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Abstract. We investigate for an ideal A of an arithmetical ring R the rela-
tionship between the set Max(A) of maximal prime divisors of A and the set
XA of maximal members of the set of Krull associated primes of A. We show
that the arithmetical rings R such that XA ⊆ Max(A) for every regular ideal
A are precisely those satisfying the “strong” separation property. For a Prüfer
domain R, we prove that every branched prime ideal of height greater than one
is the radical of a finitely generated ideal if and only if End(A)M = End(AM )
for every nonzero ideal A and maximal ideal M of R. We use this to prove
that if in addition R is a QR-domain, then every maximal prime divisor of an
ideal A of R is a Krull associated prime of A (i.e. XA = Max(A)) if and only
if each branched prime ideal of R of height greater than one is the radical of
a finitely generated ideal.

Introduction

Let R be a commutative ring with identity. Associated to a proper ideal A of R

is the set S(A) = {x ∈ R : xy ∈ A for some y ∈ R \ A} of elements of R that are

non-prime to A. The complement R \ S(A) of elements prime to A is closed under

multiplication. Krull proves [14, page 732] that ideals maximal with respect to

not meeting a multiplicatively closed set are prime ideals and defines the maximal

prime divisors of A as the prime ideals P of R that contain A and are maximal

with respect to the property P ⊆ S(A).

Let Max(A) denote the set of maximal prime divisors of A. For P ∈ Max(A),

Krull defines the ideal A(P ) = {x ∈ R : xy ∈ A for some y ∈ R \ P} to be the

principal component of A with respect to P and establishes the decomposition

of every proper ideal A of R as the intersection of its principal components A =⋂
P∈Max(A)A(P ) [14, Satz 2]. However, as we discuss in [4], a drawback to this

decomposition is that we do not know what kind of ideals the A(P ) are. For instance,

there sometimes exist elements of P that are prime to the principal componentA(P );

indeed, the ideal A(P ) is not in general a primal ideal, where an ideal B is said to

be primal if the set S(B) of elements non-prime to B is an ideal. If B is primal,

then S(B) is a prime ideal called the adjoint prime of B.
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To obtain in a commutative ring without finiteness conditions a decomposition

of the ideal A that involves components closely tied to A with structure we know,

in [4] we define the set XA of maximal Krull associated primes of A and obtain

using the set XA a canonical primal decomposition of A.

If R is a Noetherian ring and Ass(A) = {P1, P2, . . . , Pn} is the set of associated

primes of a proper ideal A of R, then S(A) =
⋃n
i=1 Pi. It follows that the maximal

prime divisors of A are exactly the prime ideals of R that are maximal members of

Ass(A). In this sense, the maximal prime divisors of an ideal of a Noetherian ring

are well-understood.

However if R is not Noetherian, the set Max(A) of maximal prime divisors of A

is generally less transparent, and the primes in Max(A) need not be “associated.”

There are several inequivalent notions of an associated prime of an ideal of a general

commutative ring, but from our point of view, it is the Krull associated primes that

are most natural. We review this and related notions in Section 1. Motivated by

the Noetherian case, we are thus interested in the question of when the set of

maximal prime divisors of an ideal A coincides with the set of maximal members

of the set of Krull associated primes of A. We shall examine this question for the

class of arithmetical rings, those rings R such that for every maximal ideal M of

R, RM is a valuation ring, that is, a ring for which the set of ideals is linearly

ordered by inclusion. Of particular interest is the class of Prüfer domains, namely

the arithmetical integral domains.

Our purpose in the present paper is to investigate for ideals A of an arithmetical

ring or Prüfer domain the interrelationship between the sets Max(A) and XA. The

connection between these two sets of prime ideals is of special interest in the context

of arithmetical rings. Indeed, if A is a proper ideal of an arithmetical ring R, then

Max(A) = XA if and only if every prime ideal containing A but not prime to A

is a Krull associated prime (Corollary 1.3). Also, Krull mentions [15, p. 16] that

he does not know whether the principal components A(P ) of A, P ∈ Max(A), are

always P -primal ideals. (A primal ideal B is Q-primal if Q = S(B).) Examples

show that the answer is in the negative (see [17],[5] and [4, Example 3.8]); we

investigate in Section 3 arithmetical rings for which the answer to this question is

in the affirmative for all regular ideals. (An ideal A of R is regular if it contains a

regular element, i.e., an element that is not a zero-divisor.) This is also of special

interest, because an ideal of an arithmetical ring is primal exactly if it is irreducible

(Theorem 1.8 of [4]).
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In Section 3 we examine conditions on an arithmetical ring R in order that each

maximal prime divisor of a regular ideal A of R be a Krull associated prime of A. It

follows from Theorem 2.3 that a necessary condition for this to hold is that R satisfy

the strong separation property: for regular prime ideals P ⊂ Q and regular element

r ∈ P , there exists s ∈ Q such that P ⊂ (r, s)R ⊆ Q. We conclude that Prüfer

domains such as the ring of entire functions and the ring Int(Z) of integer-valued

polynomials contain ideals A having the property that there exists a maximal prime

divisor of A that is not a Krull associated prime of A.

For a regular ideal A of an arithmetical ring, we consider in Theorem 3.7 con-

ditions in order that the set of maximal prime divisors of A is precisely the set of

prime ideals that are maximal among the Krull associated primes of A. We deduce

a complete characterization of the QR-domains with this property. (By contrast,

ideals of Noetherian rings always exhibit equality between these two sets of prime

ideals.)

The results that lay the groundwork for this theorem touch on several interesting

technical aspects of arithmetical rings and Prüfer domains. In particular, there is a

connection between our problem and that of when End(X) localizes, that is, when

End(X)M = End(XM ) for a submodule X of the quotient field of R and maximal

ideals M of R.

Acknowledgement. We thank Gabriel Picavet and David Rush for helpful con-

versations on the topics of this paper and [4], and for showing us the connections

of our work to the literature on Krull associated primes.

