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Motivation

Inverse problems of optical imaging are based on classical theories of light
propagation

There are manifestly nonclassical states of light (entanglement)

Questions

Are there inverse scattering problems that exploit nonclassical states of
light?

I Resolution limits

I Interaction-free measurements

Can scattering modify entanglement?

I Deterministic media

I Random media
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Overview

I Field quantization

I Scattering in quantum optics

I Transport of entanglement

I Applications



Field Quantization



Harmonic oscillator

We consider the Hamiltonian

H =
1

2

(
p2 + ω2q2

)
.

Hamilton’s equations are

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

,

which leads to the equation of motion

q̈ + ω2q = 0 .



To quantize the oscillator, we consider the Schrodinger equation

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 ,

where the Hamiltonian operator is given by

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
.

Here the position and momentum operators obey the canonical
commutation relations

[q̂, p̂] = i~ .



To construct the energy eigenstates, we introduce the creation and
annihilation operators

â =

√
ω

2~

(
q̂ +

i

ω
p̂

)
, â† =

√
ω

2~

(
q̂ − i

ω
p̂

)
.

Note that [â, â†] = 1. The Hamiltonian can thus be factorized as

Ĥ = ~ω
(
â†â +

1

2

)
.

We then have
Ĥ |n〉 = En |n〉 ,

where En = ~ω(n + 1/2) and

|n〉 =
1√
n!

(â†)n |0〉 .



The Heisenberg equations of motion for q̂ and p̂ are

dq̂

dt
=

1

i~
[q̂, Ĥ] = p̂ ,

dp̂

dt
=

1

i~
[p̂, Ĥ] = −ω2q̂ .

We see that
d2q̂

dt2
+ ω2q̂ = 0

and thus q̂ obeys the classical equations of motion.



Classical field theory

For simplicity, we consider a scalar model of electromagnetism with the
Lagrangian

L =
1

2
(∂tE )2 − 1

2
c2(∇E )2 .

The equations of motion are derived from the variational principle

δS

δE
= 0 ,

where the action S is defined by

S =

∫
d3r

∫
dtL .

We find that
c2∆E = ∂2t E .



The Hamiltonian is defined as

H =

∫
d3r

(
ΠĖ −L

)
,

where the momentum Π is given by

Π =
∂L

∂Ė
= Ė

Thus

H =

∫
d3r

[
1

2
Π2 +

1

2
c2 (∇E )2

]
.



Field quantization

To quantize the field, we promote Π and E to operators and impose the
equal-time commutation relations

[Ê (r, t), Π̂(r′, t)] = i~δ(r − r′) ,

[Ê (r, t), Ê (r′, t)] = 0 ,

[Π̂(r, t), Π̂(r′, t)] = 0 .

It is convenient to work in Fourier space in a volume V with periodic
boundary conditions:

Ê (r, t) =
1√
V

∑
k

e−ik·rÊk(t) , Ê−k = Ê †k .

The commutation relations become

[Êk, Π̂k′ ] = i~δkk′ ,
[Êk ,̂̂Ek′ ] = 0 ,

[Π̂k, Π̂k′ ] = 0 .



A calculation shows that the Hamiltonian becomes

Ĥ =
∑
k

(
1

2
Π̂kΠ̂†k +

1

2
ω2
k ÊkÊ

†
k

)
,

where ωk = c |k|. Introducing creation and annihilation operators
according to

âk =

√
ωk

2~

(
Êk +

i

ωk
Π̂†k

)
, â†k =

√
ωk

2~

(
Ê †k −

i

ωk
Π̂k

)
,

we have [âk, â
†
k′ ] = δkk′ and [âk, âk′ ] = 0. Thus

Ĥ =
∑
k

~ωk

(
â†kâk +

1

2

)
.

The above Hamiltonian describes a system of independent oscillators.



