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MOTIVATION

A question raised by Mel Hochster:

Question. Can one describe or somehow classify the local maps

R ↪→ S of complete local domains R and S such that

P ∈ Spec(S), P 6= (0) =⇒ P ∩R 6= (0)?

Hochster remarks that if, for example, R is equal characteristic

zero, such extensions arise as

R = K[[x1, . . . , xm]] ↪→ T = L[[x1, . . . , xm, y1, . . . , yn]]→ T/P = S,

where K is a subfield of L and P ∈ Spec(T ) is maximal with

respect to P ∩R = {0}.
Partial Answer. In Hochster’s set-up,

[L : K] <∞ =⇒ dimS = 2 or dimS = m.
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Main Results

Let K be a field, m and n positive integers, X = {x1, . . . , xm},

Y = {y1, . . . , yn} sets of independent variables over K.

Let A be the localized polynomial ring K[X](X).

Theorem 1. Every prime ideal P of Â = K[[X]] that is maximal

with respect to P ∩A = (0) has height m− 1.

Let B := K[[X]][Y ](X,Y ) and C := K[Y ](Y )[[X]].

Theorem 2. Every prime ideal P of B̂ = Ĉ that is maximal with

respect to either P ∩B = (0) or P ∩C = (0), has height m+ n− 2.

Theorem 3. Every prime ideal P of K[[X,Y ]] that is maximal

with respect to P ∩K[[X]] = (0) has height either n or m+ n− 2.
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Local Embeddings

There exist local embeddings:

A = K[X](X) ↪→ Â := K[[X]], Â ↪→ B̂ = Ĉ = K[[X,Y ]]

B = K[[X]] [Y ](X,Y ) ↪→ C = K[Y ](Y )[[X]] ↪→ B̂ = Ĉ = K[[X]] [[Y ]].

Matsumura observes there exist P ∈ Spec Â with htP = m− 1

and P ∩A = (0), and also that there exist P ∈ SpecK[[X,Y ]]

with htP = m+ n− 2 such that

P ∩ C = (0) or P ∩B = (0).

However he does not address the question of whether all primes

maximal with these properties have the same height.
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Generic Fiber Rings

Let R ↪→ S be an injective homomorphism of commutative rings

with R an integral domain. The generic fiber ring of the map

R ↪→ S is the localization (R \ (0))−1S of S.

Let (R,m) be a Noetherian local integral domain and let R̂ denote

the m-adic completion of R.

The generic formal fiber ring of R is the localization

(R \ (0))−1R̂ of R̂.

The formal fibers of R are the fibers of the map

Spec R̂→ SpecR. For P ∈ SpecR, the formal fiber over P is

Spec( (RP /PRP )⊗R R̂ ).
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Trivial Generic Fiber Extensions

Let R be a subring of an integral domain S.

Definition. R ↪→ S is a trivial generic fiber extension or a

TGF extension if

(0) 6= P ∈ SpecS =⇒ P ∩R 6= (0).

One obtains a TGF extension S of R by considering

R ↪→ T → T/P := S,

where T is an extension ring of R and P ∈ SpecT is maximal with

respect to P ∩R = (0).

Thus the generic fiber ring of R ↪→ T is relevant to constructing

TGF extensions S of R.
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Variations on a theme of Weierstrass

The Weierstrass Preparation Theorem is our main technical tool.

Let P be a prime ideal in the power series ring Â = K[[X]], where

X = {x1, . . . , xn} is a set of n variables over the field K.

Here A = K[X](X) is the localized polynomial ring.

Notation. By a change of variables, we mean a finite sequence

of ‘polynomial’ change of variables over K of the form

x1 7→ x1 + xe1n , . . . xn−1 7→ xn−1 + xen−1
n , xn 7→ xn,

perhaps followed by

z1 7→ z1, z2 7→ z2 + zf2

1 , . . . zn 7→ zn + zfn1 ,

where ei, fi ∈ N and zi denotes the image of xi under the first map.
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The Weierstrass Preparation Theorem

Theorem (Weierstrass) Let (R,m) be a complete local ring, let

f ∈ R[[x]] be a formal power series and let f denote the image of f

in (R/m)[[x]]. Assume that f 6= 0 and that ord f = s > 0. There

exists a unique ordered pair (u, F ) such that u is a unit in R[[x]]

and F ∈ R[x] is a distinguished monic polynomial of degree s such

that f = uF .

Here F = xs + as−1x
s−1 + · · ·+ a0 ∈ R[x] is distinguished if

ai ∈m for 0 ≤ i ≤ s− 1.