1. Krull associated primes

In this section we briefly review the notion of a Krull associated prime of a proper

ideal of a ring. We became interested in the Krull associated primes of an ideal

because of their connection to the primal isolated components of the ideal. For a

more complete treatment of these primes and their relation to issues involving the

primal decompositions of an ideal, see [4].

Let A be a proper ideal of the ring R. Following [12], we define a prime ideal

P of R to be a Krull associated prime of the ideal A if for every element x ∈ P ,

there exists y ∈ R such that x ∈ (A : y) ⊆ P . A prime ideal P of R is called a

weak-Bourbaki associated prime of A if it is a minimal prime divisor of (A : x) for

some x ∈ R\A. Following [11, page 279], we call P a Zariski-Samuel associated

prime of A if P =
√

(A : x) for some x ∈ R \ A. If R is a Noetherian ring, then
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all three of these notions of an associated prime coincide, but for non-Noetherian

rings these notions are in general distinct (see [11], for example).

It is clear that a Zariski-Samuel associated prime is a weak-Bourbaki associated

prime. Moreover, it is noted in Lemma 2.1 of [4] that P is a Krull associated prime

of A if and only if P is a set-theoretic union of weak-Bourbaki primes of A. It is

this characterization of Krull associated primes that we shall use in what follows.

We denote by Ass(A) the set of Krull associated primes of A. Notice that if

A is a proper ideal of R, then Ass(A) is nonempty. By contrast, Nakano [19]

gives an example of a Prüfer domain such that no finitely generated ideal has a

Zariski-Samuel associated prime.

The set Ass(A) behaves well with respect to localization:

Lemma 1.1. (Lemma 2.4(ii) of [4]) Let A be an ideal of a ring R and P be a prime

ideal of R containing A. Then P ∈ Ass(A) if and only if PM ∈ Ass(AM ) for some

(or equivalently every) maximal ideal M of R containing P .

It is not hard to see that if A is a proper ideal of a ring R, then every member

of Ass(A) is contained in a maximal member of Ass(A). We define XA to be the

maximal members of Ass(A), that is, XA consists of the maximal Krull associated

primes of A. There exist examples of rings with ideals A such that XA is infinite.

(See Example 2.6 of [4] for example, or use Lemma 1.5 below.) These examples are

necessarily non-Noetherian.

In Lemma 2.3 of [4], we observe that S(A) =
⋃
P∈XA P . In particular,

⋃
P∈XA P =⋃

Q∈Max(A)Q. Despite this close connection between XA and Max(A), one cannot

conclude in general that XA ⊆ Max(A) or Max(A) ⊆ XA. If Max(A) has only

one member, then it is easy to see Max(A) = XA. However, in Example 3.8 of [4]

we construct a ring R with Noetherian prime spectrum and an ideal A of R such

that Max(A) has only two elements, but neither maximal prime divisor of A is in

XA. We also construct in Example 2.9 of [4] a 2-dimensional Prüfer domain R for

which Spec(R) is Noetherian and for which there exist an ideal A and a finitely

generated maximal ideal M such that M is a maximal prime divisor of A and yet

M 6∈ Ass(A).

When R is arithmetical, the set Ass(A) has some striking properties. In the next

sections we will need the following lemmas.

Lemma 1.2. (Proposition 2.7 of [4]) Let R be an arithmetical ring and let A be a

proper ideal of R. If P ∈ Ass(A), then Q ∈ Ass(A) for every prime ideal Q of R

such that A ⊆ Q ⊆ P .
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Corollary 1.3. Let A be a proper ideal of an arithmetical ring R. Then XA =

Max(A) if and only if every prime ideal of R that contains A and is not prime to

A is a Krull associated prime of A.

Proof. Assume that XA = Max(A). If P contains A and is not prime to A, then P

is contained in some Q ∈ XA. Hence by Lemma 1.2, Q ∈ Ass(A). The converse is

clear. �

Let A be a nonzero proper ideal of a Prüfer domain R and let Q be a prime

ideal of R with A ⊆ Q. Since RQ is a valuation domain, End(ARQ) = RP for some

P ∈ SpecR with P ⊆ Q. Define

EA = {P ∈ SpecR : RP = End(ARQ) for some prime ideal Q containing A}.

Lemma 1.4. (Proposition 2.8 of [4]) Let A be a nonzero proper ideal of a Prüfer

domain R. Then Ass(A) = EA. In particular, if P ∈ XA, then there exists a

maximal ideal M of R such that End(AM ) = RP .

Lemma 1.5. Let A be an ideal of an arithmetical ring R. If AM is a nonzero

finitely generated ideal of RM for each maximal ideal M of R, then Ass(A) is

precisely the set of prime ideals of R containing A.

Proof. First assume that R is a valuation ring and A is a nonzero finitely generated

proper ideal of R. Then A = yR is a principal ideal of R. Let P be the maximal

ideal of R. If A = P , then clearly P ∈ Ass(A), so suppose there exists x ∈ P \ A.

Since R is a valuation ring, A ⊂ Rx and A = (A : x)xR. If (A : x) = A, then

A = xA and y = xya for some a ∈ A. But this means y(1− xa) = 0. Since 1− xa
is a unit of R, this implies y = 0, a contradiction to our assumption that A 6= 0.

Therefore each x ∈ P is non-prime to A, so A is a primal ideal with S(A) = P

and P ∈ Ass(A). In the general case where R is an arithmetical ring, we conclude

from Lemma 2.1 and the preceding argument that every maximal ideal P of R that

contains A is in Ass(A). Hence by Lemma 1.2, every prime ideal of R containing

A is in Ass(A). �

2. The case XA ⊆ Max(A)

In this section we characterize when XA ⊆ Max(A) for every regular ideal A

of an arithmetical ring. To do this, we first recall the notion of separated prime

ideals, but we reformulate this definition to include rings with zero-divisors in such

a way that our definition agrees with that of the separation property for domains

(see pp. 91-92 of [3]). We define a ring R to have the separation property if for each
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pair of distinct comparable regular prime ideals P ⊂ Q of R, there exists a finitely

generated ideal A such that P ⊂ A ⊆ Q. The ring R has the strong separation

property if for each pair of comparable regular prime ideals P ⊂ Q of R and regular

element r ∈ P , there exists s ∈ Q such that P ⊂ (r, s)R ⊆ Q.