The electric field operator is given by

Ê (r, t) =
∑
k

Ake
ik·râk + h.c. ,

where the amplitude Ak =
√

~/(2ωkV ). The Heisenberg equation of
motion for âk is

i
d âk
dt

=
1

~
[âk, Ĥ] = ωk âk .

Thus âk(t) = âk(0) exp(−iωkt). We immediately see that the field
operator Ê obeys the classical equations of motion

∆Ê =
1

c2
∂2Ê

∂t2
.



Recall that
Ĥ =

∑
k

~ωk â
†
kâk ,

where we have dropped the zero-point energy. The energy eigenstates
obey

H |n1, . . . , nN〉 = E |n1, . . . , nN〉 ,

where

|n1, . . . nN〉 =
1√

n1! · · · nN !
(â†k1)n1 · · · (â†kN )nN |0〉 ,

E = n1~ω1 + · · ·+ nN~ωN ,

and |0〉 is the vacuum state. The Hilbert space spanned by the above
states is called Fock space.

The excited states of the field are called photons. There are nk photons
in the state |nk〉, each with energy ~ωk . Photons are created and

annihilated by the operators â†k and âk according to

â†k |nk〉 =
√
nk + 1 |nk + 1〉 , âk |nk〉 =

√
nk |nk − 1〉 .



Using the commutation relation [â†k, â
†
k′ ] = 0, we see that the many-body

wavefunction is symmetric under exchange of particles:

|k1, k2〉 = â†k1 â
†
k2
|0〉 = â†k2 â

†
k1
|0〉 = |k2, k1〉 .

Thus, photons are bosons and the state |nk〉 can have an arbitrarily large
occupation number nk .

A one-photon state is a superposition of single-mode states of the form

|ψ〉 =
∑
k

ckâ
†
k |0〉 .

Note that the photon can occupy only one of many possible modes.

A two-photon state takes the form

|ψ〉 =
∑
k,k′

ckk′ â
†
kâ
†
k′ |0〉 .



Entanglement

Given two quantum systems, their joint quantum state may be entangled.
The systems may be particles such as electrons. In quantum field theory,
it is not the particles (photons) that form the systems, but rather the
quantized field modes.

A two-photon state is said to be entangled if it cannot be expressed as a
product of single-photon states. Entangled states exhibit quantum
correlations. An unentangled state is factorizable. Factorizable states are
analogous to independent random variables.

Examples. Consider two quantized field modes. The Fock space of the
system is spanned by |0, 0〉, |0, 1〉, |1, 0〉 and |1, 1〉.

The state |ψ〉 = |1, 1〉 = |1〉 |1〉 is unentangled.

The state |ψ〉 = 1√
2

(|0, 0〉+ |1, 1〉) is entangled.



Entangled states have remarkable properties. According to the rules of
quantum mechanics, measurement of one member of an entangled pair
modifies instantaneously the state of its partner, an effect which occurs
independent of the distance between the particles. The apparent conflict
between this result and the predictions of relativity is a startling feature
of quantum mechanics.

From the point of view of information theory, an entangled state contains
more information than the sum of the information contained in each
subsystem. We will see that the entropy is a useful measure of
entanglement.



Observables

It will prove convenient to write the electric field operator as
Ê = Ê+ + Ê−, where

Ê+(r, t) =
∑
k

Ake
ik·râk

and Ê− = (Ê+)†. We interpret Ê+(r, t) as an operator that annihilates a
photon at the point r at time t. Similarly, Ê−(r, t) is interpreted as a
photon creation operator. It follows that if the field is initially in the
state |ψ〉, the probability of detecting a photon at the point r at time t is

P(r, t) = 〈ψ| Ê+(r, t)Ê−(r, t) |ψ〉 .

Likewise, using two detectors, the joint probability of detecting a photon
at the point r at time t and the point r′ at time t ′ is

P(r, t; r′, t ′) = 〈ψ| Ê+(r, t)Ê+(r′, t)Ê−(r, t)Ê−(r′, t ′) |ψ〉 .



