example: Let R be a discrete rank-one valuation
domain with maximal ideal m = aR, let f = y, and let B = A[a/y]. Now yB amd
(a/y)B are height-one primes with infinite closures (since B/yB ∼= B/(a/y)B ∼=
(R/m)[t]); but they are not comaximal, because (y, a/y)B is a proper ideal of B.
This completes the proof of Proposition 3.1.

The example in the last paragraph is somewhat special. We remark that even
under the following hypotheses, it is possible that B has exactly two height-one
primes with infinite closure, and these two primes are comaximal: Let R be a DVR
with m = aR, A = R[y], fA a height-one prime ideal of A such that fA∩R = (0),
g ∈ A− fA (so that A < A[g/f ]) such that (f, g)A < A (so that A[g/f ] < A[1/f ]),
and B = A[g/f ]. One such example is obtained by setting f = y2 + a3 and g = y.
The two height-one primes of B with infinite closure are mB[1/f ]∩B and (a, y)B;
the former contains a3/(y2 + a3), and the latter y, so they are comaximal.

We close this section with two questions suggested by the axiom systems CZ(n)P
and CHP .

Questions. 1. If R is not Henselian and M is a finite set of height-two maximals
of B, is there a height-one prime P of B for which M = G(P ) (i.e., M is precisely
the set of maximal ideals of B that contain P )? We remark that if R is Henselian
and P is a height-one prime of B distinct from the finitely many minimal primes
of mB, then P is contained in a unique maximal ideal of B. Therefore, if R is
Henselian, then there exist such sets M for which there is no corresponding P .

2. Given a set M such that M = G(P ) for one height-one prime P in B, are
there infinitely many P for which M = G(P )?
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4. Spectra of parameter blowups of two-dimensional local domains.

Let (R,m) be a two-dimensional Cohen-Macaulay local domain and let x, y be a
system of parameters for R, i.e., the ideal (x, y)R is primary for the maximal ideal
m of R. In this section we examine the “blowup” of the ideal (x, y)R, to see how
many of the axioms above it satisfies.

We consider first an affine piece A = R[y/x] of the blowup, and we refer to the
axiom systems CZ(1)P and CHP (Definitions 1.2 and 1.3 above). Since x, y form a
regular sequence, the kernel of the R-algebra homomorphism of the polynomial ring
R[t] → A defined by t 7→ y/x is the principal ideal (xt− y)R[t], which is contained
in mR[t], a height-two prime ideal of R[t]; so mA is a height-one prime ideal of
A. Moreover, A/mA ∼= (R/m)[t], a polynomial ring in one indeterminate over the
residue field of R. Thus, the maximal ideals of A containing mA are in one-to-one
correspondence with the maximal ideals of this polynomial ring; in particular, there
are infinitely many height-two maximal ideals of A containing mA. On the other
hand, for any height-one prime Q of A distinct from mA, Q∩R = P is a height-one
prime in R; since the ideal (xt− y)R[t] is not contained in PR[t], the image of y/x
in A/Q is algebraic over R/P , and since this image generates A/Q over R/P , A/Q
is a semilocal Noetherian domain of dimension at most one. Therefore, Spec(A)
satisfies axiom (P5) of either CHP or CZ(1)P in [HW]. Also, axioms (P1) and
(P2) clearly hold for Spec(A), as does (P0) if R is assumed to be countable. Let
us observe that there are infinitely many height-one maximal ideals in A: No two
of the elements x − yn+1, as n varies over the natural numbers, are in the same
height-one prime of R; if P is a minimal prime of such an element, then since x 6∈ P ,
A ⊆ RP and PRP ∩ A = Q is maximal in A (since in A/Q the image of y/x is the
inverse of the image of yn, an element in the maximal ideal of R/P ). Thus, (P3)
also holds. To see (P4), all that remains to show is that every height-two maximal
N of A meets R in m; so assume that for some N , N ∩R = P has height one. Then
the ring of fractions of A with respect to the complement of P in R lies between the
one-dimensional Noetherian domain RP and its field of fractions, so its dimension
is at most one; but N survives in this ring of fractions, a contradiction.

Let Q be a height-one prime of A other than mA, and set P = Q ∩ R. If R/P
is Henselian, then A/Q is algebraic over a one-dimensional Henselian local domain
and hence is local (cf. [HW, pp. 577–8]). Thus, Q is contained in a unique maximal
ideal of A. Suppose that R/P is Henselian for each height-one prime P of R; then
each height-one prime of A other than mA is contained in a unique maximal ideal.
If N is a height-two maximal of A, then N is the union of the height-one primes
contained in it. Since each of these height-one primes other than mA is contained
in no maximal ideal except N , we see that Spec(A) satisfies axiom (P6) of CHP .

Thus we have shown:

4.1 Proposition. Let R be a two-dimensional Cohen–Macaulay local domain, x, y
be a system of parameters of R, and A = R[y/x]. Then Spec(A) satisfies ax-
ioms (P1)–(P5) of [HW]. If R is countable and, for each height-one prime P of R,
R/P is Henselian, then Spec(A) is CHP .

It is shown in [AHW] that the hypotheses in Proposition 4.1, including the
assumption that R/P is Henselian for each height-one prime P , do not imply that
R is Henselian.