Clearly every one-dimensional domain has the strong separation property. By

the Altitude Theorem of Krull [18, page 26] or [13, page 110], a Noetherian do-

main of dimension greater than two has the separation property but not the strong

separation property. By contrast, Prüfer domains need not possess either separa-

tion property. The Prüfer domains that have the separation property have been

well-studied (see, for example, pp. 91-92 of [3] and Lemma 2.7 of [20]). Note that

a Bézout domain R has the separation property if and only if R has the strong

separation property. More generally, a Prüfer domain with the QR-property ( so in

particular a Prüfer domain with torsion Picard group ) has the separation property

if and only if it has the strong separation property.

In the following lemma, we collect some technical characterizations of the sepa-

ration property for Prüfer domains that will be needed in the next section.

Lemma 2.1. The following statements are equivalent for a Prüfer domain R.

(i) R has the separation property.

(ii) For each nonzero prime ideal P of R, P is a maximal prime ideal of End(P ).

(iii) For each nonzero prime ideal P of R, End(PM ) = End(P )M for every

maximal ideal M of R.

(iv) For each nonzero nonmaximal prime ideal P of R, if {Mi} is the collection

of maximal ideals of R not containing P , then RP ⊆ (
⋂
iRMi)RM for each

maximal ideal M of R containing P .

(v) For each nonzero ideal A of R, if M is a maximal ideal with A ⊆M and P

is a prime ideal such that End(A)M = RP , then no element of P is prime

to A.

Proof. (i) ⇔ (ii) Lemma 4.2.38 of [3].

(i) ⇔ (iii) Lemma 2.7 of [20].

(iii) ⇒ (iv) By Theorem 3.2.6 of [3] End(P ) = RP ∩ (
⋂
iRMi) and End(PM ) =

RP . Thus by (iii) RP = End(PM ) = End(P )M = RP ∩ (
⋂
iMi)RM , and (iv)

follows.

(iv) ⇒ (v) Let A be a nonzero ideal of R and M a maximal ideal with A ⊆ M .

Let P be a prime ideal such that End(A)M = RP . It follows from Lemma 1.4 that

End(A) = (
⋂

Q∈XA

RQ) ∩ (
⋂
N

RN ),
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where N ranges over the maximal ideals of R that do not contain A. Let Q′ be the

unique member of XA that is contained in M . By Lemma 1.4, End(AM ) = RQ′ .

If Q′ is a maximal ideal of R, then Q′ = M and End(AM ) = RM , so RP ⊆ RM

implies that M = P = Q′ ∈ Ass(A), and the claim is clear. It remains to consider

the case where Q′ is a non-maximal prime ideal of R. Now

RP = End(A)M = (
⋂

Q∈XA

RQ)RM ∩ (
⋂
N

RN )RM .

We claim that
⋂
Q∈XA RQ ⊆ RP . If this is not the case then since RM is a val-

uation domain it must be that RP ( (
⋂
Q∈XA RQ)RM . Hence from the above

representation of End(A)M we deduce that since RP is a valuation domain, RP =

(
⋂
N RN )RM . Thus (

⋂
N RN )RM ( (

⋂
Q∈XA RQ)RM . By (iv), RQ′ ⊆ (

⋂
N RN )RM

since no N contains Q′. However Q′ ∈ XA, so this implies RQ′ ( RQ′RM , but since

M contains Q′, RQ′RM = RQ′ . This contradiction implies that
⋂
Q∈XA RQ ⊆ RP ,

so every element r ∈ P is contained in some Q ∈ XA. Consequently, no element of

P is prime to A.

(v)⇒ (iii) Suppose P is a non-maximal prime ideal of R, and let M be a maximal

ideal of R containing P . Let Q be a prime ideal of R such that End(P )M = RQ.

(Since End(P )M is a valuation domain such a prime Q must exist). Then by (v),

the elements of Q are not prime to P . Consequently, P = Q, and (iii) follows. �

Using the strong separation property, we can characterize when XA ⊆ Max(A)

for every regular ideal A of an arithmetical ring. In fact, the strong separation

property is always sufficient, regardless of whether R is arithmetical, to guarantee

that XA ⊆Max(A):

Lemma 2.2. If A is a regular ideal of a ring R having the strong separation prop-

erty, then every P ∈ XA is a maximal prime divisor of A, i.e., XA ⊆Max(A).

Proof. Let P ∈ XA. There exists Q ∈ Max(A) such that P ⊆ Q. We show P = Q.

If XA consists only of P , then A is P -primal and P = Q. Suppose XA \ {P} is

nonempty, and let {Pi} = XA \ {P}. Since Q ∈ Max(A), Q ⊆ P ∪ (
⋃
i Pi). Assume

P is properly contained in Q. Since R has the strong separation property and A is

a regular ideal, there exists x ∈ Q \ P such that P ⊂ A+ (x) ⊆ Q. It follows that

x is in one of the Pi, so P ⊂ A + (x) ⊆ Pi. This contradicts the assumption that

P ∈ XA is maximal among the Krull associated primes of A. Thus P = Q. �

Theorem 2.3. Let R be an arithmetical ring. The following statements are equiv-

alent.

(i) R has the strong separation property.
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(ii) For each proper regular ideal B of R, XB ⊆ Max(B).