Scattering in Quantum Optics



Scattering
We consider the propagation of light in a material medium with dielectric
permittivity ε(r). The positive part of the electric field operator Ê+ obeys

∆Ê+ =
ε(r)

c2
∂2Ê+

∂t2
.

Here the medium is taken to be nonabsorbing, so that ε is purely real and
positive. Now, let |ψ〉 be a two-photon state. Recall that the joint
probability of detecting one photon at r at time t and a second photon at
r′ at time t ′ is given by

P(r, t; r′, t ′) = 〈ψ| Ê−(r, t)Ê−(r′, t ′)Ê+(r′, t ′)Ê+(r, t) |ψ〉 .

It can be seen that P factorizes as

P(r, t; r′, t ′) = |A(r, t; r′, t ′)|2 .

Here |0〉 is the vacuum state and the two-photon amplitude A is defined
by

A(r, t; r′, t ′) = 〈0| Ê+(r, t)Ê+(r′, t ′) |ψ〉 .



Evidently, the two-photon amplitude A satisfies the pair of wave equations

∆rA =
ε(r)

c2
∂2A

∂t2
,

∆r′A =
ε(r′)

c2
∂2A

∂t ′2
.

We will find it convenient to introduce the Fourier transform of A:

A(r, ω; r′, ω′) =

∫
dtdt ′e i(ωt+ω

′t′)A(r, t; r′, t ′) .

Thus

∆rA + k2ε(r)A = 0 ,

∆r′A + k ′2ε(r′)A = 0 ,

where k = ω/c and k ′ = ω′/c .



We now develop the scattering theory for the two-photon amplitude. To
proceed, we consider the Helmholtz equation

∆u + k2ε(r)u = 0 .

The field u is taken to consist of incident and scattered parts. The
scattered field us is given by

us(r) =

∫
d3r1d

3r2G (r, r1)T (r1, r2)ui (r2) ,

where ui is the incident field and G is the Green’s function. The
T -matrix obeys the integral equation

T (r, r′) = k2η(r)δ(r − r′) + k2η(r)

∫
d3r ′′G (r, r′′)T (r′′, r′) ,

where the susceptiblity η is defined by the relation ε = 1 + 4πη.



Propagating each coordinate of the two-photon amplitude separately, we
obtain

As(r, r′) =

∫
d3r1d

3r2d
3r ′1d

3r ′2G (r, r1)T (r1, r2)G ′(r′, r′1)T ′(r′1, r
′
2)Ai (r2, r

′
2) ,

where Ai is the two-photon amplitude of the incident field.

If As(r, r′) factorizes into a product of two functions which depend upon
r and r′ separately, we will say that the two-photon state |ψ〉 is not
entangled. In contrast, an entangled state is not separable.

It follows directly from the above that if Ai is separable, then As is
separable. That is, if As is entangled then Ai is entangled. Thus,
entanglement cannot be created by scattering an unentangled incident
state.



Now consider the far-field asymptotics of the two-photon amplitude
As(r, r′). We find that

As(k̂, k̂′) =

∫
d k̂1d k̂2 〈k|T |k1〉 〈k′|T ′ |k2〉Ai (k̂1, k̂2) ,

where k = k r̂ and k′ = k ′r̂′. We note that the above T -matrices are
on-shell. The momentum-space T -matrix elements are defined by

〈k|T |k′〉 =

∫
d3rd3r ′e−i(k·r−k

′·r′)T (r, r′) ,

where |k| = |k′| = k. From now on, we consider a fully entangled
incident state with Ai (k̂1, k̂2) = δ(k̂1 − k̂2). Thus

As(k̂, k̂′) =

∫
d k̂′′ 〈k|T |k′′〉 〈k′|T ′ |k′′〉 ,

where |k| = k and |k′| = k ′.



