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SETUP AND DEFINITIONS

Let I be a regular proper ideal of a Noetherian ring R.

DEFINITION. An ideal J of R is projectively equivalent

to I if there exist positive integers m and n such that Im and Jn

have the same integral closure, i.e., (Im)a = (Jn)a.

NOTATION. Let P(I) denote the set of integrally closed

ideals projectively equivalent to I.

FACT. The set P(I) is linearly ordered and discrete with

respect to inclusion.
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MORE SETUP AND DEFINITIONS

Since P(I) is discrete and since J ∈ P(I) implies (Jn)a ∈ P(I),

there is naturally associated to I and P(I) a numerical semigroup,

i.e., a subsemigroup S(I) of the additive semigroup of nonnegative

integers N0 that contains all sufficiently large integers.

DEFINITION. The set P(I) is said to be projectively full

if S(I) = N0, or equivalently, if every element of P(I) is the integral

closure of a power of the largest element K of P(I), i.e., every

element of P(I) has the form (Kn)a, for some positive integer n.

If this holds, the ideal K is said to be projectively full.
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MAIN GOALS

1. Describe ideals K that are projectively full.

2. Describe ideals I such that P(I) is projectively full.

3. Can things be improved by passing to an integral extension?

THEOREM. If R contains the field of rational numbers, then

there exists a finite free integral extension ring A of R such that

P(IA) is projectively full; and if R is an integral domain, then

there also exists a finite integral extension domain B of R such

that P(IB) is projectively full.
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EXAMPLES

EXAMPLE 1. Let (R,M) be a Noetherian local ring having

the property

a ∈M i \M i+1 and b ∈M j \M j+1 =⇒ ab 6∈M i+j+1,

then M is projectively full. Thus if the associated graded ring

G(R,M) = R/M ⊕M/M2 ⊕ · · · ⊕Mn/Mn+1 ⊕ · · ·

is an integral domain, then M is projectively full.

EXAMPLE 2. Let k be a field and let R = k[[x2, x3]]. Then

the maximal ideal M = (x2, x3)R is not projectively full. The

numerical semigroup S(M) is generated by 2 and 3.
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DISCUSSION

With R = k[[x2, x3]] as in Example 2, R is not integrally closed.

Things improve by passing to the integral extension R[x] = k[[x]].

For each regular proper ideal I of R, P(IR[x]) is projectively full.

Want to give an example of a normal local domain (R,M) such

that M is not projectively full?

EXAMPLE 3. Let F be a field and let x, y, z, w be variables. Let

R0 = F [x, y](x,y) and R =
R0[z, w]

(z2 − x3 − y3, w2 − x3 + y3)
.

If 2 and 3 are units of F , then R is a 2-dim normal local domain,

and the maximal ideal M = (x, y, z, w)R is not projectively full.

6



SOME HISTORY

The concept of projective equivalence of ideals and the study of

ideals projectively equivalent to I was introduced by Samuel in

Some asymptotic properties of powers of ideals, Annals of Math

56 (1952), 11-21.

and further developed by Nagata in

Note on a paper of Samuel concerning asymptotic properties

of ideals, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 30 (1957),

165-175.
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MORE HISTORY

Rather than ‘projectively equivalent’, Hartmut Göhner uses the

term ‘asymptotically equivalent’ in

Semifactoriality and Muhly’s condition (N) in two-dimensional

local rings, J. Algebra 34 (1975), 403-429.

Göhner mentions that the expression ‘projective asymptotic

equivalence’ is used by David Rees in

Valuations associated with ideals (II), J. London Math. Soc. 36

(1956), 221-228.

and by H. T. Muhly in

On the existence of asymptotically irreducible ideals, J. London

Math. Soc. 40 (1965), 99-107.
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RESULTS OF REES

Let I be a regular proper ideal of a Noetherian ring R.

For each x ∈ R, let vI(x) = max{k ∈ N | x ∈ Ik}, and define

vI(x) = lim
k→∞

(
vI(x

k)

k
).