Proof. By Lemma 2.2, (i) implies (ii). To prove that (ii) implies (i), suppose P ⊂ Q
are regular prime ideals of R and that a is a regular element with a ∈ P . Define

B = aP and note that the maximal ideals of R that contain B are precisely those

that contain aR. We first show that XB is the set union of {P} and the set of

maximal ideals of R that contain B but not P .

Since a is a regular element, we have P = B : a, so P ∈ Ass(B). We claim that

P ∈ XB. Suppose L ∈ XB and P ⊆ L. Let M be a maximal ideal containing L. By

Lemma 1.7 of [4], (BRM )(PRM ) is a PM -primal ideal of RM since BRM is a finitely

generated ideal of RM . We claim BRM = (BRM )(PRM ). To verify that this is the

case, we need only show that BRM : y = BRM for all y ∈ RM \ PM . To this end,

observe first that PRM = yPRM for all y ∈ RM \ PM . This is because RM is a

chained ring, so if y ∈ RM \PM , then PRM ⊆ yRM , and if p ∈ PRM , then p = yu

for some u ∈ RM . Since y 6∈ PRM , it follows that u ∈ PRM and p ∈ yPM . Thus

PRM = yPRM . Hence, with y ∈ RM \ PRM , we have that BRM : y = yBRM :

y = BRM , since y 6∈ PRM implies that PRM ⊆ yRM and hence that y is a regular

element of RM . Therefore BRM = (BRM )PRM , and we conclude that BRM is

a PRM -primal ideal. However, by Lemma 1.1 LRM ∈ Ass(BRM ), so this forces

LRM ⊆ PRM . Hence L ⊆ P , and we may conclude that P = L ∈ XB.

Now suppose N is a maximal ideal of R that contains B but not P . Then

BN = aRN 6= 0, so N is in XB by Lemma 1.5 and Lemma 1.1. This proves that

the set XB contains P and the maximal ideals of R that contain B but not P . The

reverse inclusion follows from the fact that any prime ideal of R that is a member

of XB must contain B.

Let {Ni} be the set of members of XB distinct from P . As noted, each Ni

is a maximal ideal of R, and {Ni} is precisely the set of maximal ideals of R

that contain aR but not P . Since P ∈ XB and, by (ii), XB ⊆ Max(B), we have

Q 6⊆ S(B) = P ∪ (
⋃
iNi), for otherwise P , as a proper subset of Q, would not

be in Max(A). In particular, there exists x ∈ Q such that x is not contained in

P nor in any of the Ni. We have (a, x)R ⊆ Q, and to complete the proof we

show that P ⊂ (a, x)R. It is enough by Theorem II.3.1 of [1, page 88] to show

that PM ⊂ (A, x)RM for all maximal ideals M of R that contain (A, x). Observe

that if M is such a maximal ideal, then since by design x is not an element of any

maximal ideal of R that contains Ra but not P , it must be that M contains P .

Now since RM is valuation ring, the ideals PM and (a, x)RM are comparable, so

if PM 6⊆ (a, x)RM , then it must be that (a, x)RM ⊆ PM . But then x ∈ PM and
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since P ⊆ M , it is the case that P(M) = P , and we have x ∈ P , a contradiction

to the choice of x. Thus we conclude that P ⊆ (a, x)R ⊆ Q, and R has the strong

separation property. �

It follows from Theorem 2.3 that if R is an arithmetical ring that does not have

the strong separation property, then there exist a proper regular ideal B of R and

P ∈ XB such that P 6∈ Max(B). By definition of Max(B), this means there exists

Q ∈ Max(B) such that P is properly contained in Q and by definition of XB,

this means Q 6∈ Ass(B). Therefore the strong separation property is a necessary

condition on an arithmetical ring in order that maximal prime divisors (of regular

ideals) always be Krull primes.

Discussion 2.4. Some important examples of Prüfer domains do not have the

separation property, and so by Theorem 2.3, these Prüfer domains have ideals B

such that XB 6⊆ Max(B). Thus there exist maximal prime divisors of B that are

not in Ass(B). For example, neither the ring of entire functions nor the ring of

integer-valued polynomials has the separation property. Indeed, both these rings

are completely integrally closed integral domains of Krull dimension greater than

one. If P is a nonzero nonmaximal prime ideal of such a Prüfer domain R, then

End(P ) = R and P is not maximal in End(P ). Hence by Lemma 2.1 (ii), such

domains do not have the separation property. On the other hand, every Prüfer

domain having Noetherian maximal spectrum has the separation property (apply

Theorem 4.2.39 of [3] and [22]).

3. The case XA = Max(A)

Our main objective in this section is to investigate conditions on an arithmetical

ring R in order that XA = Max(A) for each regular ideal A of R. We recall that

an integral domain R is a QR-domain if every overring of R is a localization of

R with respect to some multiplicatively closed subset of R. It is well-known that

QR-domains are necessarily Prüfer, and that a Prüfer domain with torsion Picard

group (e.g. a Bézout domain) is a QR-domain. More generally, a Prüfer domain

R is a QR-domain if and only if the radical of every finitely generated ideal of R

is the radical of a principal ideal of R [21]. There exist QR-domains having non-

torsion Picard group [9]. Thus the condition on a Prüfer domain R that the radical

of every finitely generated ideal is the radical of a principal ideal does not imply

R has torsion Picard group. However, it is clear that a QR-domain that has the

separation property also has the strong separation property.
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Lemma 3.1. Let A be an ideal of a Prüfer domain R. Suppose Q is a prime

ideal of R that contains A, and P is a prime ideal such that End(A)Q = RP . If

P ∈ Ass(A), then End(A)Q = End(AQ).

Proof. Since P ∈ Ass(A), A(P ) is a primal ideal with adjoint prime P , and it

follows that AP is a PP -primal ideal. By Lemma 1.4, End(AP ) = RP . Thus

End(AP ) = End(A)Q, so AEnd(AP ) = AEnd(A)Q implies AP = AQ. Conse-

quently, End(AQ) = End(AP ) = RP = End(A)Q. �

Lemma 3.2. Let R be a Prüfer domain with field of fractions F , let X be an R-

submodule of F , and let M be a maximal ideal of R. Then End(X)M = RP for some

P ∈ SpecR with P ⊆ M . Assume that P is the union of prime ideals Pi, where

each Pi is the radical of a finitely generated ideal. Then End(X)Q = End(XQ) for

all prime ideals Q such that P ⊆ Q ⊆M .