Small scatterer

We now compute As for a collection of small scatterers. We begin with
the case of a small spherical scatter of radius a, where ka� 1. The
T -matrix is then given by

〈k|T |k′〉 = t(k)e i(k−k
′)·r0 ,

where r0 is the position of the scatterer and t(k) = αk2. The
renormalized polarizability α is defined by

α =
α0

1− 3α0k2/(2a)− iα0k3
,

where α0 is the polarizability. We find that

As(k̂, k̂′) = 4πt(k)t(k ′)e i(k k̂+k′k̂′)·r0sinc (|(k + k ′)r0|) .

We see at once that As is a separable function of k̂ and k̂′. Thus the
scattered field is unentangled, even when the incident field is entangled.



Collection of small scatterers

Next, we consider a collection of identical small scatterers. The T -matrix
is given by

〈k|T |k′〉 =
∑
a,b

tab(k)e i(k·ra−k
′·rb) ,

where {ra} are the positions of the scatterers and tab = α0k
2M−1ab . The

matrix M is defined by Mab = δab − α0k
2Gab, where Gab is the

renormalized Green’s function. We find that As is given by

As(k̂, k̂′) = 4π
∑
a,b

∑
a′,b′

tab(k)ta′b′(k ′)e i(k k̂·ra+k′k̂′·ra′ )sinc(|krb + k ′rb′ |) .

We note that A is nonseparable; thus the scattered field is entangled.



Spherical scatterer

Finally, we consider a homogeneous spherical scatterer of radius a
centered at the origin with index of refraction n. The T -matrix is of the
form

〈k|T |k′〉 =
∑
l

(2l + 1)Ml(k)Pl(k̂ · k̂′) ,

where the Mie coefficient Ml is defined as

Ml(k) =
1

ik

jl(nka)j ′l (ka)− njl(ka)j ′l (nka)

nh
(1)
l (ka)j ′l (nka)− h

(1)
l

′
(ka)jl(nka)

.

We find that As is given by

As(k̂, k̂′) = 4π
∑
l

(2l + 1)Al(k)Al(k
′)Pl(k̂ · k̂′) .



Figure: Two-photon amplitude A(k̂, k̂′) of a spherical scatterer of radius a as a
function of the angle θ between k̂ and k̂′. The index of refraction of the sphere
is n = 1.5.



Entanglement entropy

We consider the singular value decomposition of the two-photon
amplitude, viewed as an operator with kernel As(k̂, k̂′). We find that
As(k̂, k̂′) can be decomposed into a superposition of separable terms of
the form

As(k̂, k̂′) =
∑
n

σnun(k̂)v∗n (k̂′) ,

where each term corresponds to a unentangled. Here the singular values
σn are real-valued and the singular functions obey∫

(As
∗As) (k̂, k̂′)vn(k̂′)d k̂′ = σ2

nvn(k̂) ,∫
(AsAs

∗) (k̂, k̂′)un(k̂′)d k̂′ = σ2
nun(k̂) .

A measure of the degree of entanglement is the entropy S , which is
defined by

S = −
∑
n

σn log σn .



Spherical scatterer

We can compute the entanglement entropy of a spherical scatterer in
terms of Mie coefficients. The singular values are given by

σl = (4π)2|Ml(k)Ml(k
′)|

and
S = −

∑
l

(2l + 1)σl log σl .

In the limit where the radius tends to zero, the entropy vanishes,
consistent with the separability of the two-photon amplitude for the case
of a point scatterer in (26). There are oscillations in the entropy related
to the presence of scattering resonances.



Figure: Entropy of entanglement of a spherical scatterer as a function of radius
a. The index of refraction of the sphere is n = 1.5.



Collection of small scatterers

To construct the singular value decomposition of As , we expand the
singular functions un into spherical harmonics of the form

un(k̂) =
∑
l,m

u
(n)
lm Ylm(k̂) ,

where the coefficients u
(n)
lm are to be determined. We find that the u

(n)
lm

can be obtained from the solution to the eigenproblem∑
l′,m′

Al′m′

lm u
(n)
l′m′ = σ2

nu
(n)
lm ,

Alm
l′m′ =

∑
l′′,m′′

C lm∗
l′′m′′C l′′m′′

l′m′ ,

C lm
l′m′ =

∑
a,a′

b,b′

i l+l′tabta′b′sinc (|kra + k ′ra′ |) jl(krb)jl′(k
′rb′)Y ∗lm (̂ra)Yl′m′ (̂ra′) .