Rees established that:

(a) vI(x) is well defined;

(b) for each k ∈ N and x ∈ R, vI(x) ≥ k ⇐⇒ x ∈ (Ik)a

(c) there exist discrete valuations v1, . . . , vg defined on R, and

positive integers e1, . . . , eg such that, for each x ∈ R,

vI(x) = min{ vi(x)
ei
| i = 1, . . . , g}.
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Describing the Rees Valuation Rings

For simplicity, assume R is a Noetherian integral domain with field

of fractions F . Let t be an indeterminate, The Rees ring of R

with respect to I is the graded subring

R = R[t−1, It] =
⊕
n∈Z

Intn

of the Laurent polynomial ring R[t−1, t]. The integral closure

B of R[t−1, It] is a Krull domain, and BP is a DVR for each

minimal prime P of t−1B. The set Rees I of Rees valuation

rings of I is precisely the set of rings V = BP ∩ F , where P is

a minimal prime of t−1B.
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THE REES INTEGERS OF I

Let (V1, N1), . . . , (Vg, Ng) be the Rees valuation rings of I. The

integers (e1, . . . , eg), where IVi = Nei
i , are the Rees integers

of I.

PROPOSITION. A sufficient condition for I to be projectively

full is that gcd(e1, . . . , eg) = 1. This is not a necessary condition.

EXAMPLE 4. Let (R,M) be a 2-dimensional regular local ring

with M = (x, y)R. The ideal I = (x, y2)R is integrally closed with

unique Rees valuation ring V = R[x/y2]MR[x/y2]. The integrally

closed ideals projectively equivalent to I are precisely the powers

In of I. Thus I is projectively full. The maximal ideal of V is

N = yV and IV = N2, so the gcd is two not one.
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Projective Equivalence and Rees Valuation Rings

Recall that ideals I and J are projectively equivalent if

(Im)a = (Jn)a for some m,n ∈ N. If I and J are projectively

equivalent, then Rees I = ReesJ . The converse holds if I or J

has only one Rees valuation ring, but fails in general. Steve

McAdam, Jack Ratliff and Judy Sally show in

Integrally closed projectively equivalent ideals, in Commutative

Algebra, MSRI Pub. 15, 1988, 391-405

that if I and J are projectively equivalent, then the Rees integers

of I and J are proportional. The converse also holds: if

Rees I = ReesJ and the Rees integers of I and J are proportional,

then I and J are projectively equivalent.
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Projectively full ideals of a 2-dim RLR

EXAMPLE 4. (continued) (R,M) is a 2-dim regular local ring

with M = (x, y)R. Zariski’s theory of unique factorization of

complete (= integrally closed) ideals of R as finite products of

simple complete ideals implies P(I) is projectively full for each

nonzero proper ideal I of R. The ideal I has a unique Rees

valuation ring if and only if I is a power of a simple complete ideal.

If I factors as I = If1

1 · · · I
fg
g ,

where I1, . . . , Ig are distinct simple complete ideals, then I is

projectively full if and only if gcd(f1, . . . , fg) = 1.
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Projective fullness and Rees integers

EXAMPLE 4. (continued) (R,M) is a 2-dim regular local ring

with M = (x, y)R, and I = If1

1 · · · I
fg
g is the factorization of the

M -primary ideal I as a product of distinct simple complete ideals.

How do the integers f1, . . . , fg relate to the Rees integers of I?

The simple complete M -primary ideals of R are in one-to-one

correspondence with the prime divisors birationally dominating R.

Thus the Rees valuation rings of I are (V1, N1), . . . , (Vg, Ng), where

(Vj , Nj) corresponds to Ij . If IjVj = N
cj
j , then the Rees integers

of I are e1 = c1f1, . . . , eg = cgfg.
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EXAMPLE 4. (continued) (R,M) is a 2-dim regular local ring

with M = (x, y)R. Let I = (x2, xy2, y3)R. Notice that

J = (x2, y3)R is a reduction of I and JI = I2, so the reduction

number rJ(I) = 1. Let

V = R[
xy2

x2
,
y3

x2
]
MR[xy

2

x2 ,
y3

x2 ]
= R[

y2

x
,
y3

x2
]
MR[ y

2

x ,
y3

x2 ]
.