Corollary. The ideal fR[[x]] is extended from R[x] and R[[x]]/(f)

is a free R-module of rank s. Every g ∈ R[[x]] is of the form

g = qf + r, where q ∈ R[[x]] and r ∈ R[x] is a polynomial with

deg r ≤ s− 1.
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Embeddings of Power Series Rings

Theorem (Classical) There exists a K-algebra embedding of the

formal power series ring R := K[[x1, . . . , xn]] into the formal power

series ring in two variables K[[y, z]].

Proof. Let f1, . . . , fn be power series in K[[y]] that are

algebraically independent over K. Define ϕ : R→ K[[y, z]] by

ϕ(xi) = fiz, for 1 ≤ i ≤ n. Suppose g ∈ R is such that ϕ(g) = 0.

Write g =
⊕∞

k=0 gk, where gk is a form in K[x1, . . . , xn] of degree k.

Then ϕ(gk) = zkgk(f1, . . . , fn) with gk(f1, . . . , fn) ∈ K[[y]]. Hence

ϕ(g) =

∞⊕
k=0

gk(f1, . . . , fn)zk = 0

implies gk(f1, . . . , fn) = 0 for each k ∈ N. Since f1, . . . , fn are

algebraically independent over K, each gk = 0, so g = 0.
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Cohen’s Theorem 8

Theorem (Classical) Let I be an ideal of a ring R and let M

be an R-module. Assume that R is complete in the I-adic topology

and
⋂∞
n=1 I

nM = (0). If M/I is generated over R/I by elements

w1, . . . , ws and wi is a preimage in M of wi for 1 ≤ i ≤ s, then

M is generated over R by w1, . . . , ws.

Corollary. Assume ϕ : (R,m)→ (S,n) is a local homomorphism.

If R is m-adically complete, mS is n-primary and S/n is finite

over R/m, then S is a finitely generated R-module.

If ϕ : R→ K[[y, z]] = S is an embedding of the power series ring in

n > 2 variables, then mS is not n-primary.
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The Generic Formal Fiber Rings of B and C

Since B := K[[X]][Y ](X,Y ) ↪→ K[Y ](Y )[[X]] := C,

if P ∈ SpecK[[X,Y ]] and P ∩ C = (0), then P ∩B = (0).

We know P ∈ SpecK[[X,Y ]] maximal with respect to P ∩B = (0)

or maximal with respect to P ∩ C = (0) =⇒ htP = n+m− 2.

Hence if P ∈ SpecK[[X,Y ]] is maximal with P ∩ C = (0),

then P is also maximal with respect to P ∩B = (0).

However, if n ≥ 2, the generic fiber of B ↪→ C is nonzero.

This means ∃ P ∈ SpecK[[X,Y ]] maximal in the generic formal

fiber of B but P not in the generic formal fiber of C.
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The Generic Fiber of B ↪→ C

Lemma. B = K[[x]][y1, y2] ↪→ K[y1, y2][[x]] = C is not TGF.

Proof. There exists σ ∈ K[y1][[x]] that is transcendental over

K[[x]][y1]. Let q = (y2 − σx)K[y1, y2][[x]] and define

π : K[y1, y2][[x]]→ K[y1, y2][[x]]/q ∼= K[y1][[x]]. Thus

π(y2) = σx. If h ∈ q∩(K[[x]][y1, y2]), then ∃ s, t ∈ N so that

h =
∑s
i=0

∑t
j=0(

∑
k∈N aijkx

k)yi1y
j
2, where aijk ∈ K.

Hence 0 = π(h) =
∑s
i=0

∑t
j=0(

∑
k∈N aijkx

k)yi1(σx)j .

Since σ is transcendental over K[[x]][y1], each aijk = 0.

Therefore q∩(K[[x]][y1, y2]) = (0), and B ↪→ C is not TGF.
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Lemma. Let R := K[[X]] and let P ∈ SpecR with x1 6∈ P and

htP = r, where 1 ≤ r ≤ n− 1. There exists a change of variables

x1 7→ z1 := x1 (x1 is fixed), x2 7→ z2, . . . , xn 7→ zn and a regular

sequence f1, . . . , fr ∈ P so that, upon setting Z1 = {z1, . . . , zn−r},
Z2 = {zn−r+1, . . . , zn} and Z = Z1 ∪ Z2,

1. (f1, . . . , fr) ⊂ K[[Z1]][Z2] and P is a minimal prime of

(f1, . . . , fr)R.

2. The (Z2)-adic completion of K[[Z1]] [Z2](Z) is identical to the

(f1, . . . , fr)-adic completion and is R = K[[X]] = K[[Z]].

3. If P1 := P ∩K[[Z1]] [Z2](Z), then P1R = P , that is, P is

extended from K[[Z1]] [Z2](Z).