Proof. Since RM ⊆ End(X)M and RM is a valuation domain, End(X)M = RP for

some prime ideal P ⊆ M . If End(X)M = F , then clearly End(X)M = End(XM ),

so we assume End(X)M 6= F and thus P 6= (0). Let Q be a prime ideal of R

such that P ⊆ Q ⊆ M . Since End(X)M = RP , we have End(X)Q = RP . Now

RP = End(X)Q ⊆ End(XQ) ⊆ End(XP ), so to prove Lemma 3.2, it suffices to

show that End(XP ) ⊆ RP .

Let S = End(X). Now PS ⊆ PRP , so PS 6= S. Since S is an overring of

the Prüfer domain R, S is a flat extension of R, so PS is a prime ideal of S and

SPS = RP . Also, PS is the union of the prime ideals PiS, and each PiS is the

radical of a finitely generated ideal of S.

Let L be a prime ideal of S such that L ⊆ PS and such that L =
√
I, where I

is a finitely generated ideal of S. We prove there exists a nonzero q ∈ F such that

qXL is an ideal of SL that is primary for LL. The invertible ideal I2 of S is an

intersection of principal fractional ideals of S. Since End(X) = S, each principal

fractional ideal of S is an intersection of S-submodules of F of the form qX , q ∈ F .

Since I2 ⊆ L, I2 is an intersection of ideals of S of the form L ∩ qX , where q ∈ F .

Since I2 ( I ⊆ L, there exists q ∈ F such that I2 ⊆ L ∩ qX ( L. Hence there

exists a maximal ideal N of S with I2 ⊆ N such that I2
N ⊆ LN ∩ qXN ( LN .

Since SN is a valuation domain, the SN -modules qXN and LN are comparable and

I2
N ⊆ LN ∩ qXN ( LN implies I2

N ⊆ qXN ( LN . Now
√
I2 =

√
I = L and I2 ⊆ N

implies L ⊆ N . Thus I2
L ⊆ qXL ⊆ LL, and we conclude that

√
qXL = LL.

We observe next that XP 6= F . Since P 6= 0, there exists a nonzero L = PiS ⊆
PS such that L =

√
I, where I is finitely generated. As we have established in the
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paragraph above, there exists a nonzero q ∈ F such that qXL is an ideal of SL.

Thus qXP ⊆ qXL ⊆ SL, so it is not possible that XP = F .

Fix some member L of the chain {PiS}. Since XP 6= F , L ⊆ PS and RP is a

valuation domain, there exists a nonzero element s of S such that sX ⊆ LL. Since

End(XP ) = End(sXP ) and we wish to show that End(XP ) ⊆ RP we may assume

without loss of generality that s = 1; that is, we assume for the rest of the proof

that X ⊆ LL. Define A = X ∩S. Then A is an ideal of S. Moreover A is contained

in L since AL ⊆ XL ⊆ LL.

With the aim of applying Lemma 3.1, we observe that PS ∈ Ass(A). For each i

define Li = PiS. It suffices to show each Li with L ⊆ Li ⊆ PS is in Ass(A), since

this implies that PS =
⋃
Li⊇L Li is a union of members of Ass(A). Let i be such

that L ⊆ Li. Since Li is the radical of a finitely generated ideal of S, there exists

(as we have established above) a nonzero q ∈ F such that qXLi is an ideal of SLi

that is primary for (Li)Li . Now ALi = XLi ∩SLi . Since SLi is a valuation domain,

ALi = XLi or SLi ⊆ XLi . By assumption, X ⊆ LL. Since L ⊆ Li, XLi ⊆ LL, and

it is impossible that SLi ⊆ XLi . Thus ALi = XLi . Consequently, qXLi = qALi

and qALi is an ideal of SLi that is primary for (Li)Li . Since SLi is a valuation

domain, it follows that qALi = ALi : s for some s ∈ S. Thus (Li)Li ∈ Ass(ALi), so

by Lemma 1.1, Li ∈ Ass(A). This proves PS ∈ Ass(A).

Since A = X ∩ S is an ideal of S, S ⊆ End(A). For each maximal ideal N

of S, either AN = XN or AN = SN It follows that End(A) ⊆ End(X) = S, so

End(A) = S. Thus End(A)P = SP = RP , and by Lemma 3.1, End(AP ) = RP .

(We have used here that SSP = RP .) Now AP = XP ∩ SP = XP ∩ RP . Since

RP is a valuation domain, AP = XP or RP ⊆ XP . The latter case is impossible

since XP ⊆ XL ⊆ LL. Thus AP = XP . We conclude that End(XP ) = End(AP ) =

RP . �

A prime ideal P is branched if there exists a P -primary ideal different from P .

If P is a nonzero prime ideal of a Prüfer domain R, then P is branched if and only

if P is not the union of the prime ideals properly contained in P , and in this case

if P fails to be branched, then the valuation domain RP is infinite dimensional and

there is no maximal element among the prime ideals properly contained in P .

Lemma 3.3. Let R be a Prüfer domain having the separation property. If there

exists a finitely generated ideal J of R having infinitely many minimal primes, then

there exists a submodule X of the field of fractions F of R and a maximal ideal M

containing J such that End(X)M 6= End(XM ).
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Proof. Let P1, P2, P3, . . . be countably many distinct minimal primes of J . Define

S =
⋂
iRPi . Then S is a Prüfer overring of R and the minimal primes of JS are

of the form QS, where Q ∈ SpecR is a minimal prime of J . In particular, PiS

is a minimal prime of JS for each i ≥ 1. Since R has the separation property,

each PiS is a maximal ideal of S. This is because if j is any positive integer, then

End(Pj) = RPj ∩ (
⋂
N RN ) by Theorem 3.2.6 of [3], so End(Pj) ⊆ S since the Pi’s

are comaximal. By Lemma 2.1(ii) Pj is a maximal ideal of End(Pj), and since R is

a Prüfer domain, either Pj extends to a maximal ideal SPj of S or SPj = S. The

latter case is impossible since S ⊆ RPj . Thus SPj is a maximal ideal of S.