One sees that V is a valuation ring with maximal ideal

N = (y2/x)V , and I is a simple complete ideal. The ideals of

R that are contracted from V descend as follows:

M = N2 ∩R ) (x, y2)R = N3 ∩R )M2 = N4 ∩R ) (x, y2)M

= N5 ∩R ) I = N6 ∩R. The ideals in P(I) are precisely the

ideals Im = N6m ∩R, for m ∈ N.
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THE ASSOCIATED GRADED RING G(R, I)

PROPOSITION. If G(R, I) = R/I ⊕ I/I2 ⊕ · · · ⊕ In/In+1 ⊕ · · ·

has a minimal prime p such that p is its own p-primary component

of (0), then I has a Rees integer equal to one. Therefore I is

projectively full.

More can be said using the Rees ring R = R[t−1, It], and the

identification G(R, I) = R/t−1R. Let R′ denote the integral

closure of R.

PROPOSITION. The ideal I has a Rees integer equal to one if

and only if t−1R′ has a minimal prime p such that t−1R′p = pR′p.
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EXAMPLE 5. An example of a 2-dim normal local domain

(R,M) such that M is projectively full and the associated graded

ring G(R,M) is not reduced. Let F be an algebraically closed field

with charF = 0, and let R0 be a 2-dim regular local domain with

maximal ideal M0 = (x, y)R0 and coefficient field F , e.g.,

R0 = F [x, y](x,y), or R0 = F [[x, y]]. Then V0 = R0[y/x]xR0[y/x]

is the unique Rees valuation ring of M0. Let

R = R0[z], where z2 = x3 + yj with j ≥ 3.

It is readily checked that R is 2-dim normal local with maximal

ideal M = (x, y, z)R. Notice that I = (x, y)R is a reduction of M

since z is integral over I.

17



EXAMPLE 5 (continued). Since I = (x, y)R is a reduction

of M , every Rees valuation ring of M is an extension of V0.

Let V be a Rees valuation ring of M and let v denote the

normalized valuation with value group Z corresponding to V .

Then v(x) = v(y) and the image of y/x in the residue field of V

is transcendental over F . Since z2 = x3 + yj and j ≥ 3,

we have

2v(z) = v(z2) = v(x3 + yj) = 3v(x).

We conclude that v(x) = 2 and v(z) = 3. Therefore V is ramified

over V0. This implies that V is the unique extension of V0 and

thus the unique Rees valuation ring of M .
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EXAMPLE 5 (continued). For each positive integer n, let

In = {r ∈ R | v(r) ≥ n}. Thus I2 = M . Since V is the unique

Rees valuation ring of M , we have I2n = (Mn)a for each n ∈ N.

To show M is projectively full, we prove that V is not the

unique Rees valuation ring of I2n+1 for each n ∈ N.

Consider the inclusions

M2 ⊆ I4 ⊂ (z, x2, xy, y2)R := J ⊆ I3 ⊂M.

Since λ(M/M2) = 3 and since the images of x and y in M/M2

are F -linearly independent, J = I3 and M2 = I4 = (M2)a.
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EXAMPLE 5 (continued). Since x3 = z2 − yj and j ≥ 3,

L = (z, y2)R is a reduction of I3 = (z, x2, xy, y2)R. Indeed,

(x2)3 ∈ L3 and (xy)3 ∈ L3 implies x2 and xy are integral over L.

It follows that V is not a Rees valuation of I3, for zV 6= y2V .

