How unique is QR?

Full rank, $m=n$

In class we looked at the special case of full rank, $n \times n$ matrices, and showed that the QR decomposition is unique up to a factor of a diagonal matrix with entries ± 1. Here we'll see that the other full rank cases follow the $m=n$ case somewhat closely. Any full rank QR decomposition involves a square, uppertriangular partition \boldsymbol{R} within the larger (possibly rectangular) $m \times n$ matrix. The gist of these uniqueness theorems is that \boldsymbol{R} is unique, up to multiplication by a diagonal matrix of $\pm 1 \mathrm{~s}$; the extent to which the orthogonal matrix is unique depends on its dimensions.

Theorem ($m=n$) If $\boldsymbol{A}=\boldsymbol{Q}_{1} \boldsymbol{R}_{1}=\boldsymbol{Q}_{2} \boldsymbol{R}_{2}$ are two QR decompositions of full rank, square \boldsymbol{A}, then

$$
\begin{aligned}
& Q_{2}=Q_{1} S \\
& R_{2}=\boldsymbol{S} \boldsymbol{R}_{1}
\end{aligned}
$$

for some square diagonal \boldsymbol{S} with entries ± 1. If we require the diagonal entries of \boldsymbol{R} to be positive, then the decomposition is unique.

Theorem $(m<n)$ If $\boldsymbol{A}=\boldsymbol{Q}_{1}\left[\begin{array}{ll}\boldsymbol{R}_{1} & \boldsymbol{N}_{1}\end{array}\right]=\boldsymbol{Q}_{2}\left[\begin{array}{ll}\boldsymbol{R}_{2} & \boldsymbol{N}_{2}\end{array}\right]$ are two QR decompositions of a full rank, $m \times n$ matrix \boldsymbol{A} with $m<n$, then

$$
\boldsymbol{Q}_{2}=\boldsymbol{Q}_{1} \boldsymbol{S}, \quad \boldsymbol{R}_{2}=\boldsymbol{S} \boldsymbol{R}_{1}, \quad \text { and } \quad \boldsymbol{N}_{2}=\boldsymbol{S} \boldsymbol{N}_{1}
$$

for square diagonal \boldsymbol{S} with entries \pm. If we require the diagonal entries of \boldsymbol{R} to be positive, then the decomposition is unique.

Theorem $(m>n) \quad$ If $\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{Q}_{1} & \boldsymbol{U}_{1}\end{array}\right]\left[\begin{array}{c}\boldsymbol{R}_{1} \\ 0\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{Q}_{2} & \boldsymbol{U}_{2}\end{array}\right]\left[\begin{array}{c}\boldsymbol{R}_{2} \\ 0\end{array}\right]$ are two QR decompositions of a full rank, $m \times n$ matrix \boldsymbol{A} with $m>n$, then

$$
\boldsymbol{Q}_{2}=\boldsymbol{Q}_{1} \boldsymbol{S}, \quad \boldsymbol{R}_{2}=\boldsymbol{S} \boldsymbol{R}_{1}, \quad \text { and } \quad \boldsymbol{U}_{2}=\boldsymbol{U}_{1} \boldsymbol{T}
$$

for square diagonal \boldsymbol{S} with entries ± 1, and square orthogonal \boldsymbol{T}. If we require the diagonal entries of \boldsymbol{R} to be positive, then \boldsymbol{Q} and \boldsymbol{R} are unique.

Proofs

Proof: $(m<n)$ Let $\boldsymbol{Q}_{1}\left[\begin{array}{ll}\boldsymbol{R}_{1} & \boldsymbol{N}_{1}\end{array}\right]=\boldsymbol{Q}_{2}\left[\begin{array}{ll}\boldsymbol{R}_{2} & \boldsymbol{N}_{2}\end{array}\right]$ with \boldsymbol{Q}_{i} being $m \times m$ and orthogonal, \boldsymbol{R}_{i} being $m \times m$ and upper triangular, and \boldsymbol{N}_{i} being an arbitrary $m \times(n-m)$ matrix. Then multiplying through yields $\boldsymbol{Q}_{1} \boldsymbol{R}_{1}=\boldsymbol{Q}_{2} \boldsymbol{R}_{2}$, two QR decompositions of a full rank, $m \times m$ matrix. Using the theorem above, we get that $\boldsymbol{Q}_{2}=\boldsymbol{Q}_{1} \boldsymbol{S}$ and $\boldsymbol{R}_{2}=\boldsymbol{S} \boldsymbol{R}_{1}$ for a diagonal matrix \boldsymbol{S} with entries ± 1. Looking at the right-most partition of the original product yields $\boldsymbol{Q}_{1} \boldsymbol{N}_{1}=\boldsymbol{Q}_{2} \boldsymbol{N}_{2}$. But we've shown $\boldsymbol{Q}_{2}=\boldsymbol{Q}_{1} \boldsymbol{S}$, so now we have $\boldsymbol{Q}_{1} \boldsymbol{N}_{1}=\boldsymbol{Q}_{1} \boldsymbol{S} \boldsymbol{N}_{2}$. Left-multiplying by \boldsymbol{Q}_{1}^{T} and then by \boldsymbol{S} then proves $\boldsymbol{N}_{2}=\boldsymbol{S} \boldsymbol{N}_{1}$, completing the theorem.