The entropy is computed from the singular values σn.



Figure: The entropy of entanglement of a pair of scatterers separated by a
distance d . The radii of the scatterers is ka = 0.2 and their index of refraction
is n = 1.5.



Transport of Entanglement



Quantum optics in random media

The propagation of light in disordered media is generally considered
within the framework of classical optics. However, recent experiments
have demonstrated the existence of novel quantum effects in multiple
light scattering.

I Spatial correlations in multiply-scattered squeezed light.

I Statistics of two-photon speckles. Alterations in speckle patterns
can be observed, depending on the degree of spatial entanglement of
the initial state.

I Quantum interference survives averaging over disorder and is
manifest as photon correlations.

In general terms, there is an interplay between quantum interference and
interference due to multiple scattering.



Single-photon RTE
Consider the single-photon state |ψ〉. The first-order coherence function
is defined as the normally-ordered expectation of field operators:

Γ(1)(r1, t1; r2, t2) = 〈ψ| Ê−(r1, t1)Ê+(r2, t2) |ψ〉 ,

where Ê− and Ê+ are the negative- and positive-frequency components
of the electric-field operator with Ê− = [Ê+]†. In a material medium with

dielectric permittivity ε, the field operator Ê+ obeys the wave equation

∆Ê+ − ε(r)

c2
∂2Ê+

∂t2
= 0 .

The medium is taken to be nonabsorbing, so that ε is purely real.
The first-order coherence function Γ(1) obeys the wave equations

∆r1Γ(1) − ε(r1)

c2
∂2Γ(1)

∂t21
= 0 ,

∆r2Γ(1) − ε(r2)

c2
∂2Γ(1)

∂t22
= 0 .



If the field is stationary, then Γ(1) depends upon the difference t1 − t2.
We thus define the Fourier transform of Γ(1) according to

G (1)(r1, r2;ω) =

∫
d(t1 − t2)e iω(t1−t2)Γ(1)(r1, t1; r2, t2) .

Evidently, G (1) satisfies the time-independent wave equations

∆r1G
(1) + k2

0ε(r1)G (1) = 0 ,

∆r2G
(1) + k2

0ε(r2)G (1) = 0 ,

where k0 = ω/c .
We introduce the Wigner distribution of G (1) which is defined as

W (r, k) =

∫
d3r ′e ik·r

′
G (1)(r − r′/2, r + r′/2) .



The Wigner distribution is a phase-space energy density. It is real-valued
and is related to the intensity I and energy current by

I =
c

4π

∫
d3k

(2π)3
W (r, k) , J =

∫
d3k

(2π)3
kW (r, k) .

We find that W obeys the deterministic equation

k · ∇rW +
i

2
k2
0

∫
d3p

(2π)3
e−ip·rε̃(p) [W (r, k + p/2)−W (r, k− p/2)] = 0 .

In a random medium, averaging of the above transport equation leads to
the RTE

k̂ · ∇rW = µs

∫
d2k ′

[
p(k̂′, k̂)W (r, k̂′)− p(k̂, k̂′)W (r, k̂)

]
,

where W = 〈W 〉 is the statistical average over the disorder. The phase
function p and scattering coefficient µs are related to correlations in the
random medium. The averaging can be carried by multiscale
asymptotics. As may be expected, we obtain the classical result.



Two-photon light

Consider the two-photon state |ψ〉. The second-order coherence function
is defined as

Γ(2)(r1, t1; r2, t2) = 〈ψ| Ê−(r1, t2)Ê−(r2, t2)Ê+(r2, t2)Ê+(r1, t1) |ψ〉 .