Consider M3 ⊂ I3M ⊆ I5 ⊂ I4 = M2. Since the images of

x2, xy, y2, xz, yz in M2/M3 are an F -basis, it follows that

I3M = I5 and M3 = (M3)a = I6. Proceeding by induction,

we assume Mn+1 = (Mn+1)a = I2n+2, and consider

Mn+2 ⊂ I3Mn ⊆ I2n+3 ⊂Mn+1 = I2n+2.
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EXAMPLE 5 (continued). Since the images in Mn+1/Mn+2

of {xayb | a+ b = n+ 1} ∪ {zxayb | a+ b = n} is an F -basis,

λ(Mn+1/Mn+2) = 2n+ 3, and the inequalities

λ(Mn+1/I2n+3) ≥ n+ 2 and λ(I3M
n/Mn+2) ≥ n+ 1

imply I3M
n = I2n+3 and M2n+2 = (M2n+2)a.

Therefore the ideal I2n+3 has a Rees valuation ring different

from V , and thus is not projectively equivalent to M . We

conclude that M is projectively full. We have also shown

that M is a normal ideal.
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Questions

Let (R,M) be a complete normal Noetherian local domain of

altitude two.

1. What are necessary and sufficient conditions in order that M

is projectively full?

2. What are necessary and sufficient conditions in order that P(I)

is projectively full for each nonzero proper ideal I of R?
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EXAMPLE 6. An example of a (complete) 2-dim normal local

domain (R,M) such that M is not projectively full. Let F be an

algebraically closed field with charF = 0, and let R0 be a 2-dim

regular local domain with maximal ideal M0 = (x, y)R0 and

coefficient field F , e.g., R0 = F [x, y](x,y), or R0 = F [[x, y]].

Let k < i be relatively prime positive integers ≥ 2, and let

R = R0[z, w], where zk = xi + yi and wk = xi − yi.

It is readily checked that R is 2-dim normal local with maximal

ideal M = (x, y, z, w)R. Also R is a free R0-module of rank k2.
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EXAMPLE 6 (continued). With R = R0[z, w] as above, we want

to show that M = (x, y, z, w)R has a unique Rees valuation ring

and that M is not projectively full. L = (x, y)R is a reduction of

M , for zk ∈ (xi, yi)R ⊆ Lk and wk ∈ (xi, yi)R ⊆ Lk imply

z and w are integral over L. Thus each Rees valuation ring V of M

is an extension of the order valuation ring V0 = R0[y/x]xR0[y/x] of

R0. To show there exists a unique Rees valuation ring of M , we

observe that V as an extension of V0 ramifies of degree k and

undergoes a residue field extension of degree ≥ k.
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EXAMPLE 6 (continued). To show V ramifies of degree k

over V0, observe that kv(z) = v(zk) = v(xi + yi) = iv(x) = iv(y)

implies v(z) = i and v(x) = v(y) = k. Similarly, v(w) = i. Let

N denote the maximal ideal of V . We have (z, w)V = N i and

MV = (x, y)V = Nk. The residue field of V0 is F (τ), where τ

is the image of τ = y/x and is transcendental over F . Now w/z is a

unit of V and (w
z
)k = xi−yi

xi+yi = 1−τ i
1+τ i . It follows that the residue

class of w/z in V/N is algebraic of degree k over F (τ). This

proves that V is the unique Rees valuation ring of M .
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EXAMPLE 6 (continued). To show M is not projectively

full, notice that (zk, wk)R = (xi + yi, xi − yi)R, and since

charF 6= 2, (xi + yi, xi − yi)R = (xi, yi)R. Since (xi, yi)R

is a reduction of M i, we have ((zk, wk)R)a = (M i)a. Also

((zk, wk)R)a = ((z, w)kR)a. Therefore (z, w)R and M are

projectively equivalent, so V is the unique Rees valuation ring

of (z, w)R, and ((z, w)R)a = N i ∩R. We have M = Nk ∩R,

MnV = Nnk and (Mn)a = Nnk ∩R, for each positive integer n.

Since i is not a multiple of k, M is not projectively full.
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RATIONAL SINGULARITIES

Joe Lipman in his paper

Rational singularities, with applications to algebraic surfaces and

unique factorization, Publ. Math. Inst. Hautes Études Sci.

No 36 (1969), 195-279.

extended Zariski’s theory of complete ideals in 2-dim regular local

rings to 2-dim normal local rings R having a rational singularity.