4. The extension: K[[Z1]] ↪→ K[[Z1]] [Z2](Z)/P1
∼= K[[Z]]/P

is finite (and integral).
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R = K[[X]] = K[[Z1, Z2]]

(X)R

D = K[[Z1]] [Z2](Z)

P = P1R

P1 = P ∩D

(f1, . . . , fr) ⊂ P1 and K[[Z1]] ↪→ D/P1
∼= K[[Z]]/P is finite.
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Theorem. Let y and X = {x1, . . . , xm} be variables over the field

K. Assume V is a DVR with K[y] ⊆ V ⊆ K[[y]] such that V has

completion K[[y]]. Also assume the field K((y)) = K[[y]] [1/y] has

uncountable transcendence degree over the fraction field Q(V ) of

V . Set R0 := V [[X]] and R = R̂0 = K[[y,X ]]. Let P be a prime

ideal of R such that:

P ⊆ (X)R (so y /∈ P ) and dim(R/P ) > 2.

Then there exists a prime ideal Q of R such that

1. P ⊂ Q ⊂ XR,

2. dim(R/Q) = 2, and

3. P ∩R0 = Q ∩R0.

In particular, P ∩K[[X]] = Q ∩K[[X]].
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R = K[[y, Z]]

D := K[[y, Z1]] [Z2](Z)

Q(K[[y]]) = K[[y]] [1/y] = K((y))

K[[y]]
E := Q(T ) = L(γ2, . . . , γn−r)

T := L(γ2, . . . , γn−r) ∩K[[y]]

S := Q(V (∆)) ∩K[[y]]

L := Q(S) = Q(V (∆))

K[y] ⊆ V

Q(V )
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Prime Ideals With The Same Contraction

Corollary. Let K be a field, y and X = {x1, . . . , xm} variables

over K and let R = K[[y,X ]]. Assume P ∈ SpecR is such that:

(i) P ⊆ (x1, . . . , xm)R and

(ii) dim(R/P ) > 2.

Then there exists a prime ideal Q of R such that

1. P ⊂ Q ⊂ XR,

2. dim(R/Q) = 2, and

3. P ∩K[y](y)[[X]] = Q ∩K[y](y)[[X]].

In particular, P ∩K[[x1, . . . , xm]] = Q ∩K[[x1, . . . , xm]].
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R = K[[y,X ]]

(X)R

R0 = K[y](y) [[X]]

P ⊂ Q

P ∩R0 = Q ∩R0

dimR/Q = 2 and P ∩K[[X]] = Q ∩K[[X]]
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Generic Fibers of Power Series Extensions

Theorem. Let y and X = {x1, . . . , xm} be variables over the field

K. Consider the extension Â = K[[X]] ↪→ K[[X]][[y]] = B̂. Let P

be a prime ideal of B̂ such that P ∩ Â = (0). Then

1. If P 6⊆ XB̂, then dim B̂/P = m and P is maximal with respect

to P ∩ Â = (0).

2. If P ⊆ XB̂, then there exists Q with P ⊆ Q, dim B̂/Q = 2,

and Q is maximal with respect to Q ∩ Â = (0).

If m > 2, then for each prime Q maximal with respect to

Q ∩ Â = (0), we have either

(i) dim B̂/Q = m and Â ↪→ B̂/Q is finite, or

(ii) dim B̂/Q = 2 and Q ⊂ XB̂.
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Generic Fibers of Power Series Extensions 2

Theorem. Let K be a field, m and n positive integers,

X = {x1, . . . , xm} and Y = {y1, . . . , yn} sets of independent

variables over K. Consider the extension

Â = K[[X]] ↪→ K[[X]][[Y ]] = B̂.

Let Q be a prime ideal of B̂ maximal with respect to Q ∩ Â = (0).

1. If m = 1, then dim B̂/Q = 1 and Â ↪→ B̂/Q is finite.

2. If m ≥ 2, there are two possibilities:

(i) Â ↪→ B̂/Q is finite, in which case dim B̂/Q = dim Â = m, or

(ii) dim B̂/Q = 2.
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Mixed Polynomial/Power Series Rings

Consider

A := K[x, y] ↪→ B := K[[x]][y] ↪→ C := K[y][[x]]

↪→ D := K[y][[x/y]] ↪→ E := K[y, 1/y][[x]]

where K is a field and x and y are indeterminates over K.

We are interested in the prime spectra of these rings and the maps

on the spectra determined by the inclusion maps on the rings. For

example, do there exist nonzero primes of one of the larger rings

that intersect a smaller ring in zero (i.e. non-TGF extensions).
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Motivation 2

From the introduction to a paper by Alonzo-Tarrio, Jeremias-Lopez

and Lipman:

If a map between noetherian formal schemes can be factored as a

closed immersion followed by an open one, can it also be factored

as an open immersion followed by a closed one?

