PURDUE UNIVERSITY · CS 51500 MATRIX COMPUTATIONS

How unique is QR?

Full rank, m = n

In class we looked at the special case of full rank, $n \times n$ matrices, and showed that the QR decomposition is unique up to a factor of a diagonal matrix with entries ±1. Here we'll see that the other full rank cases follow the m = n case somewhat closely. Any full rank QR decomposition involves a square, uppertriangular partition \mathbf{R} within the larger (possibly rectangular) $m \times n$ matrix. The gist of these uniqueness theorems is that \mathbf{R} is unique, up to multiplication by a diagonal matrix of ±1s; the extent to which the orthogonal matrix is unique depends on its dimensions.

Theorem (m = n) If $A = Q_1 R_1 = Q_2 R_2$ are two QR decompositions of full rank, square A, then

$$oldsymbol{Q}_2 = oldsymbol{Q}_1 oldsymbol{S} \ oldsymbol{R}_2 = oldsymbol{S} oldsymbol{R}_1$$

for some square diagonal S with entries ± 1 . If we require the diagonal entries of R to be positive, then the decomposition is unique.

Theorem (m < n) If $\mathbf{A} = \mathbf{Q}_1 \begin{bmatrix} \mathbf{R}_1 & \mathbf{N}_1 \end{bmatrix} = \mathbf{Q}_2 \begin{bmatrix} \mathbf{R}_2 & \mathbf{N}_2 \end{bmatrix}$ are two QR decompositions of a full rank, $m \times n$ matrix \mathbf{A} with m < n, then

$$\boldsymbol{Q}_2 = \boldsymbol{Q}_1 \boldsymbol{S}, \qquad \boldsymbol{R}_2 = \boldsymbol{S} \boldsymbol{R}_1, \quad \text{and} \quad \boldsymbol{N}_2 = \boldsymbol{S} \boldsymbol{N}_1$$

for square diagonal S with entries ± 1 . If we require the diagonal entries of R to be positive, then the decomposition is unique.

Theorem (m > n) If $\boldsymbol{A} = \begin{bmatrix} \boldsymbol{Q}_1 & \boldsymbol{U}_1 \end{bmatrix} \begin{bmatrix} \boldsymbol{R}_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{Q}_2 & \boldsymbol{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{R}_2 \\ 0 \end{bmatrix}$ are two QR decompositions of a full rank, $m \times n$ matrix \boldsymbol{A} with m > n, then

$$oldsymbol{Q}_2 = oldsymbol{Q}_1 oldsymbol{S}, \qquad oldsymbol{R}_2 = oldsymbol{S} oldsymbol{R}_1, \quad ext{ and } \quad oldsymbol{U}_2 = oldsymbol{U}_1 oldsymbol{T}$$

for square diagonal S with entries ± 1 , and square orthogonal T. If we require the diagonal entries of R to be positive, then Q and R are unique.

Proofs

Proof: (m < n) Let $Q_1 \begin{bmatrix} R_1 & N_1 \end{bmatrix} = Q_2 \begin{bmatrix} R_2 & N_2 \end{bmatrix}$ with Q_i being $m \times m$ and orthogonal, R_i being $m \times m$ and upper triangular, and N_i being an arbitrary $m \times (n-m)$ matrix. Then multiplying through yields $Q_1R_1 = Q_2R_2$, two QR decompositions of a full rank, $m \times m$ matrix. Using the theorem above, we get that $Q_2 = Q_1S$ and $R_2 = SR_1$ for a diagonal matrix S with entries ± 1 . Looking at the right-most partition of the original product yields $Q_1N_1 = Q_2N_2$. But we've shown $Q_2 = Q_1S$, so now we have $Q_1N_1 = Q_1SN_2$. Left-multiplying by Q_1^T and then by S then proves $N_2 = SN_1$, completing the theorem.

Proof: (m > n) Let A be full rank and $m \times n$ with m > n. Suppose it has decompositions

$$oldsymbol{A} = ilde{oldsymbol{Q}}_1 ilde{oldsymbol{R}}_1 = ilde{oldsymbol{Q}}_2 ilde{oldsymbol{R}}_2$$

for $m \times m$ orthogonal matrices Q_i , $m \times n$ and upper-triangular matrices R_i . (We know we can do this because the QR decomposition always exists).