Lipman proved that R has unique factorization of complete ideals

if and only if the completion of R is a UFD. For R having this

property, it follows that P(I) is projectively full for each nonzero

proper ideal I, e.g., R = F [[x, y, z]], where z2 + y3 + x5 = 0.
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MORE ON RATIONAL SINGULARITIES

Let (R,M) be a normal local domain of altitude two. Göhner

proves that if R has a rational singularity, then the set of complete

asymptotically irreducible ideals associated to a prime R-divisor v

consists of the powers of an ideal Av which is uniquely determined

by v. In our terminology, this says that if I is a nonzero proper

ideal of R having only one Rees valuation ring, then P(I) is

projectively full. Göhner’s proof involves choosing a

desingularization f : X → SpecR such that v is centered on a

component E1 of the closed fiber on X.
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THE CLOSED FIBER 1

Let E2, . . . , En be the other components of the closed fiber on X.

Let EX denote the group of divisors having the form
∑n
i=1 niEi,

with ni ∈ Z, and consider

E+
X = {D ∈ EX |D 6= 0 and (D · Ei) ≤ 0 for all 1 ≤ i ≤ n}, and

E#
X = {D ∈ EX |D 6= 0 and O(−D) is gen. by its sections over X}.

Lipman shows E#
X ⊆ E+

X and equality holds if R has a rational

singularity. Also, if D =
∑
i niEi ∈ E

+
X , then negative-definiteness

of the intersection matrix (Ei · Ej) implies ni ≥ 0 for all i.
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THE CLOSED FIBER 2

For if D ∈ E+
X and D = A−B, where A and B are effective, then

(A−B ·B) ≤ 0 and (A ·B) ≥ 0 imply (B ·B) ≥ 0, so B = 0.

Let v = v1, v2, . . . , vn denote the discrete valuations corresponding

to E1, . . . , En. Associated with D =
∑
i niEi ∈ E

#
X one defines the

complete M -primary ideal ID = {r ∈ R | vi(r) ≥ ni for 1 ≤ i ≤ n}.

This sets up a one-to-one correspondence between elements of E#
X

and complete M -primary ideals that generate invertible OX -ideals.
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THE CLOSED FIBER 3

Lipman suggested to me the following proof that P(I) is proj. full

for each complete M -primary ideal I if R has a rational singularity.

Fix a desingularization f : X → SpecR such that I generates an

invertible OX -ideal and let D =
∑
i niEi ∈ E

#
X be the divisor

associated to I. Let g = gcd{ni}. Since E+
X = E#

X , (1/g)D ∈ E#
X .

The ideals J ∈ P(I) correspond to divisors in E#
X that are integral

multiples of (1/g)D. Thus if K is the complete M -primary ideal

associated to (1/g)D, then each J ∈ P(I) is the integral closure of

a power of K, so P(I) is projectively full.
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INTEGRAL EXTENSIONS

QUESTION. Let I be a nonzero ideal of a Noetherian domain R.

Does there always exist a finite integral extension domain B of R

such that P(IB) is projectively full?

Let I = (b1, . . . , bg)R be a nonzero regular ideal of the Noetherian

ring R, let Rg = R[X1, . . . , Xg] and K = (Xc
1 − b1, . . . , Xc

g − bg)Rg,

where c is a positive integer. Then A = Rg/K is a finite free

integral extension of rank cg of R. Let xi = Xi mod K. Then

J = (x1, . . . , xg)A is such that (IA)a = (Jc)a, so IA and J are

projectively equivalent.
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MAIN THEOREM

THEOREM. Let I = (b1, . . . , bg)R be as above and let (V,N)

be a Rees valuation ring of I. Assume that biV = IV = N c for

each i with 1 ≤ i ≤ g, and that c is a unit of R. Then the finite

free integral extension A = Rg/K is such that J = (x1, . . . , xg)A

is projectively full. Hence P(IA) is projectively full. If R is an

integral domain and p is a minimal prime of A, then B = A/p

is an integral extension domain of R such that P(IB) is

projectively full.
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