Proof: $(m>n)$ Let \boldsymbol{A} be full rank and $m \times n$ with $m>n$. Suppose it has decompositions

$$
\boldsymbol{A}=\tilde{\boldsymbol{Q}}_{1} \tilde{\boldsymbol{R}}_{1}=\tilde{\boldsymbol{Q}}_{2} \tilde{\boldsymbol{R}}_{2}
$$

for $m \times m$ orthogonal matrices $\tilde{\boldsymbol{Q}}_{i}, m \times n$ and upper-triangular matrices $\tilde{\boldsymbol{R}}_{i}$. (We know we can do this because the QR decomposition always exists).

Since $m>n$, we can write $\tilde{\boldsymbol{Q}}_{i}=\left[\begin{array}{ll}\boldsymbol{Q}_{i} & \boldsymbol{U}_{i}\end{array}\right]$ and $\tilde{\boldsymbol{R}}_{i}=\left[\begin{array}{c}\boldsymbol{R}_{i} \\ 0\end{array}\right]$ where \boldsymbol{Q}_{i} is $m \times n$ and \boldsymbol{U}_{i} is $m \times(m-n)$. Then

$$
\boldsymbol{A}=\tilde{\boldsymbol{Q}}_{i} \tilde{\boldsymbol{R}}_{i}=\left[\begin{array}{ll}
\boldsymbol{Q}_{i} & \boldsymbol{U}_{i}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{R}_{i} \\
0
\end{array}\right]=\boldsymbol{Q}_{i} \boldsymbol{R}_{i}
$$

where \boldsymbol{R}_{i} is square, upper-triangular, invertible (because \boldsymbol{A} is full rank), and the columns of \boldsymbol{Q}_{i} are orthonormal so \boldsymbol{Q}_{i} satisfies $\boldsymbol{Q}_{i}^{T} \boldsymbol{Q}_{i}=\boldsymbol{I}$.

Then we have

$$
\begin{equation*}
\boldsymbol{Q}_{1} \boldsymbol{R}_{1}=\boldsymbol{Q}_{2} \boldsymbol{R}_{2} \tag{1}
\end{equation*}
$$

and left-multiplying by \boldsymbol{Q}_{2}^{T} and right-multiplying by \boldsymbol{R}_{1}^{-1} yields

$$
\begin{equation*}
\boldsymbol{Q}_{2}^{T} \boldsymbol{Q}_{1}=\boldsymbol{R}_{2} \boldsymbol{R}_{1}^{-1} \tag{2}
\end{equation*}
$$

Note that the right-hand side of Eqn (2) is upper-triangular (since \boldsymbol{R}_{i} is). On the other hand, left-multiplying Eqn (1) by \boldsymbol{Q}_{1}^{T} and right-multiplying by \boldsymbol{R}_{2}^{-1} gives $\boldsymbol{Q}_{1}^{T} \boldsymbol{Q}_{2}=\boldsymbol{R}_{1} \boldsymbol{R}_{2}^{-1}$, and taking the transpose yields a lower-triangular expression for $\boldsymbol{Q}_{2}^{T} \boldsymbol{Q}_{1}$. Therefore $\boldsymbol{Q}_{1}^{T} \boldsymbol{Q}_{2}=\boldsymbol{R}_{1} \boldsymbol{R}_{2}^{-1}$ is both lower- and upper-triangular, and so it is diagonal. Call it \boldsymbol{D}. Then right-multiplying Eqn (1) by \boldsymbol{R}_{2}^{-1} yields

$$
\boldsymbol{Q}_{2} \boldsymbol{R}_{2} \boldsymbol{R}_{2}^{-1}=\boldsymbol{Q}_{2}=\boldsymbol{Q}_{1} \boldsymbol{R}_{1} \boldsymbol{R}_{2}^{-1}=\boldsymbol{Q}_{1} \boldsymbol{D}
$$