Since J is a nonzero finitely generated ideal, each minimal prime of J is branched.

Since JS has infinitely many minimal primes, Theorem 1.6 of [7] implies there exists

a minimal prime QS of JS that is not the radical of a finitely generated ideal. If

Q = Pj for some j, then by [6, Theorem 2], we have S =
⋂
i6=j RPi . Therefore, by

relabeling if necessary, we may assume that Q 6∈ {Pi}∞i=1.

Define A = JRQ ∩R. Then AS = JRQ ∩ S is QS-primary. In particular, QS is

the unique minimal prime of AS and A 6⊆ PiS ∩R = Pi for each i ≥ 1.

Let Q1 be the prime ideal of R just below Q (such a prime Q1 exists because

Q is branched). Since R has the separation property, there is a finitely generated

ideal B of R such that Q1 ⊂ B ⊆ Q. Local verification shows that Q1 ⊂ Bn ⊆ Q

for each positive integer n.

For each i ≥ 1, let

xi ∈ Ai \ (P1 ∪ · · · ∪ Pi ∪Ai+1).

(By Prime Avoidance (see for example [2, Lemma 3.3]) such an element xi exists.)

Define

Ji = Bi+1 + xiR.

Then Q1 ⊆ Ji and Ji 6⊆ (P1 ∪ · · · ∪ Pi). Define X =
∑
i>1 J

−1
i S.

Let N = QS and for each i > 0, define Ni = PiS. As previously demonstrated,

N and the ideals Ni, i > 0, are maximal ideals of S. We show first that End(XN ) 6=
End(X)N .

For each i ≥ 1,

XNi =

i−1∑
k=1

J−1
k SNi ,

since by design, J−1
k SNk = SNk for all k ≥ i. So as a finitely generated fractional

ideal of SNi , XNi is isomorphic to SNi . Thus End(XNi) = SNi for each i. We have
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that for each i, SNi = RPi ; hence

End(X) ⊆
⋂
i

End(XNi) = S.

Therefore, End(X) = S. In particular, End(X)N = SN .

Thus to prove the claim that End(X)N 6= End(XN ), it suffices to show that

N End(XN ) = End(XN ). To this end we verify that XN = NXN . Since N = SQ,

we have SN = RQ, so for each i ≥ 1, Ai+1SN ⊂ AiSN . In particular, xi+1SN ⊂
xiSN since xi ∈ Ai \ Ai+1 and Ai+1SN ∩ R = Ai+1RQ ∩ R = Ai+1. It follows

that (Ji+1)SN ⊂ (Ji)SN . Since Ji is a finitely generated ideal of S, it follows that

(Ji+1)SN ⊆ N(Ji)SN . Consequently, J−1
i ⊆ N(J−1

i+1)SN for each i ≥ 1. Therefore

X ⊆ NXN , as claimed.

For S-submodules Y and W of F , let [W : Y ] = {q ∈ F : qY ⊆ W}. Since

XN = NXN and End(NN) = SN , we have

[SN : XN ] = [NN : NXN ] = [NN : XN ].

Moreover, [SN : XN ] =
⋂
i JiSN and

Q1SN ⊆
⋂
i

JiSN ⊆
⋂
i

AiSN = Q1SN .

The latter equality follows from the fact that since SN is a valuation domain and

ASN is a principal ideal of SN , the intersection
⋂
iA

iSN is a prime ideal. Since Q1

is the largest prime ideal of R properly contained in Q, A ⊆ Q and A 6⊆ Q1, we

have
⋂
iA

iSN = Q1SN .

It follows that [NN : XN ] = [SN : XN ] = (SQ1)N . Since RN is a valuation

domain, the maximal ideal NN of SN is m-canonical (see [10]), that is,

XN = [NN : [NN : XN ]] = [NN : (SQ1)N ].

Since SQ1 is a nonmaximal prime ideal of S, [NN : (SQ1)N ] = SSQ1 [3, Theorem

4.1.21]. Thus XN = SSQ1 , and we have End(XN ) = SSQ1 = RQ1 . In particular,

End(XN) 6= RQ. Now XN = XSQ = XQ, and if M is a maximal ideal of R

containing Q, then SSQ = SM , so XM = XQ. Thus

RQ1 = End(XN ) = End(XM ),

while

End(X)M = SM = RQ.

Therefore End(XM ) 6= End(X)M . �

Theorem 3.4. Let R be a Prüfer domain with field of fractions F . The following

statements are equivalent.
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(i) For each finitely generated ideal A of R, every weak-Bourbaki associated

prime of A is a Zariski-Samuel associated prime of A.

(ii) Every finitely generated ideal of R has only finitely many minimal prime

ideals.

(iii) Every principal ideal of R has only finitely many minimal prime ideals.

(iv) Every branched prime ideal of R is the radical of a finitely generated ideal.

(v) For each R-submodule X of F , End(XM ) = End(X)M , for every maximal

ideal M of R.

Proof. (i) ⇒ (ii) Let A be a finitely generated ideal of R. Every minimal prime P

of A is a weak-Bourbaki prime of A and therefore by (i) a Zariski-Samuel prime of

A and hence of the form
√

(A : x). Since R is Prüfer, (A : x) is finitely generated,

see, for example, [6, Lemma 2]. Thus each minimal prime of R/A is the radical of

a finitely generated ideal of R/A. By Theorem 1.6 in [7], R/A has finitely many

minimal primes. This proves (ii).