So we turn our attention to the case where some R/P is not Henselian, and
try to prove (P6) of CZ(1)P . An example relevant to our situation here is the
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following. Let k be a field and let x, y be indeterminates over k. Let R be the
ring k[y(y − 1), y2(y − 1)][[x]] localized at the maximal ideal generated by y(y −
1), y2(y − 1), and x. Let f = (x− y2(y − 1))/(y(y − 1)), let A = R[f ], and let P be
the height-one prime of R generated by x. Then A ⊆ RP . Let Q = PRP ∩A. Since
the image of f in A/Q is the same as that of y and since adjoining this element to
R/P ∼= k[y(y − 1), y2(y − 1)](y(y−1),y2(y−1)) gives a ring with two maximal ideals,
we see that Q is contained in precisely two maximal ideals of A. Note that if P ′ is a
height-one prime of R that is distinct from P , then R/P ′ is complete and therefore
Henselian. Therefore, if Q′ is a height-one prime of A distinct from both Q and
mA, then as we observed above Q′ is contained in a unique maximal ideal of A.
Therefore in this example Spec(A) is neither CHP nor CZ(1)P . So it is natural
to ask:

Question. If for each height-one prime P of R the ring R/P is not Henselian, does
it follow that Spec(A) satisfies CZ(1)P?

We can provide a first step toward a proof of (P6) of CZ(1)P : For each maximal
ideal N of height two of A we show that there exists a height-one prime Q contained
in N and not contained in any other maximal ideal of A: If N is a height-two
maximal ideal in A, then as we saw above, m = N ∩ R. Further above we noted
that A/mA may be identified with the polynomial ring (R/m)[t], where t is the
image of y/x. Hence N = (m, f)A, where the image f of f in (R/m)[t] is a
monic irreducible polynomial. If f = r0 + r1t + . . . + tn for ri ∈ R, and we set
f = r0 + r1(y/x) + . . . + (y/x)n, then N is the unique height-two prime of A that
contains f . It follows that there exists a height-one prime Q of A contained in N
having the property that N is the unique maximal ideal of A containing Q: Take
Q to be a minimal prime of the principal ideal fA.

It seems plausible that, given a height-two maximal ideal N in A, we can find
infinitely many height-one primes Q contained in N but not in any other maximal
ideal of A. But we wonder whether for every finite set of height-two maximal ideals
of A there exists a height-one prime Q of A that is contained in precisely this set
of maximal ideals. In certain examples this is the case. For instance, let x, y be
indeterminates over a field k, and set R = k[x, y](x,y) and A = R[y/x]. Then using
the fact that A is a ring of fractions of k[x](x)[y/x], we see by Section 2 that Spec(A)
satisfies CZ(1)P .

Now let us consider the entire blowup of the ideal I = (x, y)R, i.e., X = Proj(T ),
where T =

⊕
∞

n=0 In is the Rees algebra of I; and refer to the axiom systems
PCZ(1)P and PCHP . Since X is also the union of its affine pieces Spec(R[y/x])
and Spec(R[x/y]), Proposition 4.1 provides some of the answers immediately: If
R is countable, then so is X. The poset X has a unique minimal element and
dimension two. Every height-two point of X contains the extension of the maximal
ideal m of R, and there are infinitely many height-two points. For a height-one
element P of X distinct from the extension of the maximal ideal of R, G(P ) is
finite.

To show that X satisfies (P3), it suffices to show that if P is a height-one prime
of R, then at least one of the rings R[y/x], R[x/y] is contained in RP , and the
center of RP on at least one of these rings is not a maximal ideal. If x ∈ P , then
y 6∈ P , so R[x/y] ⊆ RP , and the center of RP on R[x/y] is properly contained
in (m, x/y)R[x/y]. So we may assume that x, y 6∈ P , and hence both R[y/x] and
R[x/y] are contained in RP . Assume by way of contradiction that the center of RP
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on each ring is maximal, and let z denote the image of y/x in RP /PRP . Then the
images (R/P )[z] and (R/P )[1/z] of R[y/x] and R[x/y] are both the field RP /PRP ,
so their intersection is again RP /PRP . But either z or 1/z is in every valuation
ring between R/P and its field of fractions RP /PRP , so (R/P )[z] ∩ (R/P )[1/z] is
integral over the one-dimensional domain R/P , the desired contradiction.

Suppose that for each height-one prime P of R, R/P is Henselian. Then as we
saw above, a height-one element of Spec(R[y/x]) distinct from the extension of m

is contained in a unique maximal ideal. So the first sentence of (P6) of PCHP can
fail for X only if there is a height-one prime P of R such that both R[y/x] and
R[x/y] are contained in RP and the center of RP on R[y/x] is properly contained
in a maximal ideal that is lost in R[x/y] and vice versa. Let P be a height-one of R
such that both R[y/x] and R[x/y] are contained in RP and the center of RP on each
is nonmaximal. Again let z denote the image of y/x in RP /PRP . Then (R/P )[z]
and (R/P )[1/z] are both properly contained in the field of fractions RP /PRP of
R/P . Since R/P is one-dimensional and Henselian, both z and 1/z are integral
over R/P , so (R/P )[z] = (R/P )[1/z] (cf. for example [N, (10.5)]). Therefore the
height-two point in Spec(R[y/x]) containing P is the same point of X as the one
in Spec(R[x/y]). The second sentence of (P6) of PCHP also follows, because a
height-two maximal of R[y/x] is the union of the height-one primes in it.

Thus we have shown:

4.2 Proposition. Let R be a two-dimensional Cohen–Macaulay local domain, x, y
be a system of parameters of R, I = (x, y)R, and T =

⊕
∞

n=0 In. Then the blowup
Proj(T ) of I satisfies axioms (P1)–(P5) of PCZ(1)P or PCHP . If R is countable
and, for each height-one prime P of R, R/P is Henselian, then Proj(T ) is PCHP .
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