and so $\boldsymbol{Q}_{2}=\boldsymbol{Q}_{1} \boldsymbol{D}$. Multiplying this by its transpose and using orthogonality of \boldsymbol{Q}_{i} we get $\boldsymbol{I}=\boldsymbol{Q}_{2}^{T} \boldsymbol{Q}_{2}=\left(\boldsymbol{Q}_{1} \boldsymbol{D}\right)^{T}\left(\boldsymbol{Q}_{1} \boldsymbol{D}\right)=\boldsymbol{D}^{T} \boldsymbol{Q}_{1}^{T} \boldsymbol{Q}_{1} \boldsymbol{D}=\boldsymbol{D}^{T} \boldsymbol{D}=\boldsymbol{D}^{2}$. This proves $\boldsymbol{D}^{2}=\boldsymbol{I}$, so $\boldsymbol{D}=\boldsymbol{S}$, a diagonal matrix with entries ± 1. So $\boldsymbol{Q}_{2}=\boldsymbol{Q}_{1} \boldsymbol{S}$. Left multiplying Eqn (1) by $\boldsymbol{Q}_{2}^{T}=\boldsymbol{S} \boldsymbol{Q}_{1}^{T}$ then yields

$$
\boldsymbol{S} \boldsymbol{Q}_{1}^{T} \boldsymbol{Q}_{1} \boldsymbol{R}_{1}=\boldsymbol{S} \boldsymbol{R}_{1}=\boldsymbol{Q}_{2}^{T} \boldsymbol{Q}_{2} \boldsymbol{R}_{2}=\boldsymbol{R}_{2}
$$

proving that $\boldsymbol{R}_{2}=\boldsymbol{S} \boldsymbol{R}_{1}$.
Handling \boldsymbol{U}_{i} Finally, we consider \boldsymbol{U}_{i}. To make $\tilde{\boldsymbol{Q}}_{i}=\left[\begin{array}{ll}\boldsymbol{Q}_{i} & \boldsymbol{U}_{i}\end{array}\right]$ orthonormal, \boldsymbol{U}_{i} can be any set of columns that are orthonormal to \boldsymbol{Q}_{i}. Since there is such a vast choice for \boldsymbol{U}_{i}, we then want to know if there is a relationship between \boldsymbol{U}_{1} and \boldsymbol{U}_{2}.

Since $\boldsymbol{Q}_{2}=\boldsymbol{Q}_{1} \boldsymbol{S}$, those two sets of columns (i.e. \boldsymbol{Q}_{1} and \boldsymbol{Q}_{2}) span the same subspace of \mathbb{R}^{m}. Because the matrices $\tilde{\boldsymbol{Q}}_{i}$ are full rank, their range must be all of \mathbb{R}^{m}, and so we must have $\mathbb{R}^{m}=\operatorname{col}\left(\boldsymbol{Q}_{i}\right) \oplus \operatorname{col}\left(\boldsymbol{U}_{i}\right)$. But $\operatorname{col}\left(\boldsymbol{Q}_{1}\right)=\operatorname{col}\left(\boldsymbol{Q}_{2}\right)$, so we must have that $\operatorname{col}\left(\boldsymbol{U}_{1}\right)=\operatorname{col}\left(\boldsymbol{U}_{2}\right)$. This means there exists an invertible matrix \boldsymbol{T} such that $\boldsymbol{U}_{2}=\boldsymbol{U}_{1} \boldsymbol{T}$ because the columns of \boldsymbol{U}_{i} are bases for the same subspace of \mathbb{R}^{m}.

Using the orthogonality of \boldsymbol{U}_{i}, the fact that \boldsymbol{U}_{i} are $m \times(m-n)$ (hence tall and narrow), and the fact that $\boldsymbol{U}_{2}=\boldsymbol{U}_{1} \boldsymbol{T}$, we have that $\boldsymbol{I}=\boldsymbol{U}_{2}^{T} \boldsymbol{U}_{2}=$ $\left(\boldsymbol{U}_{1} \boldsymbol{T}\right)^{T}\left(\boldsymbol{U}_{1} \boldsymbol{T}\right)=\boldsymbol{T}^{T} \boldsymbol{U}_{1}^{T} \boldsymbol{U}_{1} \boldsymbol{T}=\boldsymbol{T}^{T} \boldsymbol{I} \boldsymbol{T}=\boldsymbol{T}^{T} \boldsymbol{T}$, proving that \boldsymbol{T} is in fact orthogonal.