Since m > n, we can write $\tilde{\boldsymbol{Q}}_i = \begin{bmatrix} \boldsymbol{Q}_i & \boldsymbol{U}_i \end{bmatrix}$ and $\tilde{\boldsymbol{R}}_i = \begin{bmatrix} \boldsymbol{R}_i \\ 0 \end{bmatrix}$ where \boldsymbol{Q}_i is $m \times n$ and \boldsymbol{U}_i is $m \times (m - n)$. Then

$$oldsymbol{A} = ilde{oldsymbol{Q}}_i ilde{oldsymbol{R}}_i = egin{bmatrix} oldsymbol{R}_i & oldsymbol{U}_i \end{bmatrix} egin{bmatrix} oldsymbol{R}_i \ oldsymbol{0} \end{bmatrix} = oldsymbol{Q}_i oldsymbol{R}_i \ oldsymbol{0} \end{bmatrix} = oldsymbol{Q}_i oldsymbol{R}_i$$

where \mathbf{R}_i is square, upper-triangular, invertible (because \mathbf{A} is full rank), and the columns of \mathbf{Q}_i are orthonormal so \mathbf{Q}_i satisfies $\mathbf{Q}_i^T \mathbf{Q}_i = \mathbf{I}$.

Then we have

$$\boldsymbol{Q}_1 \boldsymbol{R}_1 = \boldsymbol{Q}_2 \boldsymbol{R}_2, \tag{1}$$

and left-multiplying by \boldsymbol{Q}_2^T and right-multiplying by \boldsymbol{R}_1^{-1} yields

$$\boldsymbol{Q}_2^T \boldsymbol{Q}_1 = \boldsymbol{R}_2 \boldsymbol{R}_1^{-1}. \tag{2}$$

Note that the right-hand side of Eqn (2) is upper-triangular (since \mathbf{R}_i is). On the other hand, left-multiplying Eqn (1) by \mathbf{Q}_1^T and right-multiplying by \mathbf{R}_2^{-1} gives $\mathbf{Q}_1^T \mathbf{Q}_2 = \mathbf{R}_1 \mathbf{R}_2^{-1}$, and taking the transpose yields a *lower-triangular* expression for $\mathbf{Q}_2^T \mathbf{Q}_1$. Therefore $\mathbf{Q}_1^T \mathbf{Q}_2 = \mathbf{R}_1 \mathbf{R}_2^{-1}$ is both lower- and upper-triangular, and so it is diagonal. Call it \mathbf{D} . Then right-multiplying Eqn (1) by \mathbf{R}_2^{-1} yields

$$Q_2 R_2 R_2^{-1} = Q_2 = Q_1 R_1 R_2^{-1} = Q_1 D$$

and so $Q_2 = Q_1 D$. Multiplying this by its transpose and using orthogonality of Q_i we get $I = Q_2^T Q_2 = (Q_1 D)^T (Q_1 D) = D^T Q_1^T Q_1 D = D^T D = D^2$. This proves $D^2 = I$, so D = S, a diagonal matrix with entries ± 1 . So $Q_2 = Q_1 S$. Left multiplying Eqn (1) by $Q_2^T = SQ_1^T$ then yields

$$oldsymbol{S}oldsymbol{Q}_1^Toldsymbol{Q}_1oldsymbol{R}_1=oldsymbol{S}oldsymbol{R}_1^Toldsymbol{Q}_2oldsymbol{R}_2=oldsymbol{R}_2$$

proving that $\boldsymbol{R}_2 = \boldsymbol{S}\boldsymbol{R}_1$.

Handling U_i Finally, we consider U_i . To make $\hat{Q}_i = \begin{bmatrix} Q_i & U_i \end{bmatrix}$ orthonormal, U_i can be any set of columns that are orthonormal to Q_i . Since there is such a vast choice for U_i , we then want to know if there is a relationship between U_1 and U_2 .

Since $Q_2 = Q_1 S$, those two sets of columns (i.e. Q_1 and Q_2) span the same subspace of \mathbb{R}^m . Because the matrices \tilde{Q}_i are full rank, their range must be all of \mathbb{R}^m , and so we must have $\mathbb{R}^m = \operatorname{col}(Q_i) \oplus \operatorname{col}(U_i)$. But $\operatorname{col}(Q_1) = \operatorname{col}(Q_2)$, so we must have that $\operatorname{col}(U_1) = \operatorname{col}(U_2)$. This means there exists an invertible matrix T such that $U_2 = U_1 T$ because the columns of U_i are bases for the same subspace of \mathbb{R}^m .

Using the orthogonality of U_i , the fact that U_i are $m \times (m - n)$ (hence tall and narrow), and the fact that $U_2 = U_1 T$, we have that $I = U_2^T U_2 = (U_1 T)^T (U_1 T) = T^T U_1^T U_1 T = T^T I T = T^T T$, proving that T is in fact orthogonal.