The quantity Γ(2) is proportional to the probability of detecting one
photon at (r1, t1) and a second photon at (r2, t2). For the two-photon
state |ψ〉, we have seen that Γ(2) factorizes as

Γ(2)(r1, t1; r2, t2) = |A(r1, t1; r2, t2)|2 ,

where the two-photon probability amplitude A is defined by

A(r1, t1; r2, t2) = 〈0|Ê+(r1, t1)Ê+(r2, t2)|ψ〉 .



Two-photon RTE

We now consider the Wigner distribution of A which is defined by

W (r, k) =

∫
d3r ′e ik·r

′
A(r − r′/2, ω1; r + r′/2, ω2) .

It can be seen that W obeys the equation

k·∇rW+
i

2

∫
d3p

(2π)3
e−ip·rε̃(p)

[
k2
1W (r, k + p/2)− k2

2W (r, k− p/2)
]

= 0 .

This is an exact result which describes the propagation of the Wigner
distribution for two-photon light in a material medium.
We now proceed to derive the RTE for two-photon light. We consider a
statistically homogeneous random medium and assume that the
susceptibility η is a Gaussian random field with correlations

〈η(r)〉 = 0 , 〈η(r)η(r′)〉 = C (|r − r′|) .

Here η is related to the dielectric permittivity by ε = 1 + 4πη, C is the
two-point correlation function and 〈· · · 〉 denotes statistical averaging.



It can be seen that I = 〈W 〉 obeys the equation

k̂ · ∇rI(r, k̂) + (σa + σs)I(r, k̂) = σs

∫
d2k ′f (k̂, k̂′)I(r, k̂′) .

Here the coefficients σa, σs and the scattering kernel f are defined by

σa = iγ ,

σs = k2
1k

2
2

∫
C̃ (k(k̂− k̂′))d2k ′ ,

f (k̂, k̂′) =
C̃ (k(k̂− k̂′))∫

d2k ′C̃ (k(k̂− k̂′))
.

We will refer to the above as the two-photon RTE. In contrast to the
specific intensity, the quantity I is not real-valued and is not directly
measurable. Nevertheless, I is related to the average two-photon
probability amplitude which allows for the calculation of the coherence
function Γ(2).



Transport of entanglement

Consider an infinite medium in which the averaged two-photon Wigner
distribution is known on the plane z = 0. That is, we suppose that

I0(r, k) = I(r, k)|z=0 = Aδ(k − k0) ,

where A is constant. On the planes z1 = z2 = 0 the two-photon
wavefunction

Φ̃ = 4πk2
0A

sin (k0|ρ1 − ρ2|)
k0|ρ1 − ρ2|

corresponds to a entangled two-photon state, where r1 = (ρ1, z1) and
r2 = (ρ2, z2). To propagate I into the z > 0 half-space, we make use of
the formula

I(r, k) =

∫
d3k ′

∫
z′=0

d2r ′ |n̂ · k′|G (r, k; r′, k′)I0(r′, k′) .



In the limit of strong scattering and at large distances from the source,
the Green’s function is given by

G (r, r′) =
e−κ|r−r

′|

4πD|r − r′|
.

Here κ =
√
σa/D, D = 1/[3(σa + (1− g)σs)] and

g =
∫
k̂ · k̂′f (k̂, k̂′)d2k ′. We find that

〈Φ̃(r1, r2)〉 =
aAk0

2D(2π)2
sin (k0|r1 − r2|)
|r1 − r2|

×
∫ ∞
0

dq√
q2 + κ2

J1(qa)J0(q|ρ1 + ρ2|/2)e−
√

q2+κ2(z1+z2)/2 .

In the on-axis configuration, in the absence of absorption, we have

〈Φ̃(0, z ; 0, z)〉 =
Ak0

2D(2π)2

[√
z2 + a2 − z

]
.

The entanglement of the photon pair is destroyed with propagation.
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Figure: Dependence of A on the distance of propagation z for k0ρ = 0, 1, 2, 5,
from top to bottom.



Applications



Two-photon imaging
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