(ii) ⇒ (iii) is obvious.

(iii)⇒ (iv) Let P be a branched prime of R. Then there exists a prime ideal Q of

R such Q ⊂ P and there are no other prime ideals between Q and P . Let x ∈ P \Q.

Since the prime ideals contained in P are linearly ordered, P is a minimal prime

ideal of xR. By (iii), xR has only finitely many minimal prime ideals. Since R is

Prüfer, if B is the intersection of the other minimal primes of xR, then B+P = R.

Hence there exists y ∈ P such that B + yR = R. It follows that P is the radical of

(x, y)R. This proves (iv).

(iv) ⇒ (v) Since every nonzero prime ideal of R is the union of branched prime

ideals, this follows from Lemma 3.2.

(v) ⇒ (i) Let A be a finitely generated ideal of R and let P be a weak-Bourbaki

associated prime of A. Then P is a minimal prime of (A : x) for some x ∈ R.

Since R is Prüfer, (A : x) is finitely generated. Lemma 3.3 implies that (A : x)

has only finitely many minimal primes. Thus by Lemma 5.10 of [4] each minimal

prime of (A : x) is a Zariski-Samuel associated prime of (A : x), and therefore a

Zariski-Samuel associated prime of A. This proves (i). �

There is an interesting connection between the conditions of Theorem 3.4 and

“trace properties” of Prüfer domains. T. Lucas shows in [16, Theorem 23] that a

Prüfer domain R satisfies (iv) of Theorem 3.4 if and only if R has the radical trace

property, namely, for every ideal A of R, AA−1 is either R or a radical ideal of R.

Corollary 3.5. The following statements are equivalent for a Prüfer domain R.
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(i) Every branched prime ideal of R of height greater than one is the radical of

a finitely generated ideal of R.

(ii) For each nonzero ideal A of R, End(AM ) = End(A)M for all maximal

ideals M of R.

(iii) For each ideal A of R, Ass(A) is precisely the set of prime ideals P such

that A ⊆ P and P End(A) 6= End(A).

Proof. (i) ⇒ (ii) Suppose (i) holds, and let A be a nonzero ideal of R. Let M be a

maximal ideal of R. If M has height one then RM is a one-dimensional valuation

domain, so End(AM ) = RM . Consequently, End(A)M = End(AM ). If M has

height greater than 1, then M is the union of branched prime ideals of height

greater than 1, so by (i) and Lemma 3.2, End(AM ) = End(A)M . This proves (ii).

(ii) ⇒ (i) Let P be a branched prime ideal of R such that there is a nonzero

prime ideal Q of R with Q ⊂ P . From (ii) and Lemma 2.1, it follows that R has the

separation property. Thus Q is a maximal ideal of End(Q) and End(Q)/Q is the

quotient field of R/Q. From (ii) it follows that if X is an R-submodule of End(Q)

with Q ⊆ X , then

End((X/Q)M/Q) = End(X/Q)M/Q

for all maximal ideals M of R containing Q. By Theorem 3.4, the branched prime

ideal P/Q of R/Q is the radical of a finitely generated ideal. Hence P is the radical

of an ideal I + Q, where I is a finitely generated ideal of R. Since R has the

separation property, there is a finitely generated ideal J such that Q ⊂ J ⊆ P .

Thus P is the radical of the finitely generated ideal I + J .

(ii) ⇒ (iii) Let A be an ideal of R, and suppose P ∈ Ass(A). Then there exists

Q ∈ XA such that P ⊆ Q. By Lemma 1.4, RQ = End(AM ) for some maximal

ideal M of R. Thus by (ii), RQ = End(A)M , and we have QEnd(A) 6= End(A). It

follows that P End(A) 6= End(A).

Now suppose P is a prime ideal containing A such that P End(A) 6= End(A).

Then End(A)M 6= P End(A)M for some maximal ideal M of R, and it follows that

End(A)M ⊆ RP . By (ii), End(AM ) ⊆ RP . If End(AM ) = RQ for some prime ideal

Q, then by Lemma 1.2 and 1.4, it follows that Q ∈ Ass(A). Since A ⊆ P ⊆ Q,

Lemma 1.2 implies P ∈ Ass(A). This proves (iii).

(iii)⇒ (ii) LetA be a proper ideal ofR and M be a maximal ideal ofR containing

A. If End(A)M = RP for some prime ideal P of R, then P End(A) 6= End(A), so

by (iii), P ∈ Ass(A). By Lemma 3.1, End(A)M = End(AM ). This proves (ii). �
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Remark 3.6. Theorem 3.4 shows that conditions for good behavior with respect

to localization for endomorphism rings of submodules of the fraction field involve

all the primes of R. On the other hand, Corollary 3.5 shows that the corresponding

property for ideals involves only conditions on the primes of height greater than

one. This phenomenon is illustrated in the article Goeters-Olberding [8], where the

statement of Corollary 3.5 that End(A) commutes with localizations is of central

importance. Our proof of Lemma 3.3 is a refinement of the argument given in

Theorem 3.7 of [8].

Theorem 3.7. Consider the following statements for an arithmetical ring R.

(i) XA = Max(A) for each proper regular ideal A of R.

(ii) Every branched prime ideal of R that properly contains a regular prime ideal

is the radical of a finitely generated ideal.

(iii) Every branched prime ideal of R that properly contains a regular prime ideal

is the radical of a principal ideal.

Then (iii) ⇒ (i) ⇒ (ii). Moreover, if R is a QR-domain, then all three statements

are equivalent.

Proof. (i) ⇒ (ii) We consider first the case where R is a domain. Then to prove

(ii), it suffices by Corollary 3.5 to show that for every ideal A of R and maximal

ideal M containing A, End(A)M = End(AM ). Let A be a proper nonzero ideal of R

and let M be a maximal ideal such that A ⊆M . Since RM is a valuation domain,

there exists a prime ideal P of R such that End(A)M = RP . We claim first that the

elements of P are not prime to A. Let {Mα} denote the set of maximal ideals of

R that contain A, and let {Nβ} denote the set of maximal ideals of R that do not

contain A. For each α, there exists a prime ideal Pα such that End(AMα) = RPα .

