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How unique is QR?

Full rank, m = n

In class we looked at the special case of full rank, n × n matrices, and showed
that the QR decomposition is unique up to a factor of a diagonal matrix with
entries ±1. Here we’ll see that the other full rank cases follow the m = n case
somewhat closely. Any full rank QR decomposition involves a square, upper-
triangular partition R within the larger (possibly rectangular) m × n matrix.
The gist of these uniqueness theorems is that R is unique, up to multiplication
by a diagonal matrix of ±1s; the extent to which the orthogonal matrix is unique
depends on its dimensions.

Theorem (m = n) If A = Q1R1 = Q2R2 are two QR decompositions of full
rank, square A, then

Q2 = Q1S

R2 = SR1

for some square diagonal S with entries ±1. If we require the diagonal entries of
R to be positive, then the decomposition is unique.

Theorem (m < n) If A = Q1

[
R1 N1

]
= Q2

[
R2 N2

]
are two QR decom-

positions of a full rank, m× n matrix A with m < n, then

Q2 = Q1S, R2 = SR1, and N2 = SN1

for square diagonal S with entries ±1. If we require the diagonal entries of R to
be positive, then the decomposition is unique.

Theorem (m > n) If A =
[
Q1 U1

] [R1

0

]
=

[
Q2 U2

] [R2

0

]
are two QR

decompositions of a full rank, m× n matrix A with m > n, then

Q2 = Q1S, R2 = SR1, and U2 = U1T

for square diagonal S with entries ±1, and square orthogonal T . If we require
the diagonal entries of R to be positive, then Q and R are unique.

Proofs

Proof: (m < n) Let Q1

[
R1 N1

]
= Q2

[
R2 N2

]
with Qi being m×m and

orthogonal, Ri being m × m and upper triangular, and N i being an arbitrary
m × (n −m) matrix. Then multiplying through yields Q1R1 = Q2R2, two QR
decompositions of a full rank, m ×m matrix. Using the theorem above, we get
that Q2 = Q1S and R2 = SR1 for a diagonal matrix S with entries ±1. Looking
at the right-most partition of the original product yields Q1N1 = Q2N2. But
we’ve shown Q2 = Q1S, so now we have Q1N1 = Q1SN2. Left-multiplying by
QT

1 and then by S then proves N2 = SN1, completing the theorem.
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Proof: (m > n) Let A be full rank and m × n with m > n. Suppose it has
decompositions

A = Q̃1R̃1 = Q̃2R̃2

for m×m orthogonal matrices Q̃i, m×n and upper-triangular matrices R̃i. (We
know we can do this because the QR decomposition always exists).

Since m > n, we can write Q̃i =
[
Qi U i

]
and R̃i =

[
Ri

0

]
where Qi is m×n

and U i is m× (m− n). Then

A = Q̃iR̃i =
[
Qi U i

] [Ri

0

]
= QiRi

where Ri is square, upper-triangular, invertible (because A is full rank), and the
columns of Qi are orthonormal so Qi satisfies QT

i Qi = I.
Then we have

Q1R1 = Q2R2, (1)

and left-multiplying by QT
2 and right-multiplying by R−1

1 yields

QT
2 Q1 = R2R

−1
1 . (2)

Note that the right-hand side of Eqn (2) is upper-triangular (since Ri is). On the
other hand, left-multiplying Eqn (1) by QT

1 and right-multiplying by R−1
2 gives

QT
1 Q2 = R1R

−1
2 , and taking the transpose yields a lower-triangular expression

for QT
2 Q1. Therefore QT

1 Q2 = R1R
−1
2 is both lower- and upper-triangular, and

so it is diagonal. Call it D. Then right-multiplying Eqn (1) by R−1
2 yields

Q2R2R
−1
2 = Q2 = Q1R1R

−1
2 = Q1D

and so Q2 = Q1D. Multiplying this by its transpose and using orthogonality of
Qi we get I = QT

2 Q2 = (Q1D)T (Q1D) = DTQT
1 Q1D = DTD = D2. This

proves D2 = I, so D = S, a diagonal matrix with entries ±1. So Q2 = Q1S.
Left multiplying Eqn (1) by QT

2 = SQT
1 then yields

SQT
1 Q1R1 = SR1 = QT

2 Q2R2 = R2,

proving that R2 = SR1.

Handling U i Finally, we consider U i. To make Q̃i =
[
Qi U i

]
orthonormal,

U i can be any set of columns that are orthonormal to Qi. Since there is such a
vast choice for U i, we then want to know if there is a relationship between U1

and U2.
Since Q2 = Q1S, those two sets of columns (i.e. Q1 and Q2) span the same

subspace of Rm. Because the matrices Q̃i are full rank, their range must be all
of Rm, and so we must have Rm = col(Qi) ⊕ col(U i). But col(Q1) = col(Q2),
so we must have that col(U1) = col(U2). This means there exists an invertible
matrix T such that U2 = U1T because the columns of U i are bases for the same
subspace of Rm.

Using the orthogonality of U i, the fact that U i are m × (m − n) (hence
tall and narrow), and the fact that U2 = U1T , we have that I = UT

2 U2 =
(U1T )T (U1T ) = T TUT

1 U1T = T T IT = T TT , proving that T is in fact or-
thogonal.
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