Brian Conrad observed that a counterexample can be constructed

for every triple (R, x, p), where

1. R is an adic domain, that is, R is a Noetherian domain that is

separated and complete with respect to the powers of a proper

ideal I.

2. x ∈ R is nonzero, the completion of R[1/x] with respect to the

powers of IR[1/x], denoted S := R{x}, is an integral domain.

3. p is a nonzero prime ideal of S that intersects R in (0).
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Motivation 2 continued

If (R, x, p) is such a triple with S = R{x}, then the composition

R→ S → S/p determines a map on formal spectra

Spf(S/p)→ Spf(S)→ Spf(R) that is a closed immersion followed

by an open one.

For a surjection such as S → S/p of adic rings gives rise to a closed

immersion Spf(S/p)→ Spf(S), while a localization like that of R

with respect to x followed by the completion of R[1/x] with respect

to the powers of IR[1/x] to obtain S gives rise to an open

immersion Spf(S)→ Spf(R).

However, the map Spf(S/p)→ Spf(R) cannot be factored as an

open immersion followed by a closed one. For a closed immersion

into Spf(R) corresponds to a surjective map of adic rings

R→ R/J , where J is an ideal of R.
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Motivation 2 continued

If the immersion Spf(S/p)→ Spf(R) factored as an open immersion

followed by a closed one, we would have R-algebra homomorphisms

from R→ R/J → S/p, where Spf(S/p)→ Spf(R/J) is an open

immersion. Since p ∩R = (0), we must have J = (0). This implies

Spf(S/p)→ Spf(R) is an open immersion, that is, the composite

map Spf(S/p)→ Spf(S)→ Spf(R), is an open immersion. But also

Spf(S)→ Spf(R) is an open immersion. It follows that

Spf(S/p)→ Spf(S) is both open and closed. Since S is an integral

domain this implies Spf(S/p) ∼= Spf(S). This is a contradiction

since p is nonzero.

One of our motivations is to describe such triples (R, x, p).
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An example of (R, x, p).

An example described in [AJL]: Let w, x, y, z be indeterminates

over a field K and consider

R := K[w, x, z][[y]] ↪→ S := R{x} = K[w, x, 1/x, z][[y]].

Let P = (w, z)R and T := RP ⊂ SPS := G.

Then T ⊂ G are 2-dim regular local domains, and the residue

field of G (i.e. the fraction field of K[x, 1/x][[y]]) is transcendental

over that of T (i.e. the fraction field of K[x][[y]]).

It follows by [HR, p. 364, Theorem 1.12] that there exist infinitely

many height-one prime ideals of G in the generic fiber over T . Any

one of these prime ideals of G contracts in S to a prime p as above.
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Is There A Simpler Example?

In some correspondence to Lipman, Conrad asked:

Question. Is there a nonzero prime ideal of E := K[x, 1/x][[y]]

that intersects C = K[x][[y]] in zero?

If there were such a prime ideal, then

C := K[x][[y]] ↪→ E := K[x, 1/x][[y]]

would be a simpler counterexample to the assertion that a closed

immersion followed by an open one also has a factorization as an

open immersion followed by a closed one.

We show there is no such prime ideal.
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A two-dimensional TGF extension.

Let K be a field and let x and y be indeterminates over K.

Remark. C := K[x][[y]] ↪→ E := K[x, 1/x][[y]] is a TGF extension.

It is true that Q(E) has infinite transcendence degree over Q(C).

Notice that dimC = dimE = 2 and y is in every maximal ideal

of C or E. Let P be a nonzero prime of E. If y ∈ P , then

P ∩ C 6= (0). Assume y 6∈ P and P 6= (0). Then

K[[y]] ↪→ C/(P ∩ C) ↪→ E/P and E/P is finite over K[[y]] and

hence also over C/(P ∩ C), so P ∩ C 6= (0).

Question. Is K[x, z][[y]] ↪→ K[x, 1/x, z][[y]] a TGF extension?

27



An Example of a TGF extension.

Example. The extension R := K[[x, y]] ↪→ S := K[[x]][[ y
x

]] is a

TGF extension of the type described in Hochster’s question.

To see this extension is TGF, it suffices to show P ∩R 6= (0)

for each P ∈ SpecS with htP = 1.

This is clear if x ∈ P , while if x 6∈ P , then K[[x]] ∩ P = (0), so

K[[x]] ↪→ R/(P ∩R) ↪→ S/P and S/P is finite over K[[x]].

Therefore dimR/(P ∩R) = 1, so P ∩R 6= (0).

Remark. The extension K[[x, y]] ↪→ K[[x, y
x

]] is, up to

isomorphism, the same as the extension K[[x, xy]] ↪→ K[[x, y]].
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