Moreover, by Lemmas 1.2 and 1.4, we have XA ⊆ {Pα} ⊆ Ass(A). Since End(A) =

(
⋂
α End(AMα)) ∩ (

⋂
β End(ANβ )), we have

RP = End(A)M = (
⋂
α

RPα)RM ∩ (
⋂
β

RNβ )RM .

Since R has the separation property, Lemma 2.3(iv) implies that
⋂
β RNβ 6⊆ RP .

Thus because RP is a valuation domain, it must be that
⋂
αRPα ⊆ RP , and it

follows that P ⊆
⋃
α Pα. Since S(A) = ∪αPα, the elements of P are not prime

to A, as claimed. Therefore there exists Q ∈ Max(A) such that P ⊆ Q. By (i),

Q ∈ XA, so by Lemma 1.2, P ∈ Ass(A) since A ⊆ P ⊆ Q. Thus by Lemma 3.1,

End(A)M = End(AM ). This proves that (i) implies (ii) in the case R is a domain.

Now consider the general case where R is not necessarily a domain. Observe

that since statement (i) holds for R, statement (i) holds for R/P for all regular



MAXIMAL PRIME DIVISORS IN ARITHMETICAL RINGS 17

prime ideals P of R. This follows from the observation that if A is an ideal of R

that contains P then for all x ∈ R,

(A/P :R/P x+ P ) = ((A : x) + P )/P.

In particular, Ass(A/P ) = {Q/P : Q ∈ Ass(A), P ⊆ Q}. Also, Max(A/P ) =

{Q/P : Q ∈ Max(A), P ⊆ Q}. Thus statement (ii) holds for R/P for all regular

prime ideals P of R. Let Q be a branched prime ideal of R containing at least

one regular prime ideal. Then there exists a regular prime ideal P of R such that

P ⊂ Q. By Theorem 2.3, there exists a finitely generated ideal B of R such that

P ⊆ B ⊂ Q. Moreover, since (ii) holds for R/P , there exists a finitely generated

ideal C of R such that Q is the radical of C +P . It follows that Q is the radical of

the finitely generated ideal C +B.

(iii) ⇒ (i) Let A be a proper regular ideal of R. For each P ∈ XA there exists

M ∈ Max(A) such that P ⊆M and then P = M if and only if M ∈ Ass(A). Thus

it suffices to prove that M ∈ Max(A) implies M ∈ Ass(A). This is clear if M/A

has height one as prime ideal of R/A. Assume that ht(M/A) ≥ 2. Then M is the

union of a chain of branched prime ideals Pi of R, where A ⊆ Pi and ht(Pi/A) ≥ 2.

Since A is a regular ideal, so is each Pi. Thus by (iii), each Pi is the radical of a

principal ideal of R. Since Pi ⊆ M , the elements in Pi are non-prime to A. Since

Pi is the radical of a principal ideal and S(A) =
⋃
Q∈XA Q, Pi is contained in some

member of XA. By Lemma 1.2, each Pi ∈ Ass(A). Therefore
⋃
i Pi = M ∈ Ass(A).

Finally, we conclude that statements (i),(ii) and (iii) are equivalent for a QR-

domain R since in a QR-domain every prime ideal that is the radical of a finitely

generated ideal is the radical of a principal ideal. �

Corollary 3.8. If R is a Prüfer domain having the property that every maximal

prime divisor of an ideal A of R is a Krull associated prime of A, then every

branched prime ideal of R of height greater than one is the radical of a finitely

generated ideal.

Proof. The corollary is a consequence of Theorem 3.7 and Corollary 1.3. �

Example 3.9 illustrates the fact that it is possible for a 2-dimensional Prüfer

domain to satisfy the hypotheses of Theorem 2.3, but not Theorem 3.7.

Example 3.9. There exists a Prüfer domain R that has the strong separation

property and yet contains an ideal A such that XA is a proper subset of Max(A).

Moreover, R does not satisfy any of the conditions (i), (ii) or (iii) of Theorem 3.7.

Let D be an almost Dedekind domain (that is, DM is a DVR for all maximal ideals
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M of D) that is not Dedekind. (See [3, page 281] for an example of such a domain.)

Let F denote the field of fractions of D, let x be an indeterminate over F , and

let P = xF [x](x). Define R = D + P . Then R is a Prüfer domain and P is the

unique nonzero nonmaximal prime ideal of R. Moreover, if M is a maximal ideal

of R, then M contains P and if r ∈ M \ P , then P ⊆ Rr ⊆ M , so R has the

strong separation property. In particular, by Theorem 2.3, every ideal A of R has

the property that XA ⊆ Max(A). Since D is almost Dedekind, but not Dedekind,

there exists a maximal ideal Q of D that is not the radical of a finitely generated

ideal. Consequently, the (height 2) maximal ideal Q+ P of R is not the radical of

a finitely generated ideal of R. By Theorem 3.7, there exists an ideal A of R such

that XA is a proper subset of Max(A).

In Example 2.9 of [4], we construct a 2-dimensional Prüfer domain with Noether-

ian spectrum having an ideal A for which there exists a maximal ideal M such that

M is in Max(A) but M is not a Krull associated prime ofA. Since this domainR has

Noetherian spectrum, R satisfies statement (ii) of Theorem 3.7. Hence condition

(ii) of Theorem 3.7 does not imply condition (i), even when R is a 2-dimensional

Prüfer domain. This leaves the question of whether in general (i) implies (iii) in

Theorem 3.7:

Question 3.10. Does there exist an arithmetical ring R such that R satisfies state-

ment (i) but not statement (iii) of Theorem 